High-Throughput Multi-Threaded Sum-Product
Network Inference in the Reconfigurable Cloud

Micha Ober, Jaco A. Hofmann, Lukas Sommer, Lukas Weber, Andreas Koch
Embedded Systems and Applications Group, TU Darmstadt, Germany.
{ober, hofmann, sommer, weber, koch} @esa.tu-darmstadt.de

Abstract—Large cloud providers have started to make powerful
FPGAs available as part of their public cloud offers. One
promising application area for this kind of instances is the
acceleration of machine learning tasks.

This work presents an accelerator architecture that uses multiple
accelerator cores for the inference in so-called Sum-Product
Networks and complements it with a host software interface that
overlaps data-transfer and actual computation.

The evaluation shows that, the proposed architecture deployed to
Amazon AWS F1 instances is able to outperform a 12-core Xeon
processor by a factor of up to 1.9x and a Nvidia Tesla V100 GPU
by a factor of up to 6.6x.

Index Terms—FPGA, SPN, Machine Learning, Graphical Models,
Deep Models, Cloud

I. INTRODUCTION

FPGAs have received increasing attention as a potential plat-
form for the implementation of application-specific accelerators
for datacenter-workload in recent years. As a consequence,
large cloud providers have started to make FPGAs available
in their public cloud offers, such as Amazon AWS with the
F1-instances.

Next to genomics research, financial analysis and high-
throughput image and video-processing, FPGAs in the cloud are
also used to solve a wide range of machine learning problems.
Starting with projects such as Microsoft’s Brainwave [1], [2],
FPGAs have established themselves as a platform for the
acceleration of machine learning tasks, next to GPUs and
custom ASICs such as Google’s TPU [3].

While much of the existing work on the acceleration of ML
tasks on FPGAs has been devoted to neural networks, e.g., for
speech recognition or image classification using convolutional
neural networks (CNN), a completely different problem is
tackled in prior work such as [4], [5], namely the inference in
so-called Sum-Product Networks (SPN).

Sum-Product Networks are one of the first models from
the class of Probabilistic Graphical Models that can provide
tractable inference, and, in contrast to neural networks, compute
exact probability values. This difference also poses interesting
challenges to the hardware implementation with regard to
the arithmetic precision, and many optimization techniques
often employed for the mapping of neural networks to FPGA

accelerators, such as weight quantization, cannot be applied to
Sum-Product Networks [4].

Yet, the evaluation in the prior work has shown some promising
results, with a pipelined datapath architecture and memory
interface outperforming CPUs and a Tensorflow-based GPU-
implementation of SPN-inference [5].

This work aims at extending the existing framework to
efficiently map and run the inference in Sum-Product Networks
on the publicly available FPGA cloud-offer Amazon AWS FI.

We present the following contributions:

« An extension to the open-source SoC generation frame-
work TaPaSCo [6] to support Amazon AWS F1. TaPaSCo
is then used to automatically generate all infrastructure
necessary to run the proposed accelerators on F1 and
provides convenient software interfaces.

o The existing SPN accelerator generator is extended to
allow for concurrent execution of multiple accelerators,
promising better resource utilization through overlapping
processing and memory transfers.

o The software infrastructure is improved to incorporate the
parallel execution and preloading of data.

The paper is structured as follows: In Section II, background on
Sum-Product Networks is given. Section III shows the existing
framework for the acceleration of SPN inference on FPGAs.
Section IV describes the accelerators, the implementation of
support for Amazon AWS F1 instances in TaPaSCo, and the
extensions to the existing framework and software interface.
In Section V, three different SoC-architectures are evaluated
with regards to their FPGA implementation. Additionally, the
FPGA’s performance is compared with a CPU- and GPU-
based implementation of SPN-inference. Finally, Section VI
concludes this paper and gives an outlook to future work.

II. SUM-PRODUCT NETWORKS

Sum-Product Networks (SPN) [7] are a type of models from the
class of Probabilistic Graphical Models (PGM), which have
received increasing attention in recent time. PGMs capture
statistical information and relations over the variables in a
dataset. By using probabilistic queries, PGMs can then be used
to solve a wide range of machine learning problems, such as
classification or regression. They can also be used to derive

statistical properties, such as marginals or conditionals, for a
given dataset and input values. For instance, on the NeurIPS
corpus, they can be used to compute the probability of different
words to occur with a certain frequency in a text.

In contrast to neural networks, which are the currently domi-
nating models in the machine learning (ML) domain, PGMs
are capable of computing exact probability values. However,
earlier approaches to probabilistic graphical models, such as
Bayesian Networks or Markov Random Fields, suffer from the
fact that the inference in unrestricted PGMs is intractable in
general.

But Sum-Product Networks overcome this limitation and com-
bine the ability to compute exact probabilities with tractable
inference in linear time with respect to the network size
[8]. SPNs not only allow to efficiently solve classification or
regression problems, but can also be used to calculate additional
properties of the underlying probability distribution, such as
entropy or mutual information. Examples for the use of SPNs in
real-world applications include classification of the characters
in a handwritten sequence [9], or path planning algorithms for
mobile robots [10]. Because SPNs compute exact probabilities,
they are also able to express uncertainty over their output in
such applications (e.g. in sequence labeling), a capability not
present on neural networks.

A. Model Representation

Sum-Product Networks capture the joint probability distribution
over a set of random variables as a rooted, directed acyclic
graph (DAG), with three different kinds of nodes:

o Leaf nodes represent univariate distributions. For an
efficient mapping to the FPGA, these can be represented
using histograms.

o Product nodes correspond to a factorization over indepen-
dent distributions, and are therefore always defined over
different scopes (i.e., random variables).

o Weighted sum nodes represent a mixture of multiple
distributions over the same scope as a convex combination.

An example for a valid Sum-Product Network, which captures
the joint probability P(z1, z2,x3) for three random variables,
is given in Fig. 1.

B. Learning

Similar to many other machine learning models, the structure
and parameters of a Sum-Product Network can be learned from
training data. As a brief introduction, a short description of the
top-down learning algorithm proposed by Molina et al. [11]
follows. Next to this algorithm, a number of other approaches
to learn the structure and/or parameters from data exists.

The algorithm’s recursive base case is reached, if only a single
variable is left. In this case, the algorithm learns a histogram
representing the univariate distribution of this variable.

04 0.6

off

Fig. 1: Example of a valid Sum-Product Network, capturing
the joint probability distribution of the variables x;, x2 and
xIs3.

If more than one variable is still left to process, the algorithm
tries to find independent sets of variables using a pair-
wise, parametric independency test. If the test succeeds, a
product node is created and the algorithm recurses on the
independent sets. If the independence test fails, the training
data is partitioned using clustering. This induces a weighted
sum node, where the weights correspond to the normalized,
proportional size of the associated clusters.

This work focuses on the inference process in a given,
previously trained and optimized SPN. Therefore, learning
of the SPN structure can happen offline on a traditional CPU.

C. Inference

As stated earlier, SPNs can be used to compute a range of
different probabilistic queries to solve different ML problems,
such as multi-class classification. However, independent of the
actual probabilistic query, the inference process boils down to
a bottom-up evaluation of the SPN graph with given (partial)
evidence. By indexing the histogram, the probability value
associated with the given evidence for the input variable can
be determined. These probability values are then propagated
upwards through the tree. At product nodes, the probabilities
for the different child nodes are multiplied. In case of a sum-
node, the probabilities are first multiplied with the associated
weight and then summed up. Eventually, at the root node of
the SPN, the inference process will yield a single probability
value as the answer to our probabilistic query.

This work focuses on the computation of joint probabilities,
which corresponds to a single evaluation of the SPN with full
evidence per input sample. However, the datapath architecture
could easily be extended to support other kinds of probabilistic
queries on SPNs, for example to compute marginals, where
the histograms for the marginalized variables are replaced by
the value 1. With the value for joint probability and the result
from a marginalized evaluation, conditional probabilities can

easily be computed as P(Y|X) = 7?9{ ;)().

III. PRIOR WORK

To the best of our knowledge, the work we presented in [4], [5]
is the only work to date on the acceleration of SPN inference
on FPGAs. The goal of the prior work was the acceleration
of the computation of the joint probability over the variables
represented by an SPN by its evaluation, and was done by
processing small batches of input samples with high throughput.

To this end, an automatic flow that maps textual representations
of SPNs to fully custom datapaths is already available as a
result of the prior work. The generated datapath for an SPN
captures the computation tree represented by the SPN and is
completely pipelined by using a fully spatial implementation,
where each operation in the SPN tree directly corresponds to
a hardware operator in the datapath. For the hardware operator
implementation the FloPoCo framework [12] is used, with
a format similar to IEEE-754 double precision (apart from
subnormals).

The automatically generated datapath is supplied with data
through a pipelined memory infrastructure. The memory
infrastructure uses AXI4 burst requests to supply the datapath
with a continuous stream of input data from the DDR3-memory
attached to the FPGA and writes back results to memory. In
both the load- and store-unit, a MIMO (Multi-in-Multi-out)
unit is used to translate between the external AXI4 datawidth,
and the internal input- and result bitwidth of the datapath,
respectively.

The open-source TaPaSCo-framework [6] is used to integrate
the accelerator core into a heterogeneous system. The automatic
SoC composition capability of TaPaSCo can be used to
automatically connect the accelerator(s) to the FPGA’s external
memory and the PCle-based host interface. Using the TaPaSCo
software API, execution of the accelerator(s) can be controlled
and data, such as, input & results, can be transferred between
host memory and FPGA external memory.

IV. EXTENSION FOR HIGH-THROUGHPUT INFERENCE

This work builds on the automatic mapping flow from [5]
to generate pipelined datapaths for SPNs. In the current
work, generated datapaths are coupled with a completely
new memory infrastructure, designed from the ground up to
support the simultaneous execution on multiple accelerator
cores, and concurrent data-transfers from/to the host. Beyond
that, to incorporate the necessary infrastructure, the open-source
TaPaSCo framework has been extended to support Amazon
AWS FI1 instances, and provided with a new multi-threaded
SWe-interface for simultaneous SPN inference.

Accordingly, the following sections describe the two necessary
steps: (1) Extend TaPaSCo with AWS capabilities. (2) Ensure
multi-threading compatibility by implementing a new, high-
performance memory infrastructure to feed the datapath.

A. Extending the TaPaSCo Framework for the Reconfigurable
Cloud

Amazon’s first generation FPGA instances actually run in
a virtualized environment, with only limited access to the
hardware. Amazon uses the partial reconfiguration feature to
split the area of the Virtex UltraScale+ FPGA into an user
accessible area (called custom logic) and the so-called Shell.
The Shell is provided by Amazon as an encrypted design
checkpoint and acts as an interface between the custom logic
and the external peripherals such as the PCI Express interface
or memory. A DMA engine for data transfer between host
and FPGA is provided by the Shell in the form of the Xilinx
XDMA 1IP core. However, TaPaSCo’s own DMA engine is
used here, as it achieves better throughput and requires fewer
driver changes to be used.

The Shell provides up to 16 MSI based interrupts that can be
used by the developer. TaPaSCo, however, requires more than
16 interrupts for optimal performance. A custom interrupt
controller is thus used to translate between the needs of
TaPaSCo and the interfaces of the AWS Shell. The interrupt
controller has a FIFO buffer on each interrupt input and
an additional input for ACK signals coming from the Shell.
Furthermore, interrupts are ACKed from the host to avoid
situations where the interrupt service routine is already active,
which would result in dropped interrupts.

Each FPGA on an F1 instance has access to up to four channels
of ECC DDR4 memory, each with a size of 16 GiB. One
channel is provided by a MIG memory controller inside the
Shell, while the MIGs for the other three channels are placed
inside the custom logic. The developer can decide how many
memory channels are enabled, offering the possibility to trade-
off between a larger number of memory channels, and the
available area on the device.

Amazon does provide an Amazon Machine Image (AMI)
for FPGA development, which includes all required Xilinx
tools and licenses. For users, owning the required licenses, on-
premise development is supported as well. In both cases, the
design flow ends with a design checkpoint containing both the
custom logic and the Shell. This design flow differs in many
ways from any existing flow in TaPaSCo, as it includes writing
out checkpoints for the custom logic, adding the checkpoint
of the Shell to the project, linking the custom logic and Shell
together, or adding a top-level wrapper provided by Amazon.
The Amazon design flow has now been integrated into TaPaSCo,
so a final checkpoint is created together with a mandatory
manifest file, which are then both sent to Amazon servers.
There, in an automated process, the submitted checkpoint is
verified to not contain any combinatorial loops or unrouted
nets. On success, the bitstream can be referenced by a globally
unique identifier, which can in turn be used to load the bitstream
into a device.

As Amazon limits the power draw of the FPGA to 85 watts
by gating the clock to the custom logic should this limit

SPN Core 1 SPN Core 1 SPN Core 1 SPN Core 1
Xilinx AXI14 a =

Xilinx MIG

(a) Multi-core architecture with single memory interface.

(b) Multi-core architecture with four independent memory
interfaces.

Fig. 2: Multi-core SoC architectures with multiple SPN accelerator cores.

be exceeded, clocking was another important topic when
integrating the F1 platform into TaPaSCo. The Shell provides up
to three different clock groups with different, but not arbitrary
frequencies. As the design space exploration of TaPaSCo
requires the design frequency to be varied in 5 MHz steps, an
additional clock generator (MMCM) is used. The placement
of that MMCM is tricky, however, as it cannot be placed near

the Shell’s MMCM, as this area is not accessible to user logic.

This suboptimal placement of the clocking resources put some
additional constraints on the design to optimize timing. For
example the internal logic of all AXI Interconnects is always
clocked by the Shell’s main clock, even if the design clock is
faster.

B. Improvements of the Accelerator Architecture

The existing memory infrastructure in the previous work was
clearly designed to provide the maximum memory throughput
in a scenario with only a single accelerator and where the
execution of a job would not start before the previous job
had completed. As a result, the prior load infrastructure would
completely occupy the AXI4-bus by having a high number of
transfers with maximum burst length in flight, ensuring that a

continuous stream of input data gets supplied to the datapath.

On the other side of the accelerator, the data store unit did not
buffer many results, but would instead use long-lasting burst
requests, occupying the AXI4 write-channel for a long time.

This behavior is problematic, as the accelerator presented
in this work executes inference on multiple SPN instances
simultaneously, which requires overlapping of data transfer
with accelerator execution.

First, the large number of incomplete memory transactions
can lead to deadlocks with the simultaneous execution of
multiple accelerators: If one core is blocked from writing
because another core is occupying the write channel, it will not
be able to complete potentially incomplete read transactions
due to back-pressure in the datapath. If the core occupying the
write channel is blocked from reading due to the first core’s
outstanding read request, it won’t be able to compute the results
necessary to complete the write request, effectively resulting
in a deadlock.

The occupation of the write channel is problematic for another
reason: TaPaSCo uses a DMA engine to transfer data from

the host memory to the FPGA’s external memory. However,
if the memory interface’s write channel is occupied by the
accelerator for a long time span, the DMA engine cannot
execute the transfer, forcing computation and data transfer to
effectively execute sequentially.

To overcome this problem, a completely new memory infras-
tructure for the accelerator is implemented. In the course of
the re-design, the input MIMO unit was moved to the datapath,
in order to unify the interface of the accelerator core across
different Sum-Product Networks.

The new load interface has fewer incomplete transfers in flight,
and now uses an internal buffer that allows to store a substantial
amount of input data. A new request is only issued if all data
that will be loaded in the course of this request can be buffered
internally. In this manner, it can be ensured that even if in
the presence of back-pressure from the store interface, all
incomplete load requests can be completed to avoid deadlocks.
Additionally, this buffer allows the accelerator to continue its
computation for some time, even if the current load request
incurs some delay.

The store interface is also redesigned to be able to buffer results
for a complete burst request internally. Only after enough results
for a complete burst request have been calculated, a new write
request is issued. Because all write data is available, the write
request can be completed in the shortest time possible, not
only avoiding deadlock, but also allowing the TaPaSCo DMA
engine to transfer data in parallel to the computation in the
accelerator cores.

C. SoC Architecture

The TaPaSCo-framework, with the extensions described in
Section IV-A, is able to automatically construct and generate
SoC-designs for the F1 FPGA instances provided by Amazon
AWS. The AXI4 slave interface of the accelerator core, which
is used for control signalling (e.g., launch execution) is attached
to the PCle-based host interface. The AXI4 master interfaces of
each core are automatically connected to the memory interface
of the FPGA’s external DDR-memory via a shared bus. As
described in the previous section, the SPN accelerator core
uses a single AXI4 master interface to read and write data and
results from/to external memory.

The obligatory Shell environment provided by Amazon as part
of the AWS F1 HDK by default contains a single interface to
FPGA external memory. For the baseline architecture a single
SPN accelerator core is connected to this interface via AXI4,
allowing the accelerator core to read and write data from/to
the external memory. As described in the previous section,
the load/store interface of the accelerator is re-designed in a
way that allows to operate the DMA-unit used by TaPaSCo to
transfer data from host memory to FPGA memory concurrently
to the accelerator.

Although this baseline architecture is already a fully functional
accelerator for SPN inference, further improvements to the
throughput can be made: The vast amount of hardware
resources available on the Xilinx Virtex UltraScale+ devices,
with which the AWS FI1 instances are equipped, allows
multiple instances of the SPN accelerator cores, which can
compute multiple inferences simultaneously. In the multi-core
architecture, depicted in Fig. 2a, up to four SPN accelerator are
connected to the memory interface via a shared bus. Due to the
changes made to the memory infrastructure (see Section IV-B),
the different cores can now operate concurrently on the same
bus.

However, depending on the number of input values of the SPN
and the memory bandwidth requirement that goes along with
that (remember that the datapath architecture is fully pipelined
and can process a new sample in every clock cycle), the single
interface to memory can become a bottleneck. To overcome this
limitation, and fully exploit the memory bandwidth provided by
the four independent memory banks on the Virtex UltraScale+
device, and additional three more memory interfaces can be
used. Just as in the multi-core architecture, up to four SPN
accelerator cores are connected to the four memory interfaces
via an AXI4 SmartConnect, depicted in Fig. 2b. Note that
as long as the four accelerator cores access distinct memory
regions located on the different memory banks, they can be
served simultaneously through the SmartConnect, so this bus
infrastructure will not become a bottleneck.

D. Multi-threaded Software-Interface

The existing host software uses the TaPaSCo software API to
launch the entire computation in a single, large job. However,
to fully exploit the available throughput, the software interface
needs to reflect the multi-core architecture in the FPGA-
hardware and launch multiple, independent jobs that execute
concurrently on the different SPN accelerator cores.

Although it would be sufficient to launch four independent jobs
in different threads, there are more improvements to be had:
In the prior work, the overhead for transferring data between
host- and FPGA-memory turned out to be relatively large and
contributed significantly to the overall execution time.

Therefore, a goal is to extend the software interface to allow
overlapping of computation on the SPN accelerator cores
and data transfer to reduce the overall execution time of

—| Preload | | Compute [|Copy results
Block n Block n Block n Thread w
Preload Compute |_|Copy results
Block n+1 Block n+1 Block n+1 Thread x
—| Preload | | Compute [|Copy results
Block k Block k Block k Thread y
Preload Compute |_|Copy results
Block k+1 Block k+1 [| Block k+1 Thread z

Fig. 3: Block-wise execution overlapping actual computation
and data-transfer between host- and FPGA-memory.

SPN inference. The computation is split into independent
blocks (chunks), which can be independently preloaded. Fig. 3
shows how computation and data transfer are overlapped with
this change: While block n is computed on the FPGA SPN
accelerator core 1, the input data for block n+1 is concurrently
transferred to the FPGA memory by another thread. As soon as
the computation of block n is completed, the computation for
block n + 1 can start, while the results for block n are copied
back to host memory. At the same time, the same execution
scheme can be used for another block of samples on another
SPN accelerator core.

This execution scheme is implemented based on the TaPaSCo
software API using OpenMP on the host, the block size
and number of threads are configurable parameters for the
host software. As described in the previous section, it is
important that the different SPN accelerator cores operate on
distinct memory regions located on different memory banks.
To ensure this behaviour, each host thread has fixed device
memory addresses to evenly distribute the workload across the
different SPN accelerator cores in the multi-core architectures
(cf. Fig. 2).

V. EVALUATION
A. Benchmarks

The approach is evaluated through a set of eight different
benchmark SPN models derived from the NeurIPS corpus [13],
which has also been used before for evaluation purposes in

[4], [5].

The SPN networks derived from the NeurIPS corpus capture
statistical properties about the number of occurrences (fre-
quency) of different words in the texts contained in the corpus.
Using inference in this networks, it is for example possible to
compute the probability that certain words each occur with a
specific frequency in a text.

The increasing number of inputs of the networks in the
benchmark make them particularly interesting for the evaluation:
Not only does the required memory bandwidth increase with
the number of inputs, but also the size of the SPN networks

NIPS10 - 1 MIG - 1 PE - 410 MHz

Type

NIPS10 - 1 MIG - 4 PE - 370 MHz

=== BRAM

NIPS10 - 4 MIG - 4 PE - 290 MHz

NIPS20 - 1 MIG - 1 PE - 395 MHz

mam CLB
mmm DSP

NIPS20 - 1 MIG - 4 PE - 300 MHz

NIPS20 - 4 MIG - 4 PE - 250 MHz
NIPS30 - 1 MIG - 1 PE - 380 MHz

NIPS30 - 1 MIG - 4 PE - 250 MHz

NIPS30 - 4 MIG - 4 PE - 250 MHz

NIPS40 - 1 MIG - 1 PE - 390 MHz

NIPS40 - 1 MIG - 4 PE - 250 MHz

NIPS40 - 4 MIG - 4 PE - 200 MHz

Example

NIPS50 - 1 MIG - 1 PE - 375 MHz

NIPS50 - 1 MIG - 4 PE - 200 MHz

NIPS50 - 4 MIG - 3 PE - 200 MHz
NIPS60 - 1 MIG - 1 PE - 365 MHz

NIPS60 - 1 MIG - 4 PE - 250 MHz

NIPS60 - 4 MIG - 3 PE - 220 MHz
NIPS70 - 1 MIG - 1 PE - 330 MHz

NIPS70 - 1 MIG - 3 PE - 200 MHz

NIPS70 - 4 MIG - 2 PE - 200 MHz

NIPS80 - 1 MIG - 1 PE - 290 MHz

NIPS80 - 1 MIG - 3 PE - 150 MHz

NIPS80 - 4 MIG - 2 PE - 160 MHz

0% 20 %

I I I I
40 % 60 % 80 % 100 %

Percent of Resource Used

Fig. 4: Utilization of the main FPGA resources on the AWS F1 instances. The designs are mainly limited by available CLBs.
DSPs and BRAM play a minor role in the overall resource requirements. A high CLB utilization results in difficult routing and

a tendency for lower clock frequencies.

themselves increases, leading to more computational demand
and, with the fully spatial implementation of the datapaths,
also more FPGA resource consumption.

All the following performance evaluations have been performed
using a dataset containing ten million samples per benchmark.

B. FPGA Implementation

The FPGA resource usage and implementation results are
evaluated by implementing each of the three different SoC-
architectures described in Section IV-C for each of the
benchmarks on the xcvu9pflgh2104-2 FPGA, with which
the Amazon AWS F1 instances are equipped. Xilinx Vivado
version 2018.3 and TaPaSCo version 2019.10 (pre-release),
extended as described in Section IV-A, are used. All reported
numbers are taken from the post-place&route reports generated
by Vivado. The resource usages for each SoC-architecture
and each benchmark are given in Fig. 4. For brevity, the
numbers are given relative to the number of available resources.
For reference, the VU9P FPGA has in total 148 x 103 CLB,
2 x 10> BRAM and 7 x 10° DSP.

Even with a single memory interface and only one SPN
accelerator core, the design already requires a significant
amount of logic resources (CLB), partially also due to the
obligatory AWS Shell and basic platform components (e.g.,
PCle interface). However, there is still sufficient headroom left

to implement multiple SPN accelerator cores. The operating
frequencies for this configuration reach up to 410 MHz.

The resource usage increases noticeably for the first multi-
core architecture, which uses up to four SPN accelerator cores
coupled with a single memory interface. For the two largest
networks, NIPS70 and NIPS80, only three accelerator cores
fit onto the FPGA device. The DSP usage correlates linearly
to the number of SPN accelerator cores, but for the other
two kinds of resources, the relative increase is much smaller:
Logic resources (CLB) required increase just by a factor 1.5x
to 2.13x, and only between 1.2x and 1.4x more BRAMs are
used. The higher resource usage also results in a noticeable
degradation of the operating frequency, with this configuration
the highest achievable frequency is 370 MHz.

When using four memory interfaces in the multi-core ar-
chitecture, the available resources limit the number of SPN
accelerators that can be implemented for some examples:
For NIPS50 and NIPS60 only three cores fit the device
and for NIPS70 and NIPS80 only two cores can be placed.
Regarding the resource usage, the increase compared to the
baseline architecture with one core and one memory interface is
comparable to the first multi-core architecture. The number of
DSPs used scales linearly with the number of SPN accelerator
cores, CLBs increase by factor 1.6x to 2.2x and BRAM usage
increases by 1.43x to 1.6x. The direct comparison of the two
multi-core architectures shows that the additional memory
interfaces only consume a relatively small number of resources.

However, with four memory interfaces, three of them are
implemented in the custom logic. Here, timing closure can
become problematic. The achievable frequency drops by 30%-
50% across all benchmarks, partly because of the high resource
usage (more than 80% of logic resources for most examples)
and the IO-restricted locations for the memory interfaces.

C. Performance Evaluation

In this section, the performance of the three different architec-
tures is compared to CPU- and GPU-based implementations.
Furthermore, the FPGA-implementations have different choices
for block-size and number of threads to determine the optimal
configuration (cf. Section IV-D). For brevity detailed charts
have been omitted. For most benchmarks, a block-size of
400,000 samples per block, and three to four host software
threads per SPN accelerator result in the best performance.

1) CPU Baseline: For the CPU baseline, a custom C++
compilation flow is used, sharing some of the infrastructure
(intermediate representation, parser) of the datapath generator.
The flow automatically generates optimized C++ code for
each example and invokes the compiler (gcc) with flags —03
and -ffast-math. To efficiently parallelize the workloads,
the data-set is split into blocks, which can be processed
concurrently using OpenMP with twelve threads on a 12-core
Xeon E5-2680 v3 CPU of the Lichtenberg high-performance
computing cluster.

2) GPU Baseline: The evaluation in prior work [5] showed
that Tensorflow, tailored towards standard neural networks, is
not able to efficiently map the inference in SPNs to GPUs.
Therefore, for a fair comparison, a custom, optimized CUDA
compilation flow, again based on the common infrastructure
we developed, is used. Within each block, the processing of
samples is parallelized across the available GPU processing
units. Eight threads on the host CPU are utilized to parallelize
processing of blocks. The evaluation is done on the top-end
Nvidia Tesla V100 GPUs available in the Amazon AWS cloud
with CUDA version 9. The evaluation shows that our custom
SPN-to-CUDA compilation flow improves the throughput by
a factor of up to 109x (geo.-mean 96x) over the original
Tensorflow-based mapping.

3) Performance Comparison: Fig. 5 shows the throughput
of the CPU- and GPU-baseline and the three different SoC-
architectures.

Even though the performance of the GPU-baseline improves up
to factor of 109x over the old Tensorflow-based baseline, the
GPU is still left behind and provides the least throughput. The
computational density of the SPN inference in the examples
is not sufficient to compensate for the data-transfer overheads
and fully exploit the GPU’s computational power. This can
also be seen in our observation that the GPU performance is
almost independent of the SPN network size.

In contrast, the CPU performance is highly dependent on the
network size, and decreases as the number of operations in
the SPN’s tree increases. Still, for small examples, the CPU
provides the best throughput of all architectures, since it does
not incur data transfer overheads.

The baseline FPGA-architecture with a single SPN accelerator
core and memory interface is outperformed by the CPU for the
examples up to NIPS30, but for larger networks, the pipelined
processing yields significant speedups of up to factor 1.6x (geo.-
mean 1.01x) over the CPU, and 4.6x over the GPU (geo.-mean
4.3x).

Despite using up to four cores with only a single memory inter-
face, the first multi-core architecture is also able to outperform
the CPU by a factor of up to 1.47x (geo.-mean 0.99x) for larger
examples and the GPU by a factor of up to 5.15x (geo.-mean
4.23x) on all examples. The overall performance is slightly
lower compared to the single-core architecture due to the
operating frequency drop (cf. Section V-B) and the saturation
of the memory interface. Therefore, the DMA transfers of data
from/to host and computation effectively happen sequentially,
leading to a degradation in performance, in particular for the
larger examples.

With up to four SPN cores and four distinct memory interfaces
in the second multi-core architecture, the FPGA is already
on par with the CPU for NIPS20 and even more significant
speedups can be observed for all bigger networks. The speedup
reaches as high as 1.9x over CPU (geo.-mean 1.28x) and 6.6x
over GPU (geo.-mean 5.47x).

When directly comparing the baseline FPGA-architecture with
the second multi-core architecture with up to four SPN cores
and four distinct memory interfaces, it can be seen that the
performance advantage decreases for the larger networks.
Whereas the relative speedup of the multi-core architecture is
1.7x for NIPS10, it decreases to only 1.15x for NIPS80. This
is due to the fact that four SPN cores do not fit on the device
for the larger examples (cf. Section V-B), and the high penalty
on the lowered operating frequency incurred when using four
distinct memory interfaces. Note that this is most likely an
artifact specific to the AWS F1 system architecture. Still, this
multi-core architecture is the best performing FPGA accelerator
architecture.

VI. CONCLUSION & OUTLOOK

This work presents an accelerator architecture, based on a
framework developed in prior work, for the efficient inference
of so-called Sum-Product Networks on FPGA instances in the
cloud based Amazon AWS FI instances.

The open-source TaPaSCo-framework has been extended
to support Amazon AWS F1 instances, enabling automatic
SoC generation based on the proposed accelerator including
integration into a heterogeneous system.

x 108

6 — === CPU Lichtenberg (12T)

V100 AWS (8T)

- = _| —— F1- 1PE (IMIG)

25

s —— F1 - 4PE (1MIG)

&U) === F1 - 4PE (4MIG)

-

(]

o

0

S

Q

£

T

2]

> & L L H S L
FF S
Example

Fig. 5: Samples processed per second by the CPU, GPU and
the FPGA architecture for increasing problem sizes. For very
small problem sizes, the CPU is faster as the transfer overhead
to PCIE-based accelerators is dominant. However, for larger
problem sizes, the FPGA pulls ahead. The GPU cannot keep
up with either of the other two competing approaches.

To make use of the resources available on the FPGA-instances,
three different architectures have been investigated that allow
concurrent processing on multiple accelerator cores. This
required a re-design of the accelerator memory interface
compared to prior work. Lastly, the accelerator architecture is
complemented with a multi-threaded host software interface
that is able to efficiently overlap data-transfer and actual
computation in order to improve end-to-end execution times.

The evaluation shows that the developed architectures are able
to outperform a 12-core Xeon CPU and a Tesla V100 GPU
by up to a factor of 1.9x and 6.6x, respectively.

In the future, we plan to extend the mapping toolflow with
the ability to share operators between multiple operations in
the SPN graph, allowing us to map even bigger networks to
FPGAs.

The extension to the TaPaSCo-framework developed in the
course of this work will also become an official part of the
TaPaSCo open-source release on Github [14]. Just as any
other platform in the TaPaSCo-framework, the AWS support
will allow to automatically compose a SoC-design around any
accelerator core with a suitable AXI4-interface and connect to
it from the host CPU via the TaPaSCo software API.

ACKNOWLEDGEMENTS.

The authors would like to thank Xilinx Inc. for supporting their
work by donations of hard- and software. Calculations for this
research were conducted on the Lichtenberg high performance
computer of TU Darmstadt.

Finally, the authors would like to thank Kristian Kersting
and Alejandro Molina, for much appreciated discussions of
the subject, as well as extensive insight into the matter of
Sum-Product Networks.

REFERENCES

[1] E. Chung, J. Fowers, et al., “Accelerating Persistent
Neural Networks at Datacenter Scale,” in Hot Chips 29:
A Symposium on High-Performance Chips, 2017.

[2] K. Freund, Microsoft: FPGA Wins Versus Google TPUs
For Al https://www.forbes.com/sites/moorinsights/2017/
08/28/microsoft-fpga-wins- versus- google- tpus-for-ai,
Accessed April 5, 2018, 2017.

[3] N. P. Jouppi, C. Young, N. Patil, D. Patterson, et al., “In-
datacenter performance analysis of a tensor processing
unit,” in 44th Annual International Symposium on
Computer Architecture, ISCA 2017, ACM, 2017.

[4] L. Sommer, J. Oppermann, A. Molina, C. Binnig, K.
Kersting, and A. Koch, “Automatic synthesis of fpga-
based accelerators for the sum-product network infer-
ence problem,” in ICML 2018 Workshop on Tractable
Probabilistic Models (TPM), 2018.

[5] L. Sommer, J. Oppermann, A. Molina, C. Binnig,
K. Kersting, and A. Koch, “Automatic mapping of
the sum-product network inference problem to fpga-
based accelerators,” in 2018 IEEE 36th International
Conference on Computer Design (ICCD), Oct. 2018,
pp- 350-357. por1: 10.1109/ICCD.2018.00060.

[6] J. Korinth, J. Hofmann, C. Heinz, and A. Koch, “The
tapasco open-source toolflow for the automated compo-
sition of task-based parallel reconfigurable computing
systems,” in Applied Reconfigurable Computing, 2019.

[7] H. Poon and P. Domingos, “Sum-Product Networks: a
New Deep Architecture,” Proc. of UAI 2011.

[8] R. Peharz, S. Tschiatschek, F. Pernkopf, and P. Domin-
gos, “On theoretical properties of sum-product networks,”
in Proc. of AISTATS, 2015.

[9] M. Ratajczak, S. Tschiatschek, and F. Pernkopf,

“Sum-product networks for sequence labeling,” CoRR,

vol. abs/1807.02324, 2018. arXiv: 1807.02324.

A. Pronobis, F. Riccio, and R. P. Rao, “Deep spatial

affordance hierarchy: Spatial knowledge representation

for planning in large-scale environments,” in ICAPS

2017 Workshop on Planning and Robotics, 2017.

A. Molina, A. Vergari, N. Di Mauro, S. Natarajan,

F. Esposito, and K. Kersting, “Mixed sum-product

networks: A deep architecture for hybrid domains,” 2018.

F. de Dinechin and B. Pasca, “Designing custom arith-

metic data paths with FloPoCo,” IEEE Design & Test

of Computers, Jul. 2011.

D. Dua and C. Graft, UCI machine learning repository,

2017. [Online]. Available: http://archive.ics.uci.edu/ml.

TaPaSCo framework on Github, https://github.com/esa-

tu-darmstadt/tapasco, 2019.

[10]

