
Resource-Efficient Logarithmic Number Scale
Arithmetic for SPN Inference on FPGAs

Lukas Weber∗, Lukas Sommer∗, Julian Oppermann∗, Alejandro Molina†, Kristian Kersting† and Andreas Koch∗
∗Embedded Systems and Applications Group, TU Darmstadt, Germany.

{weber, sommer, oppermann, koch}@esa.tu-darmstadt.de
†Machine Learning Lab, TU Darmstadt, Germany.

{molina, kersting}@cs.tu-darmstadt.de

Abstract—FPGAs have been successfully used for the im-
plementation of dedicated accelerators for a wide range of
machine learning problems. The inference in so-called Sum-
Product Networks can also be accelerated efficiently using a
pipelined FPGA architecture.

However, as Sum-Product Networks compute exact probability
values, the required arithmetic precision poses different chal-
lenges than those encountered with Neural Networks. In previous
work, this precision was maintained by using double-precision
floating-point number formats, which are expensive to implement
in FPGAs.

In this work, we propose the use of a logarithmic number
system format tailored specifically towards the inference in Sum-
Product Networks. The evaluation of our optimized arithmetic
hardware operators shows that the use of logarithmic number
formats allows to save up to 50% hardware resources compared
to double-precision floating point, while maintaining sufficient
precision for SPN inference at almost identical performance.

Index Terms—FPGA, SPN, Machine Learning, Graphical
Models, Deep Models

I. INTRODUCTION

In the past, most of the work on FPGA-based accelerators
for machine learning inference has focused on the acceleration
of (artificial) neural networks [1], such as the very popular
convolutional neural networks.

In contrast, in [2], [3] an automatic tool-flow for mapping
the inference for so-called Sum-Product Networks (SPN) to
an FPGA-based accelerator was developed. Sum-Product Net-
works are a very promising type of machine learning network,
that belong to the class of tractable probabilistic models and
share similarities with probabilistic graphical models (PGM).

Compared to “classical” neural networks, SPNs allow exact
inference, thereby allowing them to explicitly deal with un-
certainty over the inputs. However, the fact that Sum-Product
Networks compute exact probabilities poses a number of
unique challenges to the hardware implementation. Most of the
optimization techniques employed for the hardware mapping
of neural networks, such as quantization of weights, are not
readily applicable to SPNs.

In [2], the use of double-precision allowed the preservation
of sufficient accuracy at the cost of a relatively high resource
requirement per operator. To circumvent this problem, we seek
to use an optimization which is commonly used in ML. The
use of logarithmic scaling is often used on CPUs and GPUs

even though the scaling has to be emulated. Using the flexi-
bility of FPGAs, we aim to implement the logarithmic scaling
through a logarithmic number system (LNS). This allows us
to maintain sufficient accurary with smaller bitwidths, leading
to significant resource savings.

II. SUM-PRODUCT NETWORKS

Probabilistic models can be used to solve a range of machine
learning problems. For example, the problem of multi-class
classification can be solved with probabilistic queries on a
PGM by determining the class with the highest probability,
given some evidence, i.e., arg maxc P(class = c|evidence).

While PGMs are very versatile, they generally suffer from
one disadvantage: In general, inference in unrestricted PGMs
(e.g. Baysian Networks) is intractable. SPNs overcome this
limitation and allow to compute exact probabilities in time
linear wrt. to the network size. Additionally, SPNs inherit
the universal approximation property from mixture models,
as mixture models can easily be represented as SPNs using a
single sum-node. This means that SPNs are able to represent
any prediction function, similar to deep neural networks.

+

+

×

x1 x2

×

x1 x2

×

x1 x2 x3

0.6

0.33 0.67

0.4

Fig. 1: Example of a valid SPN, capturing the joint probability
distribution of the variables x1, x2 and x3.

A. Model Representation

A Sum-Product Network captures the joint probability
P(X1, X2, ...) over a set of variables, called the scope of
the SPN. The graph structure of the SPN, used to represent
this joint probability distribution, is a rooted, directed acyclic
graph with three different kinds of nodes: Sum, product
and leaf nodes. With these three node types, an SPN can
be defined recursively as follows: 1. A tractable, univariate
distribution is an SPN. This corresponds to the leaf nodes
in the network. 2. A product of SPNs over different scopes

(i.e., random variables) is an SPN, represented by a product
node in the network. Essentially, a product node corresponds
to a factorization over independent distributions. 3. A convex
combination (i.e., weighted sum) of SPNs over the same
scope is an SPN. This is equivalent to a mixture of multiple
distributions over the same variables and represented by a sum
node and the weights associated with each of the child nodes.
An example SPN is given in Fig. 1.

B. Inference

To answer probabilistic queries using SPNs the following
scheme is used: Given (partial) evidence, histograms at the leaf
nodes are evaluated, mapping input values to probabilities. As
in [2], based on [4], all leave nodes use discrete input values.
Using the probabilities of the leaves, nodes are evaluated
bottom-up to calculate the resulting probability. The evaluation
always results in a single probability value.

The basic case is the computation of the joint probability
P(X1, X2, ...), which corresponds to a single evaluation with
full evidence. In order to marginalize out one or multiple
variables, it is sufficient to replace the leaf nodes for these
variables with the value 1 and evaluate the SPN. Both cases
can be combined to compute the conditional probability:
P(Y |X) = P(Y,X)

P(X) .
In this work, we focus on the joint computation, but the

accelerator can be extended to also compute marginals and
conditional probabilities.

III. PRIOR WORK

A. Logarithmic Number Scale on FPGA

Regarding the use of LNS, there has been extensive re-
search. Especially for digital signal processing it gained trac-
tion through the works of Lewis, which employed a function
interpolation scheme using interleaved memory to calculate
the logarithmic addition [5]. This resulted in the development
of an arithmetic unit (AU) which, at the time, outperformed
all similar floating point-based AUs [6].

A very similar interpolation-based approach for calculating
the logarithmic addition was later used [7]. The work addition-
ally compared FP and LNS and determined, that for LNS to
outperform FP in latency and required area, it was necessary
that about 70% of operations were multiplicative.

B. SPN Inference on FPGA

To the best of our knowledge, the work presented in [2] is
the first and to date only approach to accelerate SPN inference
on FPGAs. In that work, an automatic toolflow that maps
the inference in Sum-Product Networks to a fully pipelined
FPGA-accelerator was developed. The toolflow uses a fully
spatial mapping, i.e., for each arithmetic operator in the SPN,
there is a corresponding hardware operator in the datapath.
For the implementation of the hardware arithmetic operators,
the FloPoCo framework [8] was used, with a numeric format
similar to IEEE-754 double precision, achieving end-to-end
speedups of 6x over an x86-CPU and 38x over a Tensorflow-
based GPU-implementation.

In this work, we design LNS operators as drop-in replace-
ment for the FloPoCo-operators in [2] and reuse the automatic
toolflow to automatically map SPN inference to the FPGA.

IV. APPROACH

Similar to Haselman et al. [7], we use a fixed-point number
to encode the exponent EA for a probability value A. In
addition to the exponent, a zero-flag ZA and a sign-flag SA

are used to denote special cases and the sign of the exponent.
Since we only consider probabilities (values between 0 and
1), the sign-flag is inherently also a flag that indicates that the
linear-scale value is 1, similar to the zero-flag which indicates
a linear-scale value of 0.

In contrast to the encodings used by Haselman et al. [7] or
Detrey et al. [9], this encoding removes the additional sign-
bit, which is used to encode the overall sign for representing
negative numbers. In addition, we chose to change from 2’s
complement encoding of the exponent to an encoding with
an explicit sign-flag. Additionally, we do not encode special
cases such as NaN or ±∞. Thus we are able to save a bit,
while the magnitude of the exponent gains an additional bit
in comparison to [7].

A. LNS Multiplication

The multiplication of values in linear scaling corresponds
to an addition in logarithmic scale. This is also visible
in the corresponding logarithmic property: log2(x × y) =
log2(x) + log2(y). Assuming correct input values and neither
input being 0 nor 1, the calculation is a simple addition of
the exponents. If either Zero-flag is set, the result is zero
(linear-scale multiplication by 0). Additionally, if the addition
of exponents overflows, this results in a value that is too
small and thus saturated towards 0. While the resulting sign is
SR = SA∨SB , the exponent is ER = EA+EB . Additionally,
the zero-flag is ZR = ZA ∨ ZB . The special case handling
will override ER and SR to zero, if one of the operands
zero-flag was set, or if the calculation of ER overflowed. In
actual hardware, this is split into 3 pipeline stages: Decoding,
calculation and special-case handling.

B. LNS Addition

In contrast to multiplication, addition is not simplified in
the logarithmic scale. Instead, the calculation of an addition
in logarithmic scale is harder than in linear scale. The main
challenge with the logarithmic addition is obvious in the
corresponding logarithmic property: log2(x+ y) = log2(x) +
log2(1+ 2(log2(y)−log2(x))). Similar to [7], [9], we implement
this using a simple piecewise polynomial of second degree.

The implementation of the interpolation poses an additional
challenge, since it relies on binary arithmetic. The required
bitwidth of these operations depends on the bitwidths of the
exponents. For increased accuracy of these operations, the
operations internal to the interpolator are up to twice the
regular bitwidth. To achieve acceptable clock frequencies, we
have to pipeline these operations and exploit the available
special function slices.

For binary additions, this does not pose much of a challenge,
since the carry-save chains on modern FPGAs generally allow
additions of at least 40 bits without problems. Dividing the
operands in chunks of corresponding size allows easy chaining
of these adders using intermediary pipeline registers. The
resulting adders are similar to pipelined Ripple-Carry Adders.

In contrast, the creation of the corresponding multipliers
is much more complex. For FPGA applications, the de-facto
standard for generating these multipliers is given by the
work of Kumm et al. [10], which relies on integer linear
programming (ILP) to calculate resource-optimal multiplier
compositions. Adapting their approach, it was possible to also
avoid the high LUT utilizations of [2]. By solely using DSP-
tiles, the resulting ILP solutions are perfectly tiled to map
to DSPs only. Depending on the placement of the DSP-tile,
Vivado then infers DSPs only if they are used efficiently or if
a corresponding directive is used. Evaluating both approaches,
we found the inference-option to be more resource efficient.

Using these binary additions and multiplications as prim-
itives, we built the interpolation unit which calculates the
interpolating polynomial ax2 + bx+ c. The coefficients a, b, c
are pre-computed and stored in read-only memory (ROM). To
reduce the size of these ROMs, we store only the fraction-
bits and a single integer bit due to the observation by Vouzis
et al. [11], that interpolation coefficients for this interpolated
function are positive and in the range [0, 1].

Using the interpolation unit we can now compose a unit for
logarithmic addition by considering all possible cases under
the assumptions that |A| ≥ |B|, x = interpolate(EB − EA)
and Fu = underflow(x). 1. ZR is set only if ZA and ZB were
set. 2. SR is unset, unless ZR or Fu. 3. If ZR is set and SR

is unset, ER = 0. In all other cases, ER = EA − x.
To actually implement this, a pipelined approach is used.

After splitting the operands into exponents and flags, an
additional stage ensures that |A| ≥ |B| holds, switching the
operands if necessary. Then the difference of the exponents
is calculated and pushed into the interpolation unit. Using the
interpolation result and the flags we can detect the special
cases and handle them accordingly.

V. EVALUATION

A. Benchmarks
For full comparability, we use the same set of benchmark

datasets as in [2]. That set contains benchmarks of two
different types, count-based and binary. While the count-based
examples are taken from the well-known NIPS1 corpus, the
binary benchmarks are pre-processed and provided by [12]
and [13]. A more detailed description of each of the datasets
can be found in [2].

B. Parameters
We tuned the parameters of our operators (i.e. integer &

fractional bit-width, interpolation error ceiling) using an itera-
tive process. We identified a configuration with eight integer-
bits, 32 fraction bits and an interpolation error of 2−21.5 as

1archive.ics.uci.edu/ml/datasets/bag+of+words

minimal configuration to maintain sufficient accuracy across
all benchmarks. The acceptable interpolation error depends
on the size of each benchmark, with smaller SPNs tolerating
higher interpolation error (2−18.5 for NIPS5) and bigger SPNs
requiring smaller interpolation errors (2−21.5 for Accidents).

Slices [%] BRAM [%] DSP [%] Freq. [MHz.]
Benchmark FP LNS FP LNS FP LNS FP LNS

Accidents 69.4 42.0 3.5 7.3 36.1 17.2 205 230
Audio 85.2 34.8 3.5 4.8 45.8 7.6 205 229
Netflix 73.7 38.2 3.5 4.6 38.5 7.0 199 250
MSNBC200 59.8 42.7 3.5 6.6 27.5 19.1 250 225
MSNBC300 43.9 39.5 3.5 5.3 17.0 10.8 250 250
NLTCS 57.6 40.8 3.5 6.3 25.2 17.2 250 265
Plants 82.0 35.8 3.5 5.9 42.6 8.9 205 233
NIPS5 28.4 25.7 3.7 3.7 1.6 0.6 250 255
NIPS10 31.4 29.6 3.7 4.1 4.1 1.9 255 270
NIPS20 40.0 32.2 4.1 4.8 9.3 4.4 255 250
NIPS30 43.8 36.5 3.7 5.0 14.5 6.3 220 230
NIPS40 51.3 41.2 4.0 5.7 20.3 10.2 226 255
NIPS50 57.9 43.1 4.3 6.0 23.8 10.2 210 250
NIPS60 66.9 41.3 4.8 6.0 26.0 8.3 217 240
NIPS70 73.3 43.3 4.5 5.9 30.0 8.9 210 215
NIPS80 93.0 48.2 4.8 10.0 44.1 20.4 190 240

TABLE I: FPGA implementation results using double-
precision floating-point (FP) and logarithmic number scale
(LNS) arithmetic operators, respectively. For brevity those
numbers are given as usage relative to the resources available
on the FPGA in percent.

C. FPGA Resource Consumption

As target device for the FPGA evaluation, we select the
Xilinx VC709 development board, containing a Virtex7-device
(xc7vx690) and 4 GiB of RAM. With the improvements in
TaPaSCo and Vivado we opted to reproduce the results from
[2] using current tool versions TaPaSCo 2019.10 and Vivado
2019.1, again for better comparability.

To achieve the best possible results, we employed the
design-space exploration feature of TaPaSCo, which auto-
matically maximizes the design frequencies. The resulting
frequencies and resource utilizations can be found in Table I.
For brevity, those numbers are given relative to the entire
FPGA in percent2.

Throughout the complete set of Benchmarks, the LNS-based
implementations require fewer Slices and fewer DSPs than
their FP-counterparts. Due to the use of ROMs for storing the
coefficients for the interpolation, BRAM utilization is higher in
LNS-implementations. The BRAM requirements are slightly
more than doubled for the examples Accidents and NIPS80.
However, that increase is almost irrelevant, since the original
BRAM requirements were always below 5%, and thus the
worst-case example (NIPS80) only requires 10% of BRAM.

In contrast, the resulting utilizations of Slices and DSPs are
always reduced, depending on the size of the SPN and its
adder-to-multiplier-ratio. For small examples such as NIPS10,
the utilization is reduced by 1.8% and 2.2% for slices and

2The absolute number of resources available are 433,200 (LUT), 866,400
(Register), 108,300 (Slices), 1,470 (BRAM) and 3,600 (DSP), respectively.

Fig. 2: Throughput of the CPU-, GPU- and both FPGA-implementations in samples/µs. Each group represents an example
SPN. The single outlier is the CPU-Throughput for example NIPS5 which is cut off from more than 2x its size to fit.

DSPs, respectively. In the biggest example (NIPS80), the
reduction grows to 44.8% fewer slices and 23.7% fewer DSPs.

D. Performance Evaluation

Similar to [2], we compare our accelerators to CPU- &
GPU-implementations. For the CPU, we use the best results
obtained in [2]. For the GPU, we implemented a custom
CUDA-based compilation flow and evaluated it using the
Nvidia CUDA compiler nvcc in version 10.0.130 and an
Nvidia 1080Ti (11GB). Our new flow is up to 90x faster than
the one used in [2].

Regarding throughput, the FPGA-implementations will gen-
erally outperform CPU and GPU, unless data transfer overhead
exceeds a threshold. Examples for this are NIPS5, NIPS10 and
NIPS20. For these, the throughput of the CPU exceeds the cor-
responding throughput of all other implementations. As soon
as the networks become larger, the FPGA-implementations
will outperform CPU and GPU by many times. For the ex-
ample Netflix, the throughput of both FPGA-implementations
is more than 11.4x of CPU and 4.7x of the GPU. Fig. 2 shows
the throughput of all implementations.

Comparing the throughputs of both FPGA-implementations,
only minor differences exist. On average, the more area-
efficient LNS-variants have 1.1% reduced throughput. Note
that GPU and FPGA throughput data includes PCIe data
transfer overhead. Similar to [2], this can be up to 80% of
overall compute time (NIPS20).

VI. CONCLUSION & OUTLOOK

In this work, we have developed a specialized logarithmic
number format for the use in Sum-Product Network inference
and implemented highly efficient, pipelined hardware arith-
metic operators for addition and multiplication. Our hardware
operators seamlessly integrate with the existing framework
developed in [2], which allows to automatically generate fully
pipelined FPGA-accelerators for SPN inference.

We compared our implementation with the existing work
[2] and CPU- and GPU-implementations of SPN inference.
Our evaluation shows that we can maintain sufficient precision

with just 42 bits for the LNS format, whereas the FloPoCo-
operators in prior work use 66 bits, leading to reductions in
logic resource consumption (Slices, DSPs) of up to 50%. At
the same time, we are able to maintain similar performance
to [2], significantly outperforming the GPU- and CPU-based
implementations in thirteen out of sixteen examples.

In the future, we plan to extend the synthesis flow for other
types of queries, such as marginalization.

ACKNOWLEDGEMENTS.
The authors would like to thank Xilinx Inc. for supporting

their work by donations of hard- and software. Additionally,
calculations for this research were conducted on the Lichten-
berg high performance computer of the TU Darmstadt.

Finally, the authors would like to thank Martin Kumm, for
much appreciated discussions of the subject.

REFERENCES

[1] J. Misra and I. Saha, “Artificial neural networks in hardware: A survey
of two decades of progress,” Neurocomputing, 2010.

[2] L. Sommer et al., “Automatic mapping of the sum-product network in-
ference problem to fpga-based accelerators,” in IEEE 36th International
Conference on Computer Design (ICCD), 2018.

[3] L. Sommer et al., “Automatic synthesis of fpga-based accelerators for
the sum-product network inference problem,” in ICML Workshop on
Tractable Probabilistic Models (TPM), 2018.

[4] A. Molina et al., “Mixed sum-product networks: A deep architecture for
hybrid domains,” in Proceedings of AAAI, 2018.

[5] D. M. Lewis, “An accurate lns arithmetic unit using interleaved memory
function interpolator,” in 11th Symp. on Computer Arith.c, June 1993.

[6] ——, “114 mflops logarithmic number system arithmetic unit for dsp
applications,” in Proceedings ISSCC - International Solid-State Circuits
Conference, 1995.

[7] M. Haselman et al., “A comparison of floating point and logarithmic
number systems for FPGAs,” in 13th Annual IEEE Symposium on Field-
Programmable Custom Computing Machines (FCCM’05), 2005.

[8] F. de Dinechin and B. Pasca, “Designing custom arithmetic data paths
with FloPoCo,” IEEE Design & Test of Computers, 2011.

[9] J. Detrey and F. de Dinechin, “A vhdl library of lns operators,” in
Asilomar Conference on Signals, Systems Computers, 2003.

[10] M. Kumm et al., “Resource optimal design of large multipliers for
fpgas,” in IEEE 24th Symposium on Computer Arithmetic, 2017.

[11] P. D. Vouzis et al., “Cotransformation provides area and accuracy
improvement in an hdl library for lns subtraction,” in DSD 2007, 2007.

[12] D. Lowd and J. Davis, “Learning markov network structure with decision
trees,” in IEEE 10th Int. Conf. on Data Mining (ICDM), 2010.

[13] J. Van Haaren and J. Davis, “Markov network structure learning: A
randomized feature generation approach.” in AAAI, 2012.

