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Listing 6.1: Sum-Product Network example

double spn(...) { /* 10 FP mul, 1 FP add */ }
double spn_marginal(...) { /* 8 FP mul, 1 FP add */ }

double top(char i1, char i2, char i3, char i4) {
// most probable explanation for "i5"
char maxClause = -1; double maxProb = -1.0;
MPE: for (char x = 0; x < 0xFF; x += 4) {

double p0 = spn(i1, i2, i3, i4, x);
double p1 = spn(i1, i2, i3, i4, x+1);
double p2 = spn(i1, i2, i3, i4, x+2);
double p3 = spn(i1, i2, i3, i4, x+3);
maxProb = ... // max(maxProb, p0, p1, p2, p3);
maxClause = ... // argument value for i5 that

// yielded new value for maxProb
}
double pM = spn_marginal(i2, i3, i4, maxClause);
return maxProb / pM;

}

6.1.1 Motivational Example

Consider the excerpt from the inference process in a Sum-Product
Network (SPN) (see also Section 6.5.1) in Listing 6.1. We instruct Xilinx
Vivado HLS to pipeline the loop labeled MPE, which automatically
pipelines the function spn as well. The function spn_marginal will
be inlined automatically by the HLS frontend. Vivado HLS attempts,
and succeeds, to construct the maximum performance version of this
kernel with II=1 for the loop and the function. However, as this results
in a fully-spatial microarchitecture, each operation in the computation
requires its own operator. When targeting the popular ZedBoard, such
a design requires 499 DSP slices, which exceeds the available 220 slices
by a large margin. Finding the lowest-latency version that still fits on
the device requires considering a) the degree of pipelining applied
to function spn, b) the number of spn-instances, c) the amount of
pipelining for loop MPE (which depends on a) and b)), and lastly, d)
the operator allocation for the top-level function, which influences c)
as well as the latency of the non-pipelined computation at the end
of top. Here, the fastest solution is to pipeline spn and MPE with II=4,
allocate two multipliers, one adder, one divider, three floating-point
comparators and four instances of spn inside the function top.

6.1.2 Approach and Contributions

This chapter makes the following key contributions.

src: Xilinx
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Need a formal model for that!
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Targeting Vivado HLS
■ Operator sharing at the function level


• Implicit in the formal model

• Other schemes also possible

■ Pipelined regions cannot contain loops

■ Pipelined regions may contain calls to pipelined 
functions

• Callee’s II must divide II of caller’s graph

■ Closed tool, no interface to influence HLS steps

• Faithful reproduction of the scheduling and allocation 

problems inside of Vivado HLS

8
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#pragma pipeline II=… 
#pragma allocation  …

Vivado 
HLS

IP-
Core Logic synthesis

■ SkyCastle fits a kernel…
... at all (on a small device)
... suitable for replication (on 

larger devices)
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SkyCastle
■ Novel SkyCastle approach for a subclass of kernels

■ = first „level“ of the multi-loop scheduling problem

• Arbitrary number and nesting structure of loops in 

top-level function

• Only innermost loops may be pipelined

10
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Evaluation: Case study „FFT“

■ Fast Fourier Transformation
• code from MachSuite/
fft_transpose
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Evaluation: Case study „FFT“

■ Fast Fourier Transformation
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Evaluation: Setup
■ Gurobi 8.1, 8 threads, 16 GiB RAM  

on Xeon E5-2680 v3 servers @ 2.8 GHz

■ Timelimits (for solving ILP) 
15 min: minimise latency 
  5 min: minimise resource utilisation

■ 2 FPGA boards
• ZedBoard	 — XC7Z020	 — „small“
• VCU108	 	 — XCVU095	 — „medium“

■ Xilinx Vivado HLS 2018.3
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src: Xilinx

src: HHLR TU-DA
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Evaluation: Key Insights

■ The next slides illustrate that …

... solving the ILP is tractable

...we capture the most important aspects of the 
Vivado HLS scheduling & allocation problem

... using SkyCastle leads to synthesisable designs

...we expect improved throughput from 
replicating slower-but-smaller kernel 
implementations

15
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Results — Trade-off Solutions
■ FFT, VCU108
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Results — Replication
■ SPN, VCU108
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Conclusion / Outlook

■ New approach to automatic hardware design using 
mathematical optimisation

■ Would benefit tremendously from public interface 
into the HLS steps (similar to RapidWright)

■ Could be a key ingredient to the automatic design-
space exploration of multi-kernel OpenCL 
applications
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