
SkyCastle: 
A Resource-Aware Multi-Loop

Scheduler for High-Level Synthesis

Julian Oppermann1, Lukas Sommer1, Lukas Weber1, 
Melanie Reuter-Oppermann2, Andreas Koch1, Oliver Sinnen3

1: 3:2:

O. Sinnen, University of Auckland — SkyCastle: A Resource-Aware Multi-Loop Scheduler for High-Level Synthesis / 18

A Common Problem

2

O. Sinnen, University of Auckland — SkyCastle: A Resource-Aware Multi-Loop Scheduler for High-Level Synthesis / 18

A Common Problem

■ Given: a kernel, an HLS tool, and an FPGA

2

O. Sinnen, University of Auckland — SkyCastle: A Resource-Aware Multi-Loop Scheduler for High-Level Synthesis / 18

A Common Problem

■ Given: a kernel, an HLS tool, and an FPGA
• What’s the fastest mircoarchitecture that still fits

on the device?

2

O. Sinnen, University of Auckland — SkyCastle: A Resource-Aware Multi-Loop Scheduler for High-Level Synthesis / 18

A Common Problem

■ Given: a kernel, an HLS tool, and an FPGA
• What’s the fastest mircoarchitecture that still fits

on the device?

2

94 skycastle : a resource-aware multi-loop scheduler

Listing 6.1: Sum-Product Network example

double spn(...) { /* 10 FP mul, 1 FP add */ }
double spn_marginal(...) { /* 8 FP mul, 1 FP add */ }

double top(char i1, char i2, char i3, char i4) {
// most probable explanation for "i5"
char maxClause = -1; double maxProb = -1.0;
MPE: for (char x = 0; x < 0xFF; x += 4) {

double p0 = spn(i1, i2, i3, i4, x);
double p1 = spn(i1, i2, i3, i4, x+1);
double p2 = spn(i1, i2, i3, i4, x+2);
double p3 = spn(i1, i2, i3, i4, x+3);
maxProb = ... // max(maxProb, p0, p1, p2, p3);
maxClause = ... // argument value for i5 that

// yielded new value for maxProb
}
double pM = spn_marginal(i2, i3, i4, maxClause);
return maxProb / pM;

}

6.1.1 Motivational Example

Consider the excerpt from the inference process in a Sum-Product
Network (SPN) (see also Section 6.5.1) in Listing 6.1. We instruct Xilinx
Vivado HLS to pipeline the loop labeled MPE, which automatically
pipelines the function spn as well. The function spn_marginal will
be inlined automatically by the HLS frontend. Vivado HLS attempts,
and succeeds, to construct the maximum performance version of this
kernel with II=1 for the loop and the function. However, as this results
in a fully-spatial microarchitecture, each operation in the computation
requires its own operator. When targeting the popular ZedBoard, such
a design requires 499 DSP slices, which exceeds the available 220 slices
by a large margin. Finding the lowest-latency version that still fits on
the device requires considering a) the degree of pipelining applied
to function spn, b) the number of spn-instances, c) the amount of
pipelining for loop MPE (which depends on a) and b)), and lastly, d)
the operator allocation for the top-level function, which influences c)
as well as the latency of the non-pipelined computation at the end
of top. Here, the fastest solution is to pipeline spn and MPE with II=4,
allocate two multipliers, one adder, one divider, three floating-point
comparators and four instances of spn inside the function top.

6.1.2 Approach and Contributions

This chapter makes the following key contributions.

src: Xilinx

94 skycastle : a resource-aware multi-loop scheduler

Listing 6.1: Sum-Product Network example

double spn(...) { /* 10 FP mul, 1 FP add */ }
double spn_marginal(...) { /* 8 FP mul, 1 FP add */ }

double top(char i1, char i2, char i3, char i4) {
// most probable explanation for "i5"
char maxClause = -1; double maxProb = -1.0;
MPE: for (char x = 0; x < 0xFF; x += 4) {

double p0 = spn(i1, i2, i3, i4, x);
double p1 = spn(i1, i2, i3, i4, x+1);
double p2 = spn(i1, i2, i3, i4, x+2);
double p3 = spn(i1, i2, i3, i4, x+3);
maxProb = ... // max(maxProb, p0, p1, p2, p3);
maxClause = ... // argument value for i5 that

// yielded new value for maxProb
}
double pM = spn_marginal(i2, i3, i4, maxClause);
return maxProb / pM;

}

6.1.1 Motivational Example

Consider the excerpt from the inference process in a Sum-Product
Network (SPN) (see also Section 6.5.1) in Listing 6.1. We instruct Xilinx
Vivado HLS to pipeline the loop labeled MPE, which automatically
pipelines the function spn as well. The function spn_marginal will
be inlined automatically by the HLS frontend. Vivado HLS attempts,
and succeeds, to construct the maximum performance version of this
kernel with II=1 for the loop and the function. However, as this results
in a fully-spatial microarchitecture, each operation in the computation
requires its own operator. When targeting the popular ZedBoard, such
a design requires 499 DSP slices, which exceeds the available 220 slices
by a large margin. Finding the lowest-latency version that still fits on
the device requires considering a) the degree of pipelining applied
to function spn, b) the number of spn-instances, c) the amount of
pipelining for loop MPE (which depends on a) and b)), and lastly, d)
the operator allocation for the top-level function, which influences c)
as well as the latency of the non-pipelined computation at the end
of top. Here, the fastest solution is to pipeline spn and MPE with II=4,
allocate two multipliers, one adder, one divider, three floating-point
comparators and four instances of spn inside the function top.

6.1.2 Approach and Contributions

This chapter makes the following key contributions.

O. Sinnen, University of Auckland — SkyCastle: A Resource-Aware Multi-Loop Scheduler for High-Level Synthesis / 18

A Common Problem

■ Given: a kernel, an HLS tool, and an FPGA
• What’s the fastest mircoarchitecture that still fits

on the device?

2

94 skycastle : a resource-aware multi-loop scheduler

Listing 6.1: Sum-Product Network example

double spn(...) { /* 10 FP mul, 1 FP add */ }
double spn_marginal(...) { /* 8 FP mul, 1 FP add */ }

double top(char i1, char i2, char i3, char i4) {
// most probable explanation for "i5"
char maxClause = -1; double maxProb = -1.0;
MPE: for (char x = 0; x < 0xFF; x += 4) {

double p0 = spn(i1, i2, i3, i4, x);
double p1 = spn(i1, i2, i3, i4, x+1);
double p2 = spn(i1, i2, i3, i4, x+2);
double p3 = spn(i1, i2, i3, i4, x+3);
maxProb = ... // max(maxProb, p0, p1, p2, p3);
maxClause = ... // argument value for i5 that

// yielded new value for maxProb
}
double pM = spn_marginal(i2, i3, i4, maxClause);
return maxProb / pM;

}

6.1.1 Motivational Example

Consider the excerpt from the inference process in a Sum-Product
Network (SPN) (see also Section 6.5.1) in Listing 6.1. We instruct Xilinx
Vivado HLS to pipeline the loop labeled MPE, which automatically
pipelines the function spn as well. The function spn_marginal will
be inlined automatically by the HLS frontend. Vivado HLS attempts,
and succeeds, to construct the maximum performance version of this
kernel with II=1 for the loop and the function. However, as this results
in a fully-spatial microarchitecture, each operation in the computation
requires its own operator. When targeting the popular ZedBoard, such
a design requires 499 DSP slices, which exceeds the available 220 slices
by a large margin. Finding the lowest-latency version that still fits on
the device requires considering a) the degree of pipelining applied
to function spn, b) the number of spn-instances, c) the amount of
pipelining for loop MPE (which depends on a) and b)), and lastly, d)
the operator allocation for the top-level function, which influences c)
as well as the latency of the non-pipelined computation at the end
of top. Here, the fastest solution is to pipeline spn and MPE with II=4,
allocate two multipliers, one adder, one divider, three floating-point
comparators and four instances of spn inside the function top.

6.1.2 Approach and Contributions

This chapter makes the following key contributions.

HLS

ZedBoard with XC7Z020:

220 DSP blocks

src: Xilinx

94 skycastle : a resource-aware multi-loop scheduler

Listing 6.1: Sum-Product Network example

double spn(...) { /* 10 FP mul, 1 FP add */ }
double spn_marginal(...) { /* 8 FP mul, 1 FP add */ }

double top(char i1, char i2, char i3, char i4) {
// most probable explanation for "i5"
char maxClause = -1; double maxProb = -1.0;
MPE: for (char x = 0; x < 0xFF; x += 4) {

double p0 = spn(i1, i2, i3, i4, x);
double p1 = spn(i1, i2, i3, i4, x+1);
double p2 = spn(i1, i2, i3, i4, x+2);
double p3 = spn(i1, i2, i3, i4, x+3);
maxProb = ... // max(maxProb, p0, p1, p2, p3);
maxClause = ... // argument value for i5 that

// yielded new value for maxProb
}
double pM = spn_marginal(i2, i3, i4, maxClause);
return maxProb / pM;

}

6.1.1 Motivational Example

Consider the excerpt from the inference process in a Sum-Product
Network (SPN) (see also Section 6.5.1) in Listing 6.1. We instruct Xilinx
Vivado HLS to pipeline the loop labeled MPE, which automatically
pipelines the function spn as well. The function spn_marginal will
be inlined automatically by the HLS frontend. Vivado HLS attempts,
and succeeds, to construct the maximum performance version of this
kernel with II=1 for the loop and the function. However, as this results
in a fully-spatial microarchitecture, each operation in the computation
requires its own operator. When targeting the popular ZedBoard, such
a design requires 499 DSP slices, which exceeds the available 220 slices
by a large margin. Finding the lowest-latency version that still fits on
the device requires considering a) the degree of pipelining applied
to function spn, b) the number of spn-instances, c) the amount of
pipelining for loop MPE (which depends on a) and b)), and lastly, d)
the operator allocation for the top-level function, which influences c)
as well as the latency of the non-pipelined computation at the end
of top. Here, the fastest solution is to pipeline spn and MPE with II=4,
allocate two multipliers, one adder, one divider, three floating-point
comparators and four instances of spn inside the function top.

6.1.2 Approach and Contributions

This chapter makes the following key contributions.

O. Sinnen, University of Auckland — SkyCastle: A Resource-Aware Multi-Loop Scheduler for High-Level Synthesis / 18

A Common Problem

■ Given: a kernel, an HLS tool, and an FPGA
• What’s the fastest mircoarchitecture that still fits

on the device?

2

94 skycastle : a resource-aware multi-loop scheduler

Listing 6.1: Sum-Product Network example

double spn(...) { /* 10 FP mul, 1 FP add */ }
double spn_marginal(...) { /* 8 FP mul, 1 FP add */ }

double top(char i1, char i2, char i3, char i4) {
// most probable explanation for "i5"
char maxClause = -1; double maxProb = -1.0;
MPE: for (char x = 0; x < 0xFF; x += 4) {

double p0 = spn(i1, i2, i3, i4, x);
double p1 = spn(i1, i2, i3, i4, x+1);
double p2 = spn(i1, i2, i3, i4, x+2);
double p3 = spn(i1, i2, i3, i4, x+3);
maxProb = ... // max(maxProb, p0, p1, p2, p3);
maxClause = ... // argument value for i5 that

// yielded new value for maxProb
}
double pM = spn_marginal(i2, i3, i4, maxClause);
return maxProb / pM;

}

6.1.1 Motivational Example

Consider the excerpt from the inference process in a Sum-Product
Network (SPN) (see also Section 6.5.1) in Listing 6.1. We instruct Xilinx
Vivado HLS to pipeline the loop labeled MPE, which automatically
pipelines the function spn as well. The function spn_marginal will
be inlined automatically by the HLS frontend. Vivado HLS attempts,
and succeeds, to construct the maximum performance version of this
kernel with II=1 for the loop and the function. However, as this results
in a fully-spatial microarchitecture, each operation in the computation
requires its own operator. When targeting the popular ZedBoard, such
a design requires 499 DSP slices, which exceeds the available 220 slices
by a large margin. Finding the lowest-latency version that still fits on
the device requires considering a) the degree of pipelining applied
to function spn, b) the number of spn-instances, c) the amount of
pipelining for loop MPE (which depends on a) and b)), and lastly, d)
the operator allocation for the top-level function, which influences c)
as well as the latency of the non-pipelined computation at the end
of top. Here, the fastest solution is to pipeline spn and MPE with II=4,
allocate two multipliers, one adder, one divider, three floating-point
comparators and four instances of spn inside the function top.

6.1.2 Approach and Contributions

This chapter makes the following key contributions.

HLS

ZedBoard with XC7Z020:

220 DSP blocks

Fastest µ-arch (II=1)

499 DSP blocks

src: Xilinx

94 skycastle : a resource-aware multi-loop scheduler

Listing 6.1: Sum-Product Network example

double spn(...) { /* 10 FP mul, 1 FP add */ }
double spn_marginal(...) { /* 8 FP mul, 1 FP add */ }

double top(char i1, char i2, char i3, char i4) {
// most probable explanation for "i5"
char maxClause = -1; double maxProb = -1.0;
MPE: for (char x = 0; x < 0xFF; x += 4) {

double p0 = spn(i1, i2, i3, i4, x);
double p1 = spn(i1, i2, i3, i4, x+1);
double p2 = spn(i1, i2, i3, i4, x+2);
double p3 = spn(i1, i2, i3, i4, x+3);
maxProb = ... // max(maxProb, p0, p1, p2, p3);
maxClause = ... // argument value for i5 that

// yielded new value for maxProb
}
double pM = spn_marginal(i2, i3, i4, maxClause);
return maxProb / pM;

}

6.1.1 Motivational Example

Consider the excerpt from the inference process in a Sum-Product
Network (SPN) (see also Section 6.5.1) in Listing 6.1. We instruct Xilinx
Vivado HLS to pipeline the loop labeled MPE, which automatically
pipelines the function spn as well. The function spn_marginal will
be inlined automatically by the HLS frontend. Vivado HLS attempts,
and succeeds, to construct the maximum performance version of this
kernel with II=1 for the loop and the function. However, as this results
in a fully-spatial microarchitecture, each operation in the computation
requires its own operator. When targeting the popular ZedBoard, such
a design requires 499 DSP slices, which exceeds the available 220 slices
by a large margin. Finding the lowest-latency version that still fits on
the device requires considering a) the degree of pipelining applied
to function spn, b) the number of spn-instances, c) the amount of
pipelining for loop MPE (which depends on a) and b)), and lastly, d)
the operator allocation for the top-level function, which influences c)
as well as the latency of the non-pipelined computation at the end
of top. Here, the fastest solution is to pipeline spn and MPE with II=4,
allocate two multipliers, one adder, one divider, three floating-point
comparators and four instances of spn inside the function top.

6.1.2 Approach and Contributions

This chapter makes the following key contributions.

O. Sinnen, University of Auckland — SkyCastle: A Resource-Aware Multi-Loop Scheduler for High-Level Synthesis / 18

Fitting a Kernel

■ Most influential control „knob“:
amount of (loop) pipelining

3

Iter. 1

Iter. 2

Iter. 3

Initiation
Interval (II)

…

Ti
m

e
st

ep
s

Highest
throughput

1 Max

Least
resource
demand

Initiation
Interval (II)

O. Sinnen, University of Auckland — SkyCastle: A Resource-Aware Multi-Loop Scheduler for High-Level Synthesis / 18

Fitting a Kernel

■ Most influential control „knob“:
amount of (loop) pipelining

■ Tweak manually?

3

Iter. 1

Iter. 2

Iter. 3

Initiation
Interval (II)

…

Ti
m

e
st

ep
s

Highest
throughput

1 Max

Least
resource
demand

Initiation
Interval (II)

O. Sinnen, University of Auckland — SkyCastle: A Resource-Aware Multi-Loop Scheduler for High-Level Synthesis / 18

Fitting a Kernel

■ Most influential control „knob“:
amount of (loop) pipelining

■ Tweak manually?

■ Use external exploration tool?

3

Iter. 1

Iter. 2

Iter. 3

Initiation
Interval (II)

…

Ti
m

e
st

ep
s

Highest
throughput

1 Max

Least
resource
demand

Initiation
Interval (II)

O. Sinnen, University of Auckland — SkyCastle: A Resource-Aware Multi-Loop Scheduler for High-Level Synthesis / 18

Fitting a Kernel

■ Most influential control „knob“:
amount of (loop) pipelining

■ Tweak manually?

■ Use external exploration tool?

■ Integrate into core HLS algorithms!
• Optimisation problem: 

maximise „performance“ 
subject to 	 „resource constraints“

3

Iter. 1

Iter. 2

Iter. 3

Initiation
Interval (II)

…

Ti
m

e
st

ep
s

Highest
throughput

1 Max

Least
resource
demand

Initiation
Interval (II)

O. Sinnen, University of Auckland — SkyCastle: A Resource-Aware Multi-Loop Scheduler for High-Level Synthesis / 18

High-Level Synthesis

4

O. Sinnen, University of Auckland — SkyCastle: A Resource-Aware Multi-Loop Scheduler for High-Level Synthesis / 18

High-Level Synthesis

■ HLS = Automatic microarchitecture construction from a behavioural description 
think: C code

4

for(…) {
 a[i] = a[i] * b[i]
 / (b - c);
 …
}

O. Sinnen, University of Auckland — SkyCastle: A Resource-Aware Multi-Loop Scheduler for High-Level Synthesis / 18

High-Level Synthesis

■ HLS = Automatic microarchitecture construction from a behavioural description 
think: C code

■ Terminology
• Loops (and other regions) are transformed to control-data-flow-graphs comprised of 

operations and dependence edges
• Operations require operators to perform intended function (e.g. floating-point addition)
• Operators occupy resources on the FPGA device (e.g. DSP blocks)

4

for(…) {
 a[i] = a[i] * b[i]
 / (b - c);
 …
}

O. Sinnen, University of Auckland — SkyCastle: A Resource-Aware Multi-Loop Scheduler for High-Level Synthesis / 18

High-Level Synthesis

■ HLS = Automatic microarchitecture construction from a behavioural description 
think: C code

■ Terminology
• Loops (and other regions) are transformed to control-data-flow-graphs comprised of 

operations and dependence edges
• Operations require operators to perform intended function (e.g. floating-point addition)
• Operators occupy resources on the FPGA device (e.g. DSP blocks)

■ Algorithmic steps

4

for(…) {
 a[i] = a[i] * b[i]
 / (b - c);
 …
}

…
wire r_mul;
assign r_mul =
r_load_1 * r_load_2;
…

O. Sinnen, University of Auckland — SkyCastle: A Resource-Aware Multi-Loop Scheduler for High-Level Synthesis / 18

High-Level Synthesis

■ HLS = Automatic microarchitecture construction from a behavioural description 
think: C code

■ Terminology
• Loops (and other regions) are transformed to control-data-flow-graphs comprised of 

operations and dependence edges
• Operations require operators to perform intended function (e.g. floating-point addition)
• Operators occupy resources on the FPGA device (e.g. DSP blocks)

■ Algorithmic steps
• Allocation	 — how many operators?

4

for(…) {
 a[i] = a[i] * b[i]
 / (b - c);
 …
}

add

div

mul mul

sub
…
wire r_mul;
assign r_mul =
r_load_1 * r_load_2;
…

O. Sinnen, University of Auckland — SkyCastle: A Resource-Aware Multi-Loop Scheduler for High-Level Synthesis / 18

High-Level Synthesis

■ HLS = Automatic microarchitecture construction from a behavioural description 
think: C code

■ Terminology
• Loops (and other regions) are transformed to control-data-flow-graphs comprised of 

operations and dependence edges
• Operations require operators to perform intended function (e.g. floating-point addition)
• Operators occupy resources on the FPGA device (e.g. DSP blocks)

■ Algorithmic steps
• Allocation	 — how many operators?
• Scheduling	 — when is an operation executed?

4

for(…) {
 a[i] = a[i] * b[i]
 / (b - c);
 …
}

add

div

mul mul

sub
…
wire r_mul;
assign r_mul =
r_load_1 * r_load_2;
…

add

div

mul mul

sub Tim
e steps

O. Sinnen, University of Auckland — SkyCastle: A Resource-Aware Multi-Loop Scheduler for High-Level Synthesis / 18

High-Level Synthesis

■ HLS = Automatic microarchitecture construction from a behavioural description 
think: C code

■ Terminology
• Loops (and other regions) are transformed to control-data-flow-graphs comprised of 

operations and dependence edges
• Operations require operators to perform intended function (e.g. floating-point addition)
• Operators occupy resources on the FPGA device (e.g. DSP blocks)

■ Algorithmic steps
• Allocation	 — how many operators?
• Scheduling	 — when is an operation executed?
• Binding	 	 — where is an operation executed?

4

for(…) {
 a[i] = a[i] * b[i]
 / (b - c);
 …
}

add

div

mul mul

sub
…
wire r_mul;
assign r_mul =
r_load_1 * r_load_2;
…

add

div

mul mul

sub Tim
e steps

add

div

mul mul

sub Tim
e steps

add

div

mul mul

sub

O. Sinnen, University of Auckland — SkyCastle: A Resource-Aware Multi-Loop Scheduler for High-Level Synthesis / 18

High-Level Synthesis

■ HLS = Automatic microarchitecture construction from a behavioural description 
think: C code

■ Terminology
• Loops (and other regions) are transformed to control-data-flow-graphs comprised of 

operations and dependence edges
• Operations require operators to perform intended function (e.g. floating-point addition)
• Operators occupy resources on the FPGA device (e.g. DSP blocks)

■ Algorithmic steps
• Allocation	 — how many operators?
• Scheduling	 — when is an operation executed?
• Binding	 	 — where is an operation executed?

4

for(…) {
 a[i] = a[i] * b[i]
 / (b - c);
 …
}

add

div

mul mul

sub
…
wire r_mul;
assign r_mul =
r_load_1 * r_load_2;
…

add

div

mul mul

sub Tim
e steps

add

div

mul mul

sub Tim
e steps

add

div

mul mul

sub

Modulo Scheduling
enables pipelining

O. Sinnen, University of Auckland — SkyCastle: A Resource-Aware Multi-Loop Scheduler for High-Level Synthesis / 18

Trade-offs
■ For one loop, trade-offs can be computed with a

resource-aware modulo scheduler [Euro-Par’19]

5

ADD

mul1 mul2 mul3 mul4

add1

add2 add3

add4

MUL MUL MULMUL

II = 1

ADD ADDADD
Allocation:

mul1 mul2

mul3 mul4

add1

add2 add3

add4

mul1

mul2

mul3

mul4

add1

add2

add3

add4

MUL

ADD
Allocation:

MULMUL

ADDADD
Allocation:

II = 4II = 2

1 Max

II

1 Max

II

1 Max

II
Highest

throughput

Least

resource

demand

O. Sinnen, University of Auckland — SkyCastle: A Resource-Aware Multi-Loop Scheduler for High-Level Synthesis / 18

Trade-offs
■ For one loop, trade-offs can be computed with a

resource-aware modulo scheduler [Euro-Par’19]

5

ADD

mul1 mul2 mul3 mul4

add1

add2 add3

add4

MUL MUL MULMUL

II = 1

ADD ADDADD
Allocation:

mul1 mul2

mul3 mul4

add1

add2 add3

add4

mul1

mul2

mul3

mul4

add1

add2

add3

add4

MUL

ADD
Allocation:

MULMUL

ADDADD
Allocation:

II = 4II = 2

1 Max

II

1 Max

II

1 Max

II
Highest

throughput

Least

resource

demand

O. Sinnen, University of Auckland — SkyCastle: A Resource-Aware Multi-Loop Scheduler for High-Level Synthesis / 18

Trade-offs
■ For one loop, trade-offs can be computed with a

resource-aware modulo scheduler [Euro-Par’19]

5

ADD

mul1 mul2 mul3 mul4

add1

add2 add3

add4

MUL MUL MULMUL

II = 1

ADD ADDADD
Allocation:

mul1 mul2

mul3 mul4

add1

add2 add3

add4

mul1

mul2

mul3

mul4

add1

add2

add3

add4

MUL

ADD
Allocation:

MULMUL

ADDADD
Allocation:

II = 4II = 2

1 Max

II

1 Max

II

1 Max

II
Highest

throughput

Least

resource

demand

O. Sinnen, University of Auckland — SkyCastle: A Resource-Aware Multi-Loop Scheduler for High-Level Synthesis / 18

In Reality…

■ Typical HLS kernels have:

• More than one loop

• Non-pipelined parts

6

O. Sinnen, University of Auckland — SkyCastle: A Resource-Aware Multi-Loop Scheduler for High-Level Synthesis / 18

In Reality…

■ Typical HLS kernels have:

• More than one loop

• Non-pipelined parts

■ Typical HLS tools share operators between loops

6

O. Sinnen, University of Auckland — SkyCastle: A Resource-Aware Multi-Loop Scheduler for High-Level Synthesis / 18

In Reality…

■ Typical HLS kernels have:

• More than one loop

• Non-pipelined parts

■ Typical HLS tools share operators between loops

Need a formal model for that!

6

O. Sinnen, University of Auckland — SkyCastle: A Resource-Aware Multi-Loop Scheduler for High-Level Synthesis / 18

Multi-Loop Scheduling Problem

7

Function: foo

Function: bar
Graph: foo Graph: loop 1 Graph: loop 2

Graph: bar

function:

Operations:

Operator types:

Add DivMul

Add

Mul

Cmp

normal: loop: call:

predefined:

Mul

Add

Mul

Dependence edges:

Graph reference:

Graph: loop 3

O. Sinnen, University of Auckland — SkyCastle: A Resource-Aware Multi-Loop Scheduler for High-Level Synthesis / 18

Multi-Loop Scheduling Problem

7

Function: foo

Function: bar
Graph: foo Graph: loop 1 Graph: loop 2

Graph: bar

function:

Operations:

Operator types:

Add DivMul

Add

Mul

Cmp

normal: loop: call:

predefined:

Mul

Add

Mul

Dependence edges:

Graph reference:

Graph: loop 3

Objective:

Minimise
latency of
top-level
function

O. Sinnen, University of Auckland — SkyCastle: A Resource-Aware Multi-Loop Scheduler for High-Level Synthesis / 18

Multi-Loop Scheduling Problem

7

Function: foo

Function: bar
Graph: foo Graph: loop 1 Graph: loop 2

Graph: bar

function:

Operations:

Operator types:

Add DivMul

Add

Mul

Cmp

normal: loop: call:

predefined:

Mul

Add

Mul

Dependence edges:

Graph reference:

Graph: loop 3

Nested scheduling problems: 
Variable latency is derived from the

scheduling result of the referenced graph

Objective:

Minimise
latency of
top-level
function

O. Sinnen, University of Auckland — SkyCastle: A Resource-Aware Multi-Loop Scheduler for High-Level Synthesis / 18

Multi-Loop Scheduling Problem

7

Function: foo

Function: bar
Graph: foo Graph: loop 1 Graph: loop 2

Graph: bar

function:

Operations:

Operator types:

Add DivMul

Add

Mul

Cmp

normal: loop: call:

predefined:

Mul

Add

Mul

Dependence edges:

Graph reference:

Graph: loop 3

Nested scheduling problems: 
Variable latency is derived from the

scheduling result of the referenced graph

Objective:

Minimise
latency of
top-level
function latencyx = (trip_countloop2-1) ⨉ IIloop2 + schedule_lengthloop2

x

O. Sinnen, University of Auckland — SkyCastle: A Resource-Aware Multi-Loop Scheduler for High-Level Synthesis / 18

Multi-Loop Scheduling Problem

7

Function: foo

Function: bar
Graph: foo Graph: loop 1 Graph: loop 2

Graph: bar

function:

Operations:

Operator types:

Add DivMul

Add

Mul

Cmp

normal: loop: call:

predefined:

Mul

Add

Mul

Dependence edges:

Graph reference:

Graph: loop 3

Nested scheduling problems: 
Variable latency is derived from the

scheduling result of the referenced graph

Objective:

Minimise
latency of
top-level
function

Variable
allocation,

shared
among the
scheduling
problems in

function
„foo“

O. Sinnen, University of Auckland — SkyCastle: A Resource-Aware Multi-Loop Scheduler for High-Level Synthesis / 18

Multi-Loop Scheduling Problem

7

Function: foo

Function: bar
Graph: foo Graph: loop 1 Graph: loop 2

Graph: bar

function:

Operations:

Operator types:

Add DivMul

Add

Mul

Cmp

normal: loop: call:

predefined:

Mul

Add

Mul

Dependence edges:

Graph reference:

Graph: loop 3

Nested scheduling problems: 
Variable latency is derived from the

scheduling result of the referenced graph

Objective:

Minimise
latency of
top-level
function

Variable
allocation,

shared
among the
scheduling
problems in

function
„foo“

Operator type with variable latency, variable II,
and variable resource demands,

derived from scheduling „bar“

O. Sinnen, University of Auckland — SkyCastle: A Resource-Aware Multi-Loop Scheduler for High-Level Synthesis / 18

Multi-Loop Scheduling Problem

7

Function: foo

Function: bar
Graph: foo Graph: loop 1 Graph: loop 2

Graph: bar

function:

Operations:

Operator types:

Add DivMul

Add

Mul

Cmp

normal: loop: call:

predefined:

Mul

Add

Mul

Dependence edges:

Graph reference:

Graph: loop 3

Nested scheduling problems: 
Variable latency is derived from the

scheduling result of the referenced graph

Objective:

Minimise
latency of
top-level
function

Variable
allocation,

shared
among the
scheduling
problems in

function
„foo“

Operator type with variable latency, variable II,
and variable resource demands,

derived from scheduling „bar“

Constraint:

„foo“’s accumulated
resource demand ≤
available resources!

O. Sinnen, University of Auckland — SkyCastle: A Resource-Aware Multi-Loop Scheduler for High-Level Synthesis / 18

Targeting Vivado HLS
■ Operator sharing at the function level

• Implicit in the formal model

• Other schemes also possible

8

O. Sinnen, University of Auckland — SkyCastle: A Resource-Aware Multi-Loop Scheduler for High-Level Synthesis / 18

Targeting Vivado HLS
■ Operator sharing at the function level

• Implicit in the formal model

• Other schemes also possible

■ Pipelined regions cannot contain loops

8

O. Sinnen, University of Auckland — SkyCastle: A Resource-Aware Multi-Loop Scheduler for High-Level Synthesis / 18

Targeting Vivado HLS
■ Operator sharing at the function level

• Implicit in the formal model

• Other schemes also possible

■ Pipelined regions cannot contain loops

■ Pipelined regions may contain calls to pipelined
functions

• Callee’s II must divide II of caller’s graph

8

O. Sinnen, University of Auckland — SkyCastle: A Resource-Aware Multi-Loop Scheduler for High-Level Synthesis / 18

Targeting Vivado HLS
■ Operator sharing at the function level

• Implicit in the formal model

• Other schemes also possible

■ Pipelined regions cannot contain loops

■ Pipelined regions may contain calls to pipelined
functions

• Callee’s II must divide II of caller’s graph

■ Closed tool, no interface to influence HLS steps

• Faithful reproduction of the scheduling and allocation

problems inside of Vivado HLS

8

O. Sinnen, University of Auckland — SkyCastle: A Resource-Aware Multi-Loop Scheduler for High-Level Synthesis / 18

Proposed Flow

9

Kernel

O. Sinnen, University of Auckland — SkyCastle: A Resource-Aware Multi-Loop Scheduler for High-Level Synthesis / 18

Proposed Flow

9

Vivado
HLSKernel

O. Sinnen, University of Auckland — SkyCastle: A Resource-Aware Multi-Loop Scheduler for High-Level Synthesis / 18

Proposed Flow

9

Vivado
HLSKernel IP-

Core Logic synthesis

O. Sinnen, University of Auckland — SkyCastle: A Resource-Aware Multi-Loop Scheduler for High-Level Synthesis / 18

Proposed Flow

9

Vivado
HLSKernel IP-

Core Logic synthesis

O. Sinnen, University of Auckland — SkyCastle: A Resource-Aware Multi-Loop Scheduler for High-Level Synthesis / 18

Proposed Flow

9

Vivado
HLSKernel IP-

Core

IR

Logic synthesis

SkyCastle

O. Sinnen, University of Auckland — SkyCastle: A Resource-Aware Multi-Loop Scheduler for High-Level Synthesis / 18

Proposed Flow

9

Vivado
HLSKernel IP-

Core

IR

Logic synthesis

SkyCastle

#pragma pipeline II=…
#pragma allocation …

O. Sinnen, University of Auckland — SkyCastle: A Resource-Aware Multi-Loop Scheduler for High-Level Synthesis / 18

Proposed Flow

9

Vivado
HLSKernel IP-

Core

IR

Logic synthesis

SkyCastle

#pragma pipeline II=…
#pragma allocation …

Vivado
HLS

O. Sinnen, University of Auckland — SkyCastle: A Resource-Aware Multi-Loop Scheduler for High-Level Synthesis / 18

Proposed Flow

9

Vivado
HLSKernel IP-

Core

IR

Logic synthesis

SkyCastle

#pragma pipeline II=…
#pragma allocation …

Vivado
HLS

IP-
Core Logic synthesis

O. Sinnen, University of Auckland — SkyCastle: A Resource-Aware Multi-Loop Scheduler for High-Level Synthesis / 18

Proposed Flow

9

Vivado
HLSKernel IP-

Core

IR

Logic synthesis

SkyCastle

#pragma pipeline II=…
#pragma allocation …

Vivado
HLS

IP-
Core Logic synthesis

■ SkyCastle fits a kernel…

O. Sinnen, University of Auckland — SkyCastle: A Resource-Aware Multi-Loop Scheduler for High-Level Synthesis / 18

Proposed Flow

9

Vivado
HLSKernel IP-

Core

IR

Logic synthesis

SkyCastle

#pragma pipeline II=…
#pragma allocation …

Vivado
HLS

IP-
Core Logic synthesis

■ SkyCastle fits a kernel…
... at all (on a small device)

O. Sinnen, University of Auckland — SkyCastle: A Resource-Aware Multi-Loop Scheduler for High-Level Synthesis / 18

Proposed Flow

9

Vivado
HLSKernel IP-

Core

IR

Logic synthesis

SkyCastle

#pragma pipeline II=…
#pragma allocation …

Vivado
HLS

IP-
Core Logic synthesis

■ SkyCastle fits a kernel…
... at all (on a small device)
... suitable for replication (on

larger devices)

O. Sinnen, University of Auckland — SkyCastle: A Resource-Aware Multi-Loop Scheduler for High-Level Synthesis / 18

SkyCastle
■ Novel SkyCastle approach for a subclass of kernels

10

Top-level function
function

pipelined
loop

pipelined
graphgtop loop loop

Step 2
SKYCASTLE ILP

Step 1
Compute set of trade-off
solutions [Euro-Par’19]

O. Sinnen, University of Auckland — SkyCastle: A Resource-Aware Multi-Loop Scheduler for High-Level Synthesis / 18

SkyCastle
■ Novel SkyCastle approach for a subclass of kernels

■ = first „level“ of the multi-loop scheduling problem

• Arbitrary number and nesting structure of loops in

top-level function

• Only innermost loops may be pipelined

10

Top-level function
function

pipelined
loop

pipelined
graphgtop loop loop

Step 2
SKYCASTLE ILP

Step 1
Compute set of trade-off
solutions [Euro-Par’19]

O. Sinnen, University of Auckland — SkyCastle: A Resource-Aware Multi-Loop Scheduler for High-Level Synthesis / 18

SkyCastle ILP

11

Precomputed solutions for bar

Allocation
for foo

aAdd aMul
aDiv abar

Variable characteristics for bar

lbar bbar ñbar

S1

IIbar= 1
Tbar= 1
Abar= <2,2,2>

S2

…
IIbar= …
Tbar= …
Abar= …

RASP for foo

RASP = Resource-Aware Scheduling Problem
RAMSP = Resource-Aware Modulo Scheduling Problem

ti ∀i ∈ Ofoo
Tfoo
lloop1

RASP for loop1

ti ∀i ∈ Oloop1
Tloop1
lloop3, lloop2

RAMSP for loop2
ti ∀i ∈ Oloop2
IIloop2, Tloop2

RAMSP for loop3
ti ∀i ∈ Oloop3
IIloop3, Tloop3

c lo
op

1 •
 T

lo
op

1

(c
lo

op
3 -

1)
 •

II
lo

op
3

+

T l
oo

p3

SKYCASTLE
ILP

Solution selectors for bar

sS1 sS2 …

O. Sinnen, University of Auckland — SkyCastle: A Resource-Aware Multi-Loop Scheduler for High-Level Synthesis / 18

SkyCastle ILP

11

Precomputed solutions for bar

Allocation
for foo

aAdd aMul
aDiv abar

Variable characteristics for bar

lbar bbar ñbar

S1

IIbar= 1
Tbar= 1
Abar= <2,2,2>

S2

…
IIbar= …
Tbar= …
Abar= …

RASP for foo

RASP = Resource-Aware Scheduling Problem
RAMSP = Resource-Aware Modulo Scheduling Problem

ti ∀i ∈ Ofoo
Tfoo
lloop1

RASP for loop1

ti ∀i ∈ Oloop1
Tloop1
lloop3, lloop2

RAMSP for loop2
ti ∀i ∈ Oloop2
IIloop2, Tloop2

RAMSP for loop3
ti ∀i ∈ Oloop3
IIloop3, Tloop3

c lo
op

1 •
 T

lo
op

1

(c
lo

op
3 -

1)
 •

II
lo

op
3

+

T l
oo

p3

SKYCASTLE
ILP

Solution selectors for bar

sS1 sS2 …

■ Uses Moovac
formulation
[TRETS’19]

• II is decision

variable

O. Sinnen, University of Auckland — SkyCastle: A Resource-Aware Multi-Loop Scheduler for High-Level Synthesis / 18

SkyCastle ILP

11

Precomputed solutions for bar

Allocation
for foo

aAdd aMul
aDiv abar

Variable characteristics for bar

lbar bbar ñbar

S1

IIbar= 1
Tbar= 1
Abar= <2,2,2>

S2

…
IIbar= …
Tbar= …
Abar= …

RASP for foo

RASP = Resource-Aware Scheduling Problem
RAMSP = Resource-Aware Modulo Scheduling Problem

ti ∀i ∈ Ofoo
Tfoo
lloop1

RASP for loop1

ti ∀i ∈ Oloop1
Tloop1
lloop3, lloop2

RAMSP for loop2
ti ∀i ∈ Oloop2
IIloop2, Tloop2

RAMSP for loop3
ti ∀i ∈ Oloop3
IIloop3, Tloop3

c lo
op

1 •
 T

lo
op

1

(c
lo

op
3 -

1)
 •

II
lo

op
3

+

T l
oo

p3

SKYCASTLE
ILP

Solution selectors for bar

sS1 sS2 …

■ Uses Moovac
formulation
[TRETS’19]

• II is decision

variable

■ characteristics
are variable
for a subset of
operations/
operators

O. Sinnen, University of Auckland — SkyCastle: A Resource-Aware Multi-Loop Scheduler for High-Level Synthesis / 18

Evaluation: Case study „SPN“

■ Different queries of a Sum-Product Network

• Motivational example from the first slide

12

Mul 10
1AddSub

spn
1

1Div
Mul 8
AddSub
top LP LP

4Compare
MPE PL

4spn

O. Sinnen, University of Auckland — SkyCastle: A Resource-Aware Multi-Loop Scheduler for High-Level Synthesis / 18

Evaluation: Case study „SPN“

■ Different queries of a Sum-Product Network

• Motivational example from the first slide

12

Mul 10
1AddSub

spn
1

1Div
Mul 8
AddSub
top LP LP

4Compare
MPE PL

4spn

Top-level
function

O. Sinnen, University of Auckland — SkyCastle: A Resource-Aware Multi-Loop Scheduler for High-Level Synthesis / 18

Evaluation: Case study „SPN“

■ Different queries of a Sum-Product Network

• Motivational example from the first slide

12

Mul 10
1AddSub

spn
1

1Div
Mul 8
AddSub
top LP LP

4Compare
MPE PL

4spn

Top-level
function

Top-level graph

(non-pipelined)

O. Sinnen, University of Auckland — SkyCastle: A Resource-Aware Multi-Loop Scheduler for High-Level Synthesis / 18

Evaluation: Case study „SPN“

■ Different queries of a Sum-Product Network

• Motivational example from the first slide

12

Mul 10
1AddSub

spn
1

1Div
Mul 8
AddSub
top LP LP

4Compare
MPE PL

4spn

Top-level
function

Top-level graph

(non-pipelined)

Pipelined
loop

O. Sinnen, University of Auckland — SkyCastle: A Resource-Aware Multi-Loop Scheduler for High-Level Synthesis / 18

Evaluation: Case study „SPN“

■ Different queries of a Sum-Product Network

• Motivational example from the first slide

12

Mul 10
1AddSub

spn
1

1Div
Mul 8
AddSub
top LP LP

4Compare
MPE PL

4spn

Top-level
function

Top-level graph

(non-pipelined)

Pipelined
loop

Pipelined
function

O. Sinnen, University of Auckland — SkyCastle: A Resource-Aware Multi-Loop Scheduler for High-Level Synthesis / 18

Evaluation: Case study „FFT“

■ Fast Fourier Transformation
• code from MachSuite/
fft_transpose

13

8smem
8DATA_y

loop_7 PL

top LP

twiddles8 1
1fft8

DATA_y 8

8

8DATA_x
r_work_y 8
r_work_x
loop_1 LP

DATA_y
16

fft8
16

DATA_x

1
twiddles8 1

loop_6 LP

8

8

8
w_work_y

fft8

w_work_x

1
DATA_y
DATA_x

8

loop_11 LP

Mul 10
58AddSub

fft8 LP

sin_cos

Div

AddSub
35

int_to_fp
14

Mul

2

14

7

twiddles8LP

8smem
8DATA_x

loop_2 PL

8smem
8DATA_x

loop_5 PL

8smem
8DATA_y

loop_10 PL

…
…

O. Sinnen, University of Auckland — SkyCastle: A Resource-Aware Multi-Loop Scheduler for High-Level Synthesis / 18

Evaluation: Case study „FFT“

■ Fast Fourier Transformation
• code from MachSuite/
fft_transpose

• 3 of 11 loops are
pipelined

13

8smem
8DATA_y

loop_7 PL

top LP

twiddles8 1
1fft8

DATA_y 8

8

8DATA_x
r_work_y 8
r_work_x
loop_1 LP

DATA_y
16

fft8
16

DATA_x

1
twiddles8 1

loop_6 LP

8

8

8
w_work_y

fft8

w_work_x

1
DATA_y
DATA_x

8

loop_11 LP

Mul 10
58AddSub

fft8 LP

sin_cos

Div

AddSub
35

int_to_fp
14

Mul

2

14

7

twiddles8LP

8smem
8DATA_x

loop_2 PL

8smem
8DATA_x

loop_5 PL

8smem
8DATA_y

loop_10 PL

…
…

O. Sinnen, University of Auckland — SkyCastle: A Resource-Aware Multi-Loop Scheduler for High-Level Synthesis / 18

Evaluation: Case study „FFT“

■ Fast Fourier Transformation
• code from MachSuite/
fft_transpose

• 3 of 11 loops are
pipelined

• Pipelined functions are
called from different
loops 
→ consider II divisibility

13

8smem
8DATA_y

loop_7 PL

top LP

twiddles8 1
1fft8

DATA_y 8

8

8DATA_x
r_work_y 8
r_work_x
loop_1 LP

DATA_y
16

fft8
16

DATA_x

1
twiddles8 1

loop_6 LP

8

8

8
w_work_y

fft8

w_work_x

1
DATA_y
DATA_x

8

loop_11 LP

Mul 10
58AddSub

fft8 LP

sin_cos

Div

AddSub
35

int_to_fp
14

Mul

2

14

7

twiddles8LP

8smem
8DATA_x

loop_2 PL

8smem
8DATA_x

loop_5 PL

8smem
8DATA_y

loop_10 PL

…
…

O. Sinnen, University of Auckland — SkyCastle: A Resource-Aware Multi-Loop Scheduler for High-Level Synthesis / 18

Evaluation: Setup
■ Gurobi 8.1, 8 threads, 16 GiB RAM  

on Xeon E5-2680 v3 servers @ 2.8 GHz

14

src: HHLR TU-DA

O. Sinnen, University of Auckland — SkyCastle: A Resource-Aware Multi-Loop Scheduler for High-Level Synthesis / 18

Evaluation: Setup
■ Gurobi 8.1, 8 threads, 16 GiB RAM  

on Xeon E5-2680 v3 servers @ 2.8 GHz

■ Timelimits (for solving ILP) 
15 min: minimise latency 
 5 min: minimise resource utilisation

14

src: HHLR TU-DA

O. Sinnen, University of Auckland — SkyCastle: A Resource-Aware Multi-Loop Scheduler for High-Level Synthesis / 18

Evaluation: Setup
■ Gurobi 8.1, 8 threads, 16 GiB RAM  

on Xeon E5-2680 v3 servers @ 2.8 GHz

■ Timelimits (for solving ILP) 
15 min: minimise latency 
 5 min: minimise resource utilisation

■ 2 FPGA boards
• ZedBoard	 — XC7Z020	 — „small“
• VCU108	 	 — XCVU095	 — „medium“

14

src: Xilinx

src: HHLR TU-DA

O. Sinnen, University of Auckland — SkyCastle: A Resource-Aware Multi-Loop Scheduler for High-Level Synthesis / 18

Evaluation: Setup
■ Gurobi 8.1, 8 threads, 16 GiB RAM  

on Xeon E5-2680 v3 servers @ 2.8 GHz

■ Timelimits (for solving ILP) 
15 min: minimise latency 
 5 min: minimise resource utilisation

■ 2 FPGA boards
• ZedBoard	 — XC7Z020	 — „small“
• VCU108	 	 — XCVU095	 — „medium“

■ Xilinx Vivado HLS 2018.3

14

src: Xilinx

src: HHLR TU-DA

O. Sinnen, University of Auckland — SkyCastle: A Resource-Aware Multi-Loop Scheduler for High-Level Synthesis / 18

Evaluation: Key Insights

■ The next slides illustrate that …

15

O. Sinnen, University of Auckland — SkyCastle: A Resource-Aware Multi-Loop Scheduler for High-Level Synthesis / 18

Evaluation: Key Insights

■ The next slides illustrate that …

... solving the ILP is tractable

15

O. Sinnen, University of Auckland — SkyCastle: A Resource-Aware Multi-Loop Scheduler for High-Level Synthesis / 18

Evaluation: Key Insights

■ The next slides illustrate that …

... solving the ILP is tractable

...we capture the most important aspects of the
Vivado HLS scheduling & allocation problem

15

O. Sinnen, University of Auckland — SkyCastle: A Resource-Aware Multi-Loop Scheduler for High-Level Synthesis / 18

Evaluation: Key Insights

■ The next slides illustrate that …

... solving the ILP is tractable

...we capture the most important aspects of the
Vivado HLS scheduling & allocation problem

... using SkyCastle leads to synthesisable designs

15

O. Sinnen, University of Auckland — SkyCastle: A Resource-Aware Multi-Loop Scheduler for High-Level Synthesis / 18

Evaluation: Key Insights

■ The next slides illustrate that …

... solving the ILP is tractable

...we capture the most important aspects of the
Vivado HLS scheduling & allocation problem

... using SkyCastle leads to synthesisable designs

...we expect improved throughput from
replicating slower-but-smaller kernel
implementations

15

O. Sinnen, University of Auckland — SkyCastle: A Resource-Aware Multi-Loop Scheduler for High-Level Synthesis / 18

Results — Trade-off Solutions
■ FFT, VCU108

16

U
til

is
at

io
n

of
 D

SP
 s

lic
es

0%

50%

100%

150%

200%

250%

300%

Latency (cycles)
4500 5125 5750 6375 7000

100%

Report SkyCastle estimation

Vivado HLS w/o SkyCastle

SC-x1

SC-x2 SC-x3 SC-x4

„SC-x “ = SkyCastle computes
solution suitable for -times replication

k
k

O. Sinnen, University of Auckland — SkyCastle: A Resource-Aware Multi-Loop Scheduler for High-Level Synthesis / 18

Results — Replication
■ SPN, VCU108

17

R
at

io
 to

 V
H

LS
 w

/o
 S

C

0
0.25

0.5
0.75

1
1.25

1.5
1.75

2
2.25

2.5

Configuration

VHLS SC-x1 SC-x2 SC-x3 SC-x4 SC-x5 SC-x6 SC-x7 SC-x8

1

(theoretical) throughput, normalised

O. Sinnen, University of Auckland — SkyCastle: A Resource-Aware Multi-Loop Scheduler for High-Level Synthesis / 18

Results — Replication
■ SPN, VCU108

17

R
at

io
 to

 V
H

LS
 w

/o
 S

C

0
0.25

0.5
0.75

1
1.25

1.5
1.75

2
2.25

2.5

Configuration

VHLS SC-x1 SC-x2 SC-x3 SC-x4 SC-x5 SC-x6 SC-x7 SC-x8

1

(theoretical) throughput, normalised

VHLS disregards its cycle time
target, while SC strictly obeys it

O. Sinnen, University of Auckland — SkyCastle: A Resource-Aware Multi-Loop Scheduler for High-Level Synthesis / 18

Results — Replication
■ SPN, VCU108

17

R
at

io
 to

 V
H

LS
 w

/o
 S

C

0
0.25

0.5
0.75

1
1.25

1.5
1.75

2
2.25

2.5

Configuration

VHLS SC-x1 SC-x2 SC-x3 SC-x4 SC-x5 SC-x6 SC-x7 SC-x8

1

(theoretical) throughput, normalised

2x throughput within the
same resource constraints

O. Sinnen, University of Auckland — SkyCastle: A Resource-Aware Multi-Loop Scheduler for High-Level Synthesis / 18

Conclusion / Outlook

■ New approach to automatic hardware design using
mathematical optimisation

18

O. Sinnen, University of Auckland — SkyCastle: A Resource-Aware Multi-Loop Scheduler for High-Level Synthesis / 18

Conclusion / Outlook

■ New approach to automatic hardware design using
mathematical optimisation

■ Would benefit tremendously from public interface
into the HLS steps (similar to RapidWright)

18

O. Sinnen, University of Auckland — SkyCastle: A Resource-Aware Multi-Loop Scheduler for High-Level Synthesis / 18

Conclusion / Outlook

■ New approach to automatic hardware design using
mathematical optimisation

■ Would benefit tremendously from public interface
into the HLS steps (similar to RapidWright)

■ Could be a key ingredient to the automatic design-
space exploration of multi-kernel OpenCL
applications

18

