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Abstract—A common optimisation problem in the high-level
synthesis (HLS) of FPGA-based accelerators is to find a mi-
croarchitecture that maximises the performance while keeping
the utilisation of the device’s low-level resources below certain
limits.

We propose to tackle it directly as part of the HLS scheduler.
To that end, we formalise a general, integrated scheduling and
allocation problem for HLS kernels, and present SkyCastle, a
novel resource-aware multi-loop scheduler using integer linear
programming to solve it for a subclass of kernels composed of
multiple, nested loops. In order to demonstrate the practical
applicability of the approach, we model the scheduler in such
a way as to be plug-in compatible with the Xilinx Vivado HLS
engine, allowing the computed solutions to be fed back into its
synthesis flow.

We evaluate SkyCastle for three non-trivial kernels from the
machine learning, signal processing, and physical simulation
domains, on two FPGA devices. Additionally, we investigate the
replication of slightly slower, but smaller accelerators as a means
to further boost the overall performance. In contrast to Vivado
HLS’ default settings, which aim at maximum performance but
may fail in later synthesis steps, the solutions computed by our
scheduler always result in synthesisable designs.

I. INTRODUCTION

Modern field-programmable gate arrays (FPGA) have be-
come large enough to accommodate far more functionality
than one simple computational kernel, opening up new op-
portunities and challenges for designers. For example, when
using all available resources, complex multi-phase kernels
can be implemented within a single accelerator to reduce the
number of context switches [1], [2]. On the other hand, it is
also reasonable to partition the resources, e.g. to replicate an
accelerator for parallel processing [3], or to share one device
among different groups in a research project [4]. In all of the
aforementioned situations, the question is usually the same:
How to obtain the best performance within the given resource
constraints?

High-level synthesis (HLS) tools are an ideal starting point
to tackle this optimisation problem, as they can construct mi-
croarchitectures with different trade-offs for the accelerator’s
performance and resource demand from the same algorithmic
specification. This work targets HLS tools that accept C/C++
code as input. We argue that the most influential control
knob in this context is the amount of pipelining used in the
microarchitecture.

Listing 1. Sum-Product Network example

double spn(...) { /* 10 FP mul, 1 FP add */ }
double spn_marginal(...) { /* 8 FP mul, 1 FP add */ }

double top(char i1, char i2, char i3, char i4) {
// most probable explanation for "i5"
char maxClause = -1; double maxProb = -1.0;
MPE: for (char x = 0; x < 0xFF; x += 4) {

double p0 = spn(i1, i2, i3, i4, x);
double p1 = spn(i1, i2, i3, i4, x+1);
double p2 = spn(i1, i2, i3, i4, x+2);
double p3 = spn(i1, i2, i3, i4, x+3);
maxProb = ... // max(maxProb, p0, p1, p2, p3);
maxClause = ... // argument value for i5 that

// yielded new value for maxProb
}
double pM = spn_marginal(i2, i3, i4, maxClause);
return maxProb / pM;

}

Loop pipelining results in the partial overlapping of sub-
sequent loop iterations, and is enabled by modulo schedulers:
Given a control-data-flow graph (CDFG) that represents the
computation of one loop iteration, a modulo scheduler com-
putes a schedule that can be repeated after a certain number
of time steps, called the initiation interval (II). A smaller II
results in more overlapping of iterations and in consequence,
in a shorter execution time for the whole loop, but also requires
more resources as less operator sharing is possible.

Pipelining is also applicable to functions, where it results
in an overlapping evaluation of the function’s body for dif-
ferent sets of arguments. The same trade-off considerations
and scheduling techniques apply to both forms of pipelining,
though.

As a motivational example, consider the excerpt from the
inference process in a Sum-Product Network (see also Sec-
tion V-A1) in Listing 1. We instruct Xilinx Vivado HLS to
pipeline the loop labeled MPE, which automatically pipelines
the function spn as well. The function spn_marginal will
be inlined automatically by the HLS frontend. Vivado HLS at-
tempts, and succeeds, to construct the maximum performance
version of this kernel with II=1 for the loop and the function.
However, as this results in a fully-spatial microarchitecture,
each operation in the computation requires their own operator.
When targeting the popular ZedBoard, such a design requires
499 DSP slices, which exceeds the available 220 slices by a
large margin. Finding the lowest-latency version that still fits



on the device requires considering a) the degree of pipelining
applied to function spn, b) the number of spn-instances, c)
the amount of pipelining for loop MPE (which depends on
a) and b)), and lastly, d) the operator allocation for the top-
level function, which influences c) as well as the latency of
the non-pipelined computation at the end of top. Here, the
fastest solution is to pipeline spn and MPE with II=4, allocate
two multipliers, one adder, one divider, three floating-point
comparators and four instances of spn inside function top.

This paper makes the following key contributions. First, we
provide the formal definition of an integrated scheduling and
allocation problem that models these issues in general for
HLS kernels containing arbitrarily nested loops and functions.
Secondly, we present SkyCastle, a resource-aware multi-loop
scheduler capable of solving the problem for a subclass of
kernels composed of multiple, nested loops in a single top-
level function.

Both the proposed problem definition and the scheduler
apply to, or can be easily adapted to, any HLS flow. However,
in order do demonstrate the practical applicability of the
approach, we tailored the scheduler to be plug-in compatible
with the Vivado HLS engine. To that end, we faithfully
extract the actual scheduling and allocation problems faced by
Vivado HLS from its intermediate representation. Afterwards,
we feed the directives required to control pipelining and the
operator allocation according to the solutions determined by
our scheduler back to the synthesis flow.

Vivado HLS’ default settings aim at maximum performance
but may fail in later synthesis steps due to resource demands
that exceed the capacity on the target device. Even with
our proof-of-concept implementation, we are able to guide
Vivado HLS to generate synthesisable microarchitectures for
three complex kernels on two FPGA devices. On the larger
device, we also explore partitioning the available resources in
order to enable the replication of slightly slower, but smaller
accelerators as a means to further boost the overall perform-
ance. The multi-accelerator solution easily outperforms the
theoretical maximum-performance, single-accelerator design,
which is actually unsynthesisable for two of our three case
studies.

II. RELATED WORK

We discuss the related work with regards to the kind of
exploration used to discover solution candidates to answer the
initially stated research question.

A. As part of the HLS scheduler

The most direct way to solve the problem is to model it
inside the HLS scheduler. This requires considering the highly
interdependent problems of scheduling and (operator) alloca-
tion together, but has two main benefits: First, the resulting
schedules are guaranteed to be feasible because they were
computed by an actual scheduler that considers all nuances
of the problem, such as tight inter-iteration dependences that

might require more operators than the theoretical lower bound.
Secondly, no external exploration is needed.

Recently, Oppermann et al. [5] established a framework to
handle low-level resource constraints in modulo schedulers
based on integer linear programming, such as the formulation
by Eichenberger and Davidson [6] and the Moovac formula-
tion [7], by making the operator allocation variable. They then
showed how the extended schedulers can be used to efficiently
compute different Pareto-optimal solutions with respect to the
two conflicting objectives of maximising the throughput vs.
minimising the resource demand. By itself, however, their
approach is not sufficient to tackle the problem stated for this
work, because it only modulo-schedules individual loops under
the assumption of an independent operator allocation, instead
of more complex multi-loop kernels. However, our proposed
scheduler builds upon their framework and can be seen as a
significant extension of their ideas to suit a more practical
context.

B. Pipelining-focussed exploration

The next category is comprised of approaches that control
the amount of pipelining in a complex kernel by determining
target IIs for its pipelined parts, e.g. stages in a pipelined
streaming application [8], stateless actors in a synchronous
data-flow graph [9], [10], or loops arranged in a directed,
acyclic graph [11]. Common aspects in these works are a)
the use of a performance model to choose the IIs, b) the
approximation of latencies of the individual parts, and c)
the derivation of the operator allocation from the II, without
checking the feasibility.

Differences exist in the chosen objectives. Li et al. [11]
tackle a problem very similar to ours: minimise the overall
latency of a kernel, subject to low-level resource constraints,
and consider the benefits of slightly slower, but better replic-
able implementations.

Cong et al. [9], [10] and Kudlur et al. [8] attempt to
minimise the required resources to fulfil an externally given
throughput constraint, and, in consequence, would need some
kind of exploration to find the highest throughput that still
satisfies given resource constraints. Note, though, that these
approaches employ more elaborate models of generated mi-
croarchitectures than we do. For example, the cost-sensitive
modulo scheduler [12] used in [8] considers the different
bitwidths of operations as well as the required interconnects
and register storage, but crucially, performs the allocation of
functional units before scheduling.

C. General design-space exploration

General design-space exploration approaches form the last
(and largest) category, whose representatives may be model-
based analysis tools [13], [14], integrated in an HLS flow [15],
[16], or consider the HLS tool as a black box and emit dir-
ectives to control the microarchitecture generation [17]. These
approaches usually consider other techniques besides pipelin-
ing, such as loop unrolling, function inlining, or partitioning
of arrays. Most tools aim to explore a diverse set of solutions



to let the (human) designer choose from. A notable exception
is the work of Prost-Boucle et al. [16], which describes an
autonomous flow that successively applies transformations to
improve the kernel’s latency while obeying low-level resource
constraints. However, internally, the allocation of operators
precedes the scheduling phase.

III. MULTI-LOOP SCHEDULING PROBLEM

Given an HLS kernel in a structured programming lan-
guage, composed of multiple, optionally pipelined, loops and
functions, we want to minimise the latency of one activation
of the kernel’s unique top-level function, subject to resource
constraints in terms of the low-level FPGA resources, e.g.
look-up tables (LUT) or DSP slices.

A. Overview

Figure 1 outlines the multi-loop scheduling problem
(MLSP). We have a set of dependence graphs that each
correspond to the body of a loop in the kernel, derived e.g.
from a CDFG representation inside the HLS tool. The non-
loop parts of functions are treated uniformly as single-iteration
loops at the outermost level. Our goal in the scheduling part of
the problem is to compute start times for each operation, and
to determine a feasible initiation interval for graphs originating
from pipelined parts of the kernel.

The operations in the graphs require operators, which oc-
cupy a specific amount of the FPGA’s resources. HLS tools
may share operators among several operations if the resource
demand of the operator is higher than the cost of the additional
multiplexing logic. Determining the number of operators of
each type constitutes the allocation part of problem, and has
a strong influence on the scheduling result.

We introduce the concept of an allocation domain, which
provides the operators for a subset of the graphs. All graphs
in an allocation domain share these operators, but assume
exclusive access to them. This means the parts of the compu-
tation represented by any pair of graphs in the same allocation
domain will execute sequentially at runtime. In contrast,
graphs in different allocation domains can execute in parallel
due to their independent sets of operators.

Figure 1 also presents the canonical examples for these
concepts, inspired by Vivado HLS, which implements operator
sharing at the function level. Here, a function in the kernel is
an allocation domain. The loops in the function are the graphs
that use and share the allocation domain’s operators. Nested
loops are represented by special operations that reference
another graph in the same allocation domain. Lastly, function
calls in any of the loops reference another graph embedded in
its own allocation domain, which needs to be instantiated as
a special operator type in the surrounding allocation domain.
We will implicitly assume theses correspondences for the rest
of this paper, and name the special operations and operators
accordingly in order to keep the following problem definition
as intuitive as possible. Note, however, that the underlying
modelling ideas apply to other resource sharing strategies as
well, e.g. sharing only within the same loop level.

Allocation domain: function „foo“ AD: function „bar“

Graph: foo Graph: loop 1 Graph: loop 2 Graph: bar

…
…

function: 

Operations:

Operator types:

Add DivMul

Add

Mul

Cmp

normal: loop: call:

…

predefined:

Mul

Add

Mul

Dependence edges:

Graph reference ρ(i):

Figure 1. An example instance of the multi-loop scheduling problem

B. Formal definition

The target device is abstracted to its low-level resource types
R, and the number of elements N̄r ∈ N it provides for each
r ∈ R.

Let G denote the set of dependence graphs, and Gpl ⊆ G
the set of pipelined graphs. The graph corresponding to the
kernel’s top-level function is identified as gtop. The set of
operator types Q is statically partitioned into shared (QSh)
and exclusive (QEx) operator types, and orthogonally, into
predefined (QPd) and function (QFu) operator types. The set
AD specifies the allocation domains. Each graph g ∈ G
and each operator type q ∈ Q is a member of exactly one
allocation domain A = (GA, QA) ∈ AD. Let the function α
represent the mapping of a graph or an operator type back to
its allocation domain. We use the notation QXx

A for the set of
operator types of a certain kind Xx in an allocation domain
A.

A graph g ∈ G is defined by its sets of operations Og and
dependence edges Eg = {(i→j)} ⊆ Og ×Og.

An operation i ∈ Og has a start time ti and a latency li. The
latency models how many time steps after ti the operation’s
result is available. We need to defer the actual definition
of the latency until later, due to the recursive nature of the
problem. We distinguish normal (ONo

g ), loop (OLo
g ) and call

(OCa
g ) operations. The normal operations i ∈ ONo

g are mapped
to a predefined operator type q ∈ QPd

α(g) by the function σ. The
loop operations i ∈ OLo

g reference another graph ρ(i) ∈ Gα(g),
specified by the function ρ, in the same allocation domain.
Lastly, the call operations i ∈ OCa

g reference both a graph
ρ(i) ∈ G \ Gα(g) and a function operator type σ(i) ∈ QFu

A .
We group operations using the same operator type together as
Oq

g = {i ∈ ONo
g ∪OLo

g : σ(i) = q}.
Each dependence edge (i→j) models a precedence relation-

ship between the operations i, j ∈ Og. The edge distance dij
expresses how many iterations later the precedence has to be
satisfied. We call edges with a non-zero-distance backedges.
The graph may contain cycles that include at least one
backedge.

We define the graph’s schedule length Tg as the latest finish-
ing time among its operations, formally Tg = maxi∈Og(ti+li).
In case g ∈ Gpl, we introduce IIg to model g’s initiation
interval. We assume to have a constant known trip count cg.

An operator type q ∈ Q has a blocking time bq and a
resource demand nq,r regarding each of the device’s resource



types r ∈ R. The blocking time specifies the minimum number
of time steps after which the operator can accept new inputs.
Again, we need to defer the actual definition until later. If
q ∈ QFu, we let the function ρ map q to the referenced graph.

The allocation aq represents the number of operator in-
stances of type q in the associated allocation domain α(q).
For each allocation domain A, we define its demand nA,r of
a resource type r ∈ R as nA,r =

∑
q∈QA

aq · nq,r.

We can now revisit the deferred definitions. An operation
i ∈ Og for a graph g derives its latency either as a parameter
Lσ(i) from its associated, predefined operator type σ(i), or
from the scheduling result of the graph it references. Here,
the latency is equivalent to the sequential, respectively overlap-
ping, execution of cρ(i) iterations. Recall that function bodies
are treated as single-iteration loops.

li =


Lσ(i) i ∈ ONo

g

cρ(i) · Tρ(i) i ∈ OLo
g ∧ ρ(i) /∈ Gpl

(cρ(i) − 1) · IIρ(i) + Tρ(i) i ∈ OLo
g ∧ ρ(i) ∈ Gpl

Tρ(i) i ∈ OCa
g

The parameter Bq specifies the blocking time for each pre-
defined operator types q ∈ Q. Function operators derive it
from the scheduling solution of the referenced graph ρ(q).

bq =


Bq q ∈ QPd

Tρ(q) q ∈ QFu ∧ ρ(q) /∈ Gpl

IIρ(q) q ∈ QFu ∧ ρ(q) ∈ Gpl

Lastly, the resource demand for a q ∈ Q comes either from
parameters Nq,r for predefined operator types, or is derived
from allocation domain α(ρ(q)) in which the referenced graph
is embedded.

nq,r =

{
Nq,r q ∈ QPd

nα(ρ(q)),r q ∈ QFu ∀r ∈ R

To summarise, a solution to the problem consists of a schedule
for each graph, an II for each pipelined graph, and the
allocation in each allocation domain:

ti ∀i ∈ Og, ∀g ∈ G (schedule)

IIg ∀g ∈ Gpl (IIs)
aq ∀q ∈ QA, ∀A ∈ AD (allocation)

A feasible solution must honour all precedence constraints
expressed by the dependence edges (1), ensure that no operator
type is oversubscribed at any time (2), and obey the given

resource constraints for the outermost allocation domain (3).

∀(i→j) ∈ Eg, ∀g ∈ G :{
ti + li ≤ tj g /∈ Gpl

ti + li ≤ tj − dij · IIg g ∈ Gpl (1)

∀q ∈ QA, ∀g ∈ GA, ∀A ∈ AD :
|{i ∈ Oq

g : ti ≤ x < ti + bq}|
≤ aq ∀x ∈ [0, Tg] g /∈ Gpl

|{i ∈ Oq
g : x ∈ {(ti + β) mod IIg : 0 ≤ β < bq}}|

≤ aq ∀x ∈ [0, IIg − 1] g ∈ Gpl

(2)

∀r ∈ R : nα(gtop),r ≤ N̄r (3)

As per our problem statement, the objective is to
minimise Tgtop .

C. Compatibility with Vivado HLS

Vivado HLS imposes two additional restrictions on the
nesting of pipelined graphs.

OLo
g = ∅ ∀g ∈ Gpl (4)

bσ(i) | IIg ∀i ∈ OCa
g , ∀g ∈ Gpl (5)

First, pipelined loops cannot contain other loops (4). Secondly,
the blocking times of all function operator types used in a
pipelined graph must divide the graph’s II (5). Note that all
operator types predefined in Vivado HLS’ library are fully
pipelined, i.e. they have a blocking time of 1.

In the implementation of SkyCastle, we handle the chain-
ing of combinatorial operations and the accesses to on-chip
memory and AXI ports in a way that faithfully reproduces
Vivado HLS’ behaviour. As a concession to the clarity of this
paper, these implementation details are omitted here.

IV. RESOURCE-AWARE MULTI-LOOP SCHEDULER

In general, the MLS problem is not a linear optimisation
problem. However, with SkyCastle, we propose a solution ap-
proach using integer linear programming (ILP) that is capable
of handling a realistic, non-trivial subclass of kernels, as will
be demonstrated in Section V. Currently, kernels need to be
legal for Vivado HLS compilation, and may contain multiple,
optionally pipelined loops that may call multiple pipelined
functions.

The basic idea is to solve the problem hierarchically, i.e.
one allocation domain at a time, instead of modelling it all at
once. This requires that we precompute a set of solutions for
the nested allocation domains. The selection of a particular
solution for each function operator type is then modelled as
part of the SkyCastle ILP, alongside all scheduling problems
for the loops in the current function.

A. Precomputing solutions

Due to the preconditions stated above, function operator
types are leaf nodes in the problem structure, i.e. they contain
neither loop nor call operations. In consequence, we can use
the iterative exploration methods presented in [5], using the



resource-aware version of the formulation by Eichenberger and
Davidson [6], to compute a set of solutions Sq for q ∈ QFu.

A solution S ∈ Sq is computed by minimising the resource
demand for a candidate interval IISq , then fixing the resulting
allocation, and finally minimising the latency. S is character-
ised by its blocking time BSq = IISq , latency LSq , and resource
demand NS

q,r for each low-level resource type r ∈ R.
Per definition in [5], the set Sq contains only solutions that

are Pareto-optimal with regards to the II and the resource
demand. However, in order to prevent trivially infeasible
MLSP instances due to the blocking time constraints (5), we
compute additional solutions to ensure that Sq and Sq′ contain
solutions for the same set of IIs if q and q′ ∈ QFu occur
together in at least one pipelined graph.

B. Bounds

A priori to constructing the ILP, bounds (6)–(9) are com-
puted from the problem parameters and the precomputed
solutions. Due to the page limit, we refer the reader to the
more detailed discussion of bounds in previous work [5],
[7]. In general, we extended the bound definitions to handle
the hierarchical nature of our problem, e.g. when computing
the minimum latency T⊥g of a graph, we use lower bound
approximations for the latencies of loop and call operations.
Note that the typical definition of the lower bound interval II⊥g
needs to include the maximum blocking time of all operator
types used in g as a third component.

a⊥q ≤ aq ≤ a>q ∀q ∈ QSh
A (6)

T⊥g ≤ Tg ≤ T>g ∀g ∈ GA (7)

II⊥g ≤ IIg ≤ II>g ∀g ∈ Gpl
A (8)

B⊥q ≤ bq ≤ B>q ∀q ∈ QFu
A (9)

C. SkyCastle ILP formulation

We now develop an ILP formulation for one allocation
domain A of the MLSP. To that end, we combine modelling
techniques previously presented in [5] and [7] with the novel
capability to handle the multi-variant loop operations and
function operator types. As a side product, this work also
extends the Moovac formulation [7] to support operator types
with blocking times > 1.

We introduce the formulation part by part in the following
sections. The complete ILP consists of the objective (23),
subject to the constraints (24)–(44) and the domain constraints
(10)–(22).

1) Decision variables: Our formulation uses the decision
variables defined in (10)–(16) to model the corresponding
components in the problem definition in Section III-B. Note
that we only introduce variables where needed, and implicitly
treat the remainder of the problem components as parameters.
For example, exclusive operators have a constant allocation of
aq =

∑
g∈GA

|Oq
g |, and only function operator types require

a variable blocking time bq, whereas we have bq = 1 for all
predefined types.

nA,r ∈ N0 ∀r ∈ R (10)

aq ∈ N ∀q ∈ QSh
A (11)

bq ∈ N ∀q ∈ QFu
A (12)

ti ∈ N0 ∀i ∈ Og, ∀g ∈ GA (13)

li ∈ N0 ∀i ∈ OLo
g ∪OCa

g , ∀g ∈ GA (14)

Tg ∈ N0 ∀g ∈ GA (15)

IIg ∈ N0 ∀g ∈ Gpl
A (16)

Our formulation uses the following additional, internal de-
cision variables.

sSq ∈ {0, 1} ∀S ∈ Sq, ∀q ∈ QFu
A (17)

lq ∈ N0 ∀q ∈ QFu
A (18)

ṅq,r ∈ N0 ∀q ∈ QFu
A , ∀r ∈ R (19)

IIg,x ∈ {0, 1} ∀x ∈ [II⊥g , II
>
g ], ∀g ∈ Gpl

A (20)

yi ∈ N0, mi ∈ N0 ∀i ∈ Og : i /∈ OLo
g ∧ σ(i) ∈ QSh

A

∀g ∈ Gpl
A (21)

µ1
ij , µ

2
ij , µ

3
ij , µ

4
ij , ∀i, j ∈ Oq

g : i < j, ∀q ∈ QSh
A

ξij ∈ {0, 1} ∀g ∈ GA (22)

(17) model that a precomputed solution is selected for a
function operator type, whose variable latency is stored in
(18). (19) represent the accumulated resource demand for all
allocated instances of a function operator type. (20) correspond
to a particular value of a graph’s II. (21) are used to decompose
the start time of an operation i in a pipelined graph g as
ti = yi ∗ IIg + mi. We call mi the modulo slot, i.e. the
congruence class modulo the graph’s II. (22) help to govern
the maximum concurrent use of the shared operator types. As
we only need to define these variables for unique pairs of
operations, we assume the presence of an arbitrary total order
< among the operations.

2) Objective: We consider a tuple of objectives (23), and
optimise lexicographically. The primary objective is, as in the
general MLSP, to minimise Tgtop , the latency of the top-level
graph. As a practical consideration, we seek to find the most
resource-efficient solution in case multiple solutions achieving
the shortest possible latency exist. To that end, the secondary
objective is to minimise the accumulated, weighted resource
demand as in [5].

min

(
Tgtop ,

1

|R|
∑
r∈R

nA,r
N̄r

)
(23)

3) Resource constraints: (24) model the MLSP’s resource
constraints (3) for a resource type r ∈ R. Using the ṅq,r-
variables here avoids the product of decision variables.

nA,r =
∑

q∈QPd
A

aq · nq,r +
∑

q∈QFu
A

ṅq,r ≤ N̄r (24)
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Figure 2. Interaction of the m, µ and ξ variables in the modelling of the
operator constraints

4) Allocation constraints: In order to satisfy constraint (2)
in the MLSP, we must ensure that that no more than aq
instances of a shared operator type q ∈ QSh

A are used at
any time by the operations of a graph g ∈ GA. We say two
operations i, j are in conflict, indicated by ξij = 1, if they
cannot use the same q-instance due to overlapping blocking
times. As this relation is symmetric, we only encode it for
i < j. (25) express that we need to allocate at least one
q-instance more than the maximum number of conflicts any
operation is part of.∑

j∈Oq
g :i<j

ξij +
∑

j∈Oq
g :i>j

ξji ≤ aq − 1 ∀i ∈ Oq
g (25)

5) Selection of solutions: (26)-(28) are indicator constraints
[18] that bind the latency, blocking time and resource demand
of a function operator type q ∈ QFu

A to the respective values of
a precomputed solution. (29) enforce that at least one solution
is picked.

sSq = 1→ lq = LSq ∀S ∈ Sq (26)

sSq = 1→ bq = BSq ∀S ∈ Sq (27)

sSq = 1→ ṅq,r = aq ·NS
q,r ∀S ∈ Sq, ∀r ∈ R (28)∑

S∈Sq

sSq = 1 (29)

6) Variable latencies: (30)–(32) propagate the variable
latencies of the loop and call operations in every graph
g ∈ GA. (33) define the graph’s latency.

li = cρ(i) · Tρ(i) ∀i ∈ OLo
g ∧ g /∈ Gpl (30)

li = (cρ(i) − 1) · IIρ(i) + Tρ(i) ∀i ∈ OLo
g ∧ g ∈ Gpl (31)

li = lσ(i) ∀i ∈ OCa
g (32)

ti + li ≤ Tg ∀i ∈ Og (33)

7) Scheduling problems: Every pipelined graph g ∈ Gpl
A

implies one modulo scheduling problem. We adopt the already
linear precedence constraints (1) in the MLSP as (34).

ti + li ≤ tj + dij · IIg ∀(i→j) ∈ Eg (34)

(35) define the binary variable IIg,x to be 1 iff the value of IIg
is x. Using these variables and multiple indicator constraints

(36), we linearise the decomposition of an operation’s start
time into a multiple of the II and the modulo slot. (37) models
Vivado HLS’ constraint (5) regarding the blocking times of
function operator types: For each solution S, we determine a
set of viable IIs for g that restrict the feasible values for IIg if
S is selected. ∑

II⊥g ≤x≤II>g

IIg,x = 1
∑

II⊥g ≤x≤II>g

x · IIg,x = IIg (35)

IIg,x = 1→ ti = yi · x+mi ∀x ∈ [II⊥g , II
>
g ]

∀i ∈ Oq
g , ∀q ∈ QSh

A (36)∑
x∈[II⊥g ,II

>
g ]:BS

q | x

IIg,x ≥ sSq ∀S ∈ Sq, ∀q ∈ QFu
A (37)

The following bounds help to restrict the ILP solution space
further: (38) encode the II-dependent minimum allocation [5]
for the shared operator types. (39) mandate that IIg is greater
or equal to the longest blocking time of any selected function
operator type.

aq · x ≥ |Oq
g | ·B⊥q · IIg,x ∀x ∈ [II⊥g , II

>
g ], ∀q ∈ QSh

A (38)

IIg ≥ sSq ·BSq ∀S ∈ Sq, ∀q ∈ QFu
A (39)

Lastly, (40)–(44) define the conflict variables for each unique
pair of operations i, j ∈ Oq

g : i < j, using the same shared
type q ∈ QSh

A . Figure 2 illustrates the space of possible
modulo slot assignments for i and j. The green areas enclose
non-conflicting assignments, i.e. both operations can use the
same operator, and we set ξij = 0 per definition. All other
assignments in the red areas result in overlapping blocking
times in either the same or adjacent iterations, which prevent
i and j from sharing one q-instance. The conflict is expressed
as ξij = 1.

The different areas are bounded by four inequalities between
mi and mj , as visualised by the lines in Figure 2. The
four binary µij-variables correspond to these inequalities, and
are defined by constraints (40)–(43) to be equal to 1 if the
respective inequality is satisfied. Our implementation uses
additional constraints (not shown here) that bind the variables
to 0 if the negation of the respective inequality is fulfilled. We
then define the conflict variable ξij by simply counting the
number of satisfied inequalities in (44).

µ1
ij = 1→ mj ≤ mi + IIg − bq (40)

µ2
ij = 1→ mj ≥ mi + bq (41)

µ3
ij = 1→ mj ≤ mi − bq (42)

µ4
ij = 1→ mj ≥ mi − IIg + bq (43)

3− ξij ≤ µ1
ij + µ2

ij + µ3
ij + µ4

ij ≤ 3 (44)

Note that for the common case of bq = 1, inequalities
1 and 4 are always satisfied. Therefore, the associated
µ-variables and their definitions are dropped, and (44) are
simplified to 1− ξij ≤ µ2

ij + µ3
ij ≤ 1.

We use non-modulo equivalents of (34), (41)–(42) and
(44) to model the resource-constrained scheduling problems
imposed by the non-pipelined graphs.



V. CASE STUDIES

A. Kernels

In the following sections, we introduce our three kernels
SPN, FFT and LULESH. Figure 3 illustrates the nesting
structure of the underlying MLS problems. The dependence
graphs itself are not shown, however we outline which shared
operator types and memory ports are used, and how many
users they have.

1) SPN: Sum-Product Networks (SPN) [19] are a relatively
young type of deep machine-learning models from the class
of Probabilistic Graphical Models (PGM), for which inference
has been successfully accelerated in prior work [20]. An SPN
captures the joint probability distribution of its input variables
in the form of a directed, acyclic graph. The graph comprises
three different kinds of nodes: Weighted sums, products and,
as leaf nodes, univariate distributions, which can for example
be modelled as histograms [21].

The SPN kernel, as outlined in Listing 1, combines three
inference processes for an example SPN from the NIPS corpus
[22]: Assuming given values for the input variables i1 to i4
we are interested in finding the most probable explanation for
the missing input feature i5 in a first step. For this purpose, we
iterate over all 256 possible values of i5 and evaluate the SPN
(loop MPE, which has been manually unrolled by a factor 4
and is pipelined). After that, we marginalise [19] input variable
i1, and compute a conditional probability using the most
probable explanation for i5. SPN is a small kernel, but not
memory-bound, and therefore is well suitable to demonstrate
the benefits of accelerator replication.

2) FFT: Our second kernel, FFT, is the fft/transpose
benchmark from MachSuite [23]. One invocation processes a
512 byte chunk of input. We wrapped the FFT8 macro in
a function fft8, and disabled inlining for it as well as for
the twiddles8 function. The top-level function contains 11
loops in total, out of which three loops are pipelined and call
either one of both of the functions. FFT therefore challenges
the scheduler to obey the blocking time constraint (5).

3) LULESH: Our LULESH kernel represents one iteration
in the CalcFBHourglassForceForElems function from
the serial version of the Livermore Unstructured Lagrangian
Explicit Shock Hydrodynamics proxy application [24]. In
order to make the code compatible with Vivado HLS, we
hardcoded dynamic array sizes to the default values in the
application. We replaced the cubic root function by the power
of 1

3 , as not even one cbrt operator would fit on the XC7Z020
device together with the minimal allocation of the other
operator types. In order to obtain a best-effort HLS version of
the code, we inlined the CalcElemFBHourglassForce
function and restructured the loops in it. Additionally, we
extracted common functionality into new functions calcHM
and calcHxx. The resulting three loops and two functions are
all pipelined. This kernel contains the most complex allocation
problem in our case studies, as non-trivial computations in
the loops compete with the variable allocation and solution
selection of function operators.

B. Experimental setup

Our current SkyCastle implementation considers look-up
tables (LUT), flip-flops (FF), block RAM (BRAM) and DSP
slices, i.e. the typical low-level resource types on Xilinx
devices. We target the ZedBoard (XC7Z020: 53,200 LUT;
106,400 FF; 280 BRAM; 220 DSP) at 100 MHz and the
VCU108 evaluation board (XCVU095: 537,600; 1,075,200;
3,456; 768) at 200 MHz, and compose bitstreams for complete
SoC designs, comprised of one or more accelerators, with
TaPaSCo 2019.6 [3] and Vivado 2018.3.

In order to accommodate TaPaSCo’s SoC template, as well
as to give the logic synthesis tools some headroom, we make
85% (ZedBoard) respectively 70% (VCU108, more complex
template due to PCIe interface) of the resources available to the
allocation of operators during scheduling. The MLSP instances
are extracted from Vivado HLS 2018.3 operating with medium
effort levels for scheduling and binding, and using a target
cycle time of 4 ns (VCU108) or 8 ns (ZedBoard) without clock
uncertainty. We marked loops and functions for pipelining
without specifying the II.

SkyCastle uses the Gurobi 8.1 ILP solver, which was
allowed to use up to 8 threads and 16 GB RAM per kernel.
The experiments were performed on 2×12-core Intel Xeon
E5-2680 v3 systems running at 2.8 GHz with 64 GiB RAM.
We set time limits of 15 min for the primary objective
(minimisation of the latency, cf. (23)), and 5 min for the
secondary objective (subsequent minimisation of the resource
demand). The same limits were in place for the computation
of the solutions for the function operator types, but please
recall that the primary objective is to minimise the resource
demand here. If the solver is unable to prove optimality within
the time limit, we accept the feasible solution, and record the
optimality gap, relative to the solver’s best lower bound.

For the larger VCU108 board, we explore the possible
replication of kernels by scheduling with N̄r

k available elements
of a resource type r ∈ R, for 1 ≤ k ≤ 8.

For the configurations labeled “SC-xk”, we computed a
solution adhering to the resource constraints under replica-
tion factor k with SkyCastle, emitted pipeline and allocation
directives accordingly, and ran Vivado HLS again with them.
The configuration labeled “VHLS” denotes the baseline max-
imum performance that Vivado HLS constructs without the
SkyCastle optimisation.

C. Results

Table I summarises the high- and low-level synthesis results.
Column “Latency” shows the latency (in cycles) of one
activation of the kernel’s top-level function, as reported by
Vivado HLS. SkyCastle’s estimation of the Vivado HLS’ cycle
count (not shown) is very precise and differs by at most
2.4%, which shows that we model enough of Vivado HLS’
scheduling peculiarities to meaningfully tackle the problem.
The next column “Util.” extracts the utilisation of DSP slices,
which were always the scarcest resource type in our evaluation,
from the HLS report. SkyCastle’s estimation of DSP slices is
almost perfect, and is off by at most three, because Vivado
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Figure 3. MLS problem structures for the case studies

HLS appears to ignore the allocation directives for the com-
bined floating-point ADD/SUB core in some situations. The
estimation error for LUTs and FFs is below 10%, but reaches
up to 70% for BRAMs. The reason for the high deviation
in the latter case is that the majority of BRAM is used by
components that are not operators themselves, and thus do
not occur in MLSP. However, as mentioned above, the BRAM
utilisation was never crucial in our experiments.

The remaining columns characterise results of composing
a bitstream comprised of “# Acc.”-many accelerators. Most
importantly, column “Freq.” shows SkyCastle accomplished
its mission: While neither FFT nor LULESH fit on the devices
with the default VHLS flow, we computed synthesisable con-
figurations for up to four replica. For both kernels, the sched-
uler determined k = 5 to be infeasible even with maximum
resource sharing. SPN does fit once one the larger device with
the default flow, but this configuration cannot be replicated.
Again, all SkyCastle configurations yielded working multi-
accelerator designs. The last column, “Throughp.” states the
theoretical throughput achievable with each multi-accelerator
design, calculated as

(
# Acc.
Latency · Freq.

)
. When viewed together

with the column “Latency”, the benefits of scheduling for
better replicability become apparent. For all three kernels,
SC-x2 already yields a better throughput than the maximum
performance VHLS configuration. SPN reaches its theoretical
peak performance with a 7-way accelerator, whereas the other
kernels profit from any additional replication.

The biggest challenge for SkyCastle was to schedule
LULESH for the 2-way accelerator design. The feasible solu-
tion had an optimality gap of 5.2% after optimising the
primary objective for 15 min, and a gap of 0.09% remained
after 5 min spent on the secondary objective. In all other
cases, the ILP solver either returned optimal solutions, or the
remaining optimality gap was in the same ballpark as the
inaccuracies in the latency estimation. Note that we computed
the solutions for the function operator types only once per
exploration of the replication factors. Altogether, using the
aforementioned time limits, the entire process took 51 minutes
for LULESH targeting the VCU108, and well below 20 minutes
for the other configurations.

Table I
SCHEDULING AND SYSTEM COMPOSITION RESULTS

Kernel Board Config HLS Composition

Latency Util. # Acc. Freq. Throughp.
[Cyc.] [%] [MHz] [1/µs, theo.]

SPN ZedBoard VHLS 175 226.8 1 failed
SC-x1 366 76.8 1 100 0.55

VCU108 VHLS 212 65.0 1 200 0.94
2 failed

SC-x1 277 36.3 1 200 0.72
SC-x2 278 33.5 2 200 1.44
SC-x3 402 22.0 3 200 1.49
SC-x4 408 16.9 4 200 1.96
SC-x5 659 12.6 5 200 1.52
SC-x6 663 10.8 6 200 1.81
SC-x7 665 9.4 7 200 2.11
SC-x8 787 8.3 8 200 2.03

FFT ZedBoard VHLS 4479 883.2 1 failed
SC-x1 5534 82.7 1 100 0.02

VCU108 VHLS 4682 247.5 1 failed
SC-x1 4700 64.7 1 155 0.03
SC-x2 4918 34.2 2 159 0.06
SC-x3 5721 23.3 3 194 0.10
SC-x4 6641 17.3 4 187 0.11

LULESH ZedBoard VHLS 533 528.2 1 failed
SC-x1 656 82.7 1 100 0.15

VCU108 VHLS 610 150.4 1 failed
SC-x1 622 69.3 1 200 0.32
SC-x2 681 34.4 2 200 0.59
SC-x3 745 22.8 3 200 0.81
SC-x4 863 17.7 4 200 0.93

VI. CONCLUSION AND OUTLOOK

We formalised a novel, general scheduling and allocation
model for the common problem of minimising the latency of a
complex HLS kernel subject to low-level resource constraints.
This model is the foundation for SkyCastle, our proposed
resource-aware multi-loop scheduler, which currently handles
a subset of kernels compatible with Xilinx Vivado HLS.

In the future, we plan to investigate improvements or
alternatives to the precomputation of solutions for the function
operators, which we believe will allow us to treat an arbit-
rary nesting structure in a uniform way. Also, our approach
would benefit tremendously from a vendor-supported, high-
level synthesis counterpart to the XDL interface [25], as we
currently can only feed the II and the operator allocation back
to Vivado HLS in the form of directives. Should such an
interface become available in the future, SkyCastle could be
easily adapted to replace the built-in scheduler.
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