
Resource-Efficient Logarithmic
Number Scale Arithmetic for SPN
Inference on FPGAs
Lukas Weber*, Lukas Sommer*, Julian Oppermann*, Alejandro Molina†, Kristian Kersting† and Andreas Koch*
*Embedded Systems and Applications Group, TU Darmstadt, Germany, {weber, sommer, oppermann, koch}@esa.tu-darmstadt.de
†Machine Learning Lab, TU Darmstadt, Germany, {molina, kersting}@cs.tu-darmstadt.de

[1] L. Sommer, J. Oppermann, A. Molina, C. Binnig, K. Kersting, A. Koch, "Automated Mapping of the
Sum-Product Network Inference Problem to FPGA-based Accelerators" in ICCD, 2018
[2] M. Haselman, M. Beauchamp, A. Wood, S. Hauck, K. Underwood, K. S. Hemmert, "A comparison of
Floating Point and Logarithmic Number Systems for FPGAs" in FCCM, 2005

Sum-Product-Networks

• Graphical Models used for representing joint
probabilities

• Inferes exact probabilities in linear time w.r.t.
their size

• Structure:
– A tractable, univariate distribution is an SPN.
(Leaf-Node)

– A product of SPNs over different sets of vari-
ables is an SPN. (Product-Node)

– A weighted sum of SPNs over the same set
of variables is an SPN. (Sum-Node)

+

+

×

x1 x2

×

x1 x2

×

x1 x2 x3

0.6

0.33 0.67

0.4

5pt
Fig. 1: Example of a valid SPN,
capturing the joint probability
distribution of the variables x1,
x2 and x3.

Logarithmic Number Systems

• Number encoding based on logarithmic scale

• Generally: A = (−1)S × 2E, plus additional flags
for zero, special cases

• Inverted complexity compared to floats (addition
is harder, multiplication is easier)

• ZA and SA also act as special-case indicators for
A = 0 and A = 1 respectively.

Name Zero Sign Exponent (fixed point)
Abbr. ZA SA EA
Bit-Width 1 bit 1 bit k bits m bits

Implementation

• Optimized towards probability
values in the range [0, 1]

• Addition uses piecewise
quadratic interpola-
tion for approximating
f(x) = log2(1+ 2

x)

• Parameterized for interpolation
error, integer- and fraction-
bitwidth

• Integrates with the framework
by Sommer et al.

• Generates fully spatial, fully
pipelined design based on tex-
tual description of SPNs

22 21 20 19 18
Interpolation Error (e = 2x)

10 7

10 6

10 5

M
ax

im
um

 E
rro

r (
e m

ax
)

Fig. 2: Overall error in depen-
dence of interpolation error.

Results - Utilization

Acci
de

nts
Aud

io
Netf

lix

MSN
BC20

0

MSN
BC30

0
NLTC

S
Pla

nts
NIPS

5
NIPS

10
NIPS

20
NIPS

30
NIPS

40
NIPS

50
NIPS

60
NIPS

70
NIPS

80

10

0

10

20

30

40

50

Ch
an

ge
 (%

)

Slice
DSP
BRAM

Fig. 3: Changes of percentual utilization of LNS- over FP-variant.

• Slice-utilization is decreased by up to 50% (Geo.-mean 14.6%)

• DSP-utilization is decreased by up to 38% (Geo.-mean 10.8%)

• BRAM requirement is increased, but not critical

Results - Throughput

Acc
idents

Audio

Netfl
ix

MSNBC 200

MSNBC 300

NLT
CS

Plants
NIPS5

NIPS10

NIPS20

NIPS30

NIPS40

NIPS50

NIPS60

NIPS70

NIPS80
0

50

100

150

T
h
ro

u
g

h
p

u
t

(s
a
m

p
le

s/
µ

s)

398.3
CPU
GPU
FPGA-FP
FPGA-LNS

Fig. 4: Throughput including data-transport to and from the device.

• Throughput reduced by 1.1% on average between LNS- and FP-implementations

• FPGA-implementations outperform CPU & GPU by 11.4x (CPU) & 4.7x (GPU)

Conclusion & Outlook

• Up to 4.7x / 11.4x faster than GPU & CPU

• Saves up to 50% of slices, 38% of DSPs

• Throughput is only reduced by 1.1% on average
(vs. FP-baseline)

• Reduced resource-requirement allows mapping of
bigger and more complex SPNs

• Outlook: Extend toolflow towards other query
types (e.g. marginalization) and training of SPNs

https://www.esa.informatik.tu-darmstadt.de/assets/publications/materials/2019/2019_FPT_LW.pdf

