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Sum-Product-Networks

• Graphical Models used for representing joint
probabilities

• Inferes exact probabilities in linear time w.r.t.
their size

• Structure:
– A tractable, univariate distribution is an SPN.
(Leaf-Node)

– A product of SPNs over different sets of vari-
ables is an SPN. (Product-Node)

– A weighted sum of SPNs over the same set
of variables is an SPN. (Sum-Node)
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Fig. 1: Example of a valid SPN,
capturing the joint probability
distribution of the variables x1,
x2 and x3.

Logarithmic Number Systems

• Number encoding based on logarithmic scale

• Generally: A = (−1)S × 2E, plus additional flags
for zero, special cases

• Inverted complexity compared to floats (addition
is harder, multiplication is easier)

• ZA and SA also act as special-case indicators for
A = 0 and A = 1 respectively.

Name Zero Sign Exponent (fixed point)
Abbr. ZA SA EA
Bit-Width 1 bit 1 bit k bits m bits

Implementation

• Optimized towards probability
values in the range [0, 1]

• Addition uses piecewise
quadratic interpola-
tion for approximating
f(x) = log2(1+ 2

x)

• Parameterized for interpolation
error, integer- and fraction-
bitwidth

• Integrates with the framework
by Sommer et al.

• Generates fully spatial, fully
pipelined design based on tex-
tual description of SPNs
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Fig. 2: Overall error in depen-
dence of interpolation error.

Results - Utilization
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Fig. 3: Changes of percentual utilization of LNS- over FP-variant.

• Slice-utilization is decreased by up to 50% (Geo.-mean 14.6%)

• DSP-utilization is decreased by up to 38% (Geo.-mean 10.8%)

• BRAM requirement is increased, but not critical

Results - Throughput
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Fig. 4: Throughput including data-transport to and from the device.

• Throughput reduced by 1.1% on average between LNS- and FP-implementations

• FPGA-implementations outperform CPU & GPU by 11.4x (CPU) & 4.7x (GPU)

Conclusion & Outlook

• Up to 4.7x / 11.4x faster than GPU & CPU

• Saves up to 50% of slices, 38% of DSPs

• Throughput is only reduced by 1.1% on average
(vs. FP-baseline)

• Reduced resource-requirement allows mapping of
bigger and more complex SPNs

• Outlook: Extend toolflow towards other query
types (e.g. marginalization) and training of SPNs

https://www.esa.informatik.tu-darmstadt.de/assets/publications/materials/2019/2019_FPT_LW.pdf

