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Abstract We present SpExSim, a software tool for quickly surveying legacy
code bases for kernels that could be accelerated by FPGA-based compute
units. We specifically aim for low development effort by considering the use
of C-based high-level hardware synthesis, instead of complex manual hard-
ware designs. SpExSim not only exploits the spatially distributed model of
computation commonly used on FPGAs, but can also model the effect of two
different microarchitectures commonly used in C-to-hardware compilers, in-
cluding pipelined architectures with modulo scheduling. The estimations have
been validated against actual hardware generated by two current HLS tools.

Keywords reconfigurable computing · FPGA · hardware acceleration ·
high-level synthesis · estimation · legacy code

1 Introduction

With improvements in semiconductor technology no longer translating into
direct gains in compute performance, alternatives to conventional out-of-order
superscalar processors are receiving more attention from users. In recent years,
this has been especially true for computing on Graphics Processing Units
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(GPU), which are now in common use for handling regular (array and vector-
based) computations.

However, as not all computations map efficiently to GPUs (e.g. irregular
algorithms, dealing, for example, with sparse or graph-based data structures),
further alternatives are being considered. This includes not only Many-Core
processors such as the Intel Xeon Phi or Kalray Bostan 1, but also the use of
reconfigurable computing units.

A key hindrance in successfully using FPGA-based reconfigurable com-
puting, however, is the fact that only very few application programmers are
familiar with the techniques required to design an accelerator for such a sys-
tem.

As an alternative, high-level hardware synthesis tools (HLS) [3] aim to
enable the automatic creation of digital circuits from high-level descriptions.
Despite the many advances in the field, the use of HLS tools often requires
significant rewriting of the code to make it compatible with the tools’ require-
ments (e.g. no pointer operations or variable-bounded loops) or to improve
performance (e.g. by using loop unrolling). When FPGAs are to be employed
as general-purpose accelerators, either in reconfigurable system-on-chips [19],
or in data centre computing [14], developers need to be able to survey large
legacy code bases to discover promising areas for “easy” HLS-based accelera-
tion on FPGAs.

The traditional approach would be to profile the application to discover
“hot spots” in the code and then optimise these parts of the program. However,
due to the clock speed difference, not all code is well suited for acceleration on
the FPGA. The FPGA will increase performance in most cases only if a high
degree of finely granular parallelism, called instruction-level parallelism (ILP),
is present in the code.

On a processor, a computation containing these operations would be exe-
cuted in a temporally distributed fashion, re-using a limited number of hardware
units, whereas the computing paradigm commonly used on FPGAs relies on
the spatial distribution of the computation: In code with a high degree of ILP,
operations can be mapped to dedicated hardware units operating in parallel,
with the high degree of compute parallelism allowing the FPGA to compensate
the clock frequency difference to the hard-wired CPU.

Quickly surveying large code bases for such acceleration potential thus
requires a tool that actually takes the spatial computing nature of the FPGA
into account. This becomes even more complex due to the fact that the same
computation can be realised in many different microarchitectures on an FPGA.

We therefore present SpExSim, a software tool that can quickly analyse
large code bases to determine which kernels are interesting for FPGA accel-
eration using HLS. In general, a kernel is a region of the input code that
has a significant influence on the overall runtime of a given application, and
therefore would potentially benefit from hardware acceleration. SpExSim not
only estimates the spatially distributed execution times for each kernel, it also

1 http://www.kalrayinc.com/kalray/products/#processors
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considers two different micro architectural models used by current HLS tools
for its analysis. The Blockwise model is employed, e.g. by LegUp [1], while the
Pipeline model is used in Nymble [7]. As will be seen in the evaluation (Sec-
tion 6), different kernels might map better to one or the other of the execution
models.

We do not claim that SpExSim can accurately predict actual speed-ups
of FPGA implementations, as attempting this would have to take too many
variables (including e.g. detailed models of the memory hierarchy) into ac-
count. Also, it would require a full high-level tool flow, which in itself can
take minutes to hours (e.g. when using advanced loop pipelining using modulo
scheduling). Instead, our tool is intended to quickly guide developers to focus
their manual examination on very specific areas of the code in order to exploit
FPGA-based compute accelerators.

2 Related Work

Sotomayor et al. [17] recently presented AKI, a tool to detect hotspots in
an application and classify their potential to be parallelised and mapped to a
heterogeneous computing system (consisting of CPUs, GPUs and FPGAs), ac-
cording to static source code metrics. In contrast, SpExSim combines dynamic
profiling and static analysis and is tailored specifically to analyse the amount
of fine-grained parallelism in sequential algorithms that can be exploited by
high-level synthesis for FPGAs.

Performance modelling for FPGAs has been addressed by a number of ap-
proaches [18,16,13,6]. These approaches typically employ an analytic model to
predict different performance characteristics, such as computational through-
put, memory bandwidth, or hardware area for the FPGA-based implementa-
tion of a given algorithm. The aim of these tools is to aid the developer in
improving an FPGA implementation of an algorithm by providing up-front
estimations of performance impacts caused by different optimisations, such as
loop unrolling or memory coalescing.

However, none of these tools guides the developer in selecting parts of an
software-only application for hardware/software co-execution. SpExSim, in
contrast, was designed to identify the parts of an application most suitable for
FPGA-based hardware acceleration in a heterogeneous system, based on the
existing software source code.

3 Estimation of Spatial Execution

The proposed analysis is based on the comparison of the estimated runtime of
kernels when executed with different execution models. We currently consider
all loops to be potential kernels. However, our approach could be restricted to
perform the runtime estimation only on loops preselected by other analyses,
or could be extended to operate on a broader range of single-entry regions,
e.g. a mix of loop and non-loop code marked by user specified pragmas.
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3.1 Representation of kernels

Compiler frameworks targeting general purpose processors traditionally utilise
a control flow graph (CFG) as an intermediate representation (IR) for opti-
misations and as input to the code generation subsystem. The CFG is also
the usual starting point for high-level synthesis (HLS) systems, as these rely
heavily on existing compiler frameworks from the software domain. Being a
common element in the two types of compilation flows we want to compare,
the CFG is the ideal IR to define our analysis on.

The nodes of a CFG are basic blocks, i.e. sequences of RISC-like operations
without control-flow changes, whereas the graph’s edges represent the control
flow transitions between the blocks. In Figure 1b), the CFG for the example
loop in Listing 1a) is shown, consisting of two basic blocks.

3.2 Execution models

Starting from the CFG, typical HLS-systems construct another IR, which is
then used for the synthesis of the hardware accelerator. In SpExSim we provide
a model for the two most common choices of IRs used in HLS, the Blockwise
model and the Pipeline model. The following sections describe both models in
detail.

3.2.1 Blockwise model

In Figure 1b), BB2 contains much instruction-level parallelism, as not all
subexpressions depend on each other. In order to exploit this fine-grained
intra-block parallelism by a blockwise spatial execution on an FPGA, this
parallelism is expressed by a distinct dataflow graph (DFG) per block (as op-
posed to the per-function/per-kernel representation in the pipeline model).
Each operation is mapped to an individual hardware operator module.
In the DFG, a number of precedence constraints has to be represented by
edges:

– An operation can start only after all its operands have been computed.
This precedence is ensured by the dataflow edges.

– The schedule has to preserve the order of memory accesses in the pres-
ence of flow, anti and output dependencies. We use LLVM’s alias analysis
framework to determine whether a given pair of memory accesses poten-
tially operates on the same memory location, and add a precedence edge
accordingly.

– We conservatively handle calls to other functions like barriers, and intro-
duce precedence edges for memory accesses and other calls that come before
or after them.

An example for the Blockwise model is shown in Figure 1c). Note that itera-
tions j and j + 1 and blocks BB1 and BB2 are still executed sequentially, but
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BB2

BB1

load a[i] load b[i]

…

mul mul mul

add shl 1

add

store c[i]

1

add

if not i<N: exit

load a[i] load b[i]

mul mul mul

add shl 1

add

store c[i]

1

if not i<N: exit
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c) Blockwise model 

d) Pipeline model 

load a[i] load b[i]

mul mul mul

add shl 1

add

store c[i]

1

add

if not i<N: exit

load a[i] load b[i]

mul mul mul

add shl 1

add

store c[i]

if not i<N: exit
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j
Ite

ra
tio
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…

BB2ai  = load a[i]

bi  = load b[i]

asq = mul ai, ai

ab  = mul ai, bi

ab2 = shl ab, 1

s1  = add asq, ab2

bsq = mul bi, bi

s2  = add s1, bsq

store c[i], s2

i = phi 0, inc

inc = add i, 1

BB1

if not i<N: exit

b) Control Flow Graph

for (i = 0; i < N; ++i) {
  c[i] = a[i]*a[i]
       + a[i]*b[i]*2
       + b[i]*b[i];
}

a) Example code

Fig. 1: Execution of two subsequent iterations of an example loop, according
the presented execution models
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the computation inside the blocks is much shorter due to the spatial execution,
resulting in an earlier completion time of j + 1.

3.2.2 Pipeline model

In the same example, the loop iterations are mostly independent - the incre-
ment of the loop counter is the only inter-iteration dependency. This makes
the kernel amenable to loop pipelining, i.e. issuing a new iteration after a fixed
amount of time, the so-called initiation interval (II), ideally before the current
iteration completes. As a consequence, the iterations of the loop are partially
overlapped, as shown in Figure 1d).
Loop pipelining requires the presence of an inter-block dataflow graph cover-
ing the entire loop [4], which may also expose more ILP than was available
in the per-block DFGs in the Blockwise model. Each graph in the resulting
hierarchical set of so-called control-dataflow-graphs (CDFG) comprises not
only the operations in the loop and special operations for each nested loop,
but must also incorporate the loop’s controlflow, as the CFG-structure of the
loop is fully resolved in a CDFG. Control flow is therefore represented by
conditional dataflow and by adding predicates to operations that may not be
executed speculatively (e.g. memory accesses). Different branches in the CFG
are expressed as parallel dataflows, where the length of all dataflows must be
balanced.

The constructed graph again has to model a number of precedence con-
straints:

– An operation can start only after all its operands have finished. This prece-
dence is ensured by the dataflow edges.

– The schedule has to handle intra-iteration flow, anti and output depen-
dencies between all pairs of memory accesses. We use LLVM’s dependence
analysis to determine whether such dependencies are present, and add the
appropriate precedence edges.

– We conservatively handle calls to other functions and starts of nested loops
like barriers, and introduce precedence edges for memory accesses, other
calls and nested loops that come before or after them.

Note that for brevity in Figure 1d), control-flow predicates are not shown.
In addition to the intra-iteration dependencies, due to the overlapping execu-
tion of loop iterations, we need to consider inter-iteration dependencies from
earlier iterations as well. These dependencies occur naturally in the compu-
tation of loop-dependent values, like incrementing the iteration variable of a
for-loop. However, memory accesses may contribute such dependencies as well,
for example, when a memory location is read in one iteration after it was writ-
ten in the previous iteration. We query LLVM’s dependence analysis for these
inter-iteration dependencies and record them. Conservatively, we assume that
all dependencies have to hold between immediately neighbouring iterations.
Inter-iteration dependencies are represented by backedges in the CDFG.
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3.2.3 Scheduling

Now that we have obtained a set of graphs for each of our models, we need to
assign a starting time top to each operation op to assess the overall latency of
a block or loop, respectively. Besides the precedence constraints represented
by edges in the graphs, the scheduler has to adhere to a number of additional
constraints:

– Resource constraints: Often the maximum number of concurrent opera-
tions of a kind is constrained in HLS systems. For example, the number
of available ports to memory is typically limited. We therefore introduce
resource constraints, limiting the maximum number of concurrent accesses
to memory in each clock cycle.

– Operator chaining: In HLS, a sequence of operations can be scheduled to
the same clock cycle, if their overall combinatorial latency does not exceed
the maximum clock period. We model this HLS optimisation technique
using simple weight-based approach: Each operation is assigned a weight
based on the expected combinatorial latency of the operation. The sched-
uler is then allowed to chain a sequence of operations, as long as their
accumulated weight does not exceed a user-defined, per-cycle maximum
weight.

Another information required by the scheduler is the number of time steps
that an operation op needs to complete, which we define as latency(op). In
Section 4 we discuss how this parameter is determined.
For the resource-constrained scheduling of the graphs, we implement a list-
scheduler, which provides us with a sufficient quality of scheduling results in
reasonable time. Our list-scheduler uses a mobility-based priority function,
where the mobility of each node is computed from the as-soon-as-possible
(ASAP) and the as-late-as-possible (ALAP) schedules [12].
While the list-scheduler obeys all inter-iteration dependencies, it violates the
resource constraints in case multiple iterations of a loop are overlapped. To
counter this, we additionally provide an implementation of theMoovac-scheduler
[11], a modulo-scheduler optimising the II for maximum overlap. This makes
better use of the pipelining opportunities in the kernel, resulting in an earlier
completion of the entire loop.

3.3 Estimation

We now present a kernel runtime estimation based on the execution models
introduced in the previous section. The basic idea is to compute a numerical
value (in an abstract time unit) that shall be interpreted as the execution time
of each block or loop, and then multiply it with a factor representing how often
a given block or loop is executed in a typical run of the program.

To this end, we determine the execution frequency βB for each basic block
B by dynamic profiling, as discussed in Section 4. Note that the operations
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in a basic block are always executed together. We therefore do not need to
determine how often each individual operation is typically executed, but can
use the enclosing block’s execution frequency to the same end.

3.3.1 Blockwise model

In order to estimate the runtime of a kernel K in the Blockwise model, we
use the schedule we have computed for each block’s DFG as discussed in the
previous section. The estimated execution time EFPGA_bw(B) for a basic block
B is equal to the time when the last operation finishes.

EFPGA_bw(B) = max
op∈B

(top + latency(op)) (1)

The runtime estimation EFPGA_bw(K) for a kernel K is then computed as the
weighted sum of its blocks’ execution times.

EFPGA_bw(K) =
∑
B∈K

βB · EFPGA_bw(B) (2)

3.3.2 Pipeline model

In order to estimate how amenable a loop L is for pipelining, we use the II and
operation start times top resulting from the CDFG’s schedule, as discussed in
Section 3.2.

Body

Header

Preheader

a

Latch

Latch

aa
Exit

Exit

Fig. 2: Basic blocks of interest in a loop L

Let P be L’s preheader block, i.e. a unique predecessor block to the actual
loop header, and let latches(L) denote the loop’s latch blocks, i.e. the blocks
that end with a branch back to L’s header block, as shown in Figure 2. Then

navg(L) =

 ∑
B∈latches(L)

βB

 /βP (3)

is the average number of iterations for the loop, computed as the ratio of
accumulated latch block execution frequencies βB over the preheader’s execu-
tion frequency βP . This is an approximate measure of the times the program
jumped back to the loop header over the times the loop was started.
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For a single start of L, we know that the last iteration is started after navg−1
initiation intervals, and one complete execution of the datapath is needed
before the loop is finished. Thus:

EFPGA_pl, single(L) = (navg(L)− 1) · II + (max
op∈L

top + latency(op)) (4)

To get the execution time estimation EFPGA_pl(L) for the loop L, we multiply
the single start runtime estimation EFPGA_pl, single(L) by the number of starts,
as expressed by the preheader’s execution frequency βP :

EFPGA_pl(L) = βP · EFPGA_pl, single(L) (5)

A kernel might have an arbitrarily complex acyclic part A that is executed
only once. We also construct a CDFG for this acyclic part, schedule it, and
account for its execution time with:

EFPGA_pl(A) = max
op∈A

(top + latency(op)) (6)

Putting it all together, the Pipeline model’s estimate EFPGA_pl(K) for a kernel
K is:

EFPGA_pl(K) =

 ∑
L∈loops(K)

EFPGA_pl(L)

+ EFPGA_pl(A) (7)

4 Implementation

LLVM [9] is a state-of-the-art compiler framework on which both academic
and commercial high-level synthesis systems [10] are based. Its intermediate
representation LLVM-IR is a viable environment for our proposed analysis
tool. The level of abstraction in LLVM-IR resembles that of assembly code for a
generic RISC processor. The basic blocks of a function are explicitly organised
in a CFG. All functions as well as any global variables of a compilation unit,
e.g. the input program, are grouped together in a module, which is the top-
level construct in LLVM-IR. Loops are not modelled explicitly in the IR, but
can be discovered by a built-in analysis pass.

SpExSim consists of 1) a modified version of LLVM’s C frontend clang
that annotates loops with their source file name and the line number on which
the loop statement begins, and 2) a standalone tool linking against the LLVM
libraries. Within this tool, we implemented the estimations according to the
execution models as well as the kernel extraction and our proposed instrumen-
tation/profiling infrastructure (as presented in the next sections) as custom
passes. These passes rely on the analyses (e.g. loop discovery, alias and depen-
dence analysis) and transformation utilities available in the LLVM framework.
Furthermore, we allow the user to apply all available optimisation passes to
the input program by forwarding the corresponding command line parameters
to LLVM’s built-in optimisation driver.
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4.1 Kernel extraction

In order to apply the full range of LLVM optimisations, but limited to the
scope of individual loops, these kernels are extracted into separate functions.

Kernels can be nested directly (e.g. a loop inside another loop) or indirectly
(e.g. a loop inside a function that is called from within another loop). In both
cases, the kernels should be extracted in a top-down fashion, i.e. beginning
with the outermost ones. With this order, at the time a kernel K is estimated,
no other kernel inside or transitively called from within K has been extracted,
ensuring that the estimation results will be the same as if K was the only
kernel in the program.

4.1.1 Depth

We found it useful to assign a nesting depth dK to each kernel K, in order to
specify the extraction order before actually extracting the kernels. We perform
a top-down walk of the call graph, i.e. visiting all callers of a function bar()

before visiting bar(), starting at the main() function. For every function, we
determine an initial depth as the maximum depth of its call sites, or 0 in case
of the main function. Then, we walk the loop tree inside the current function,
increasing the depth for each kernel we encounter. Alongside the walk, we
remember the maximum nesting depth among all kernels as dmax.

4.1.2 Successive extraction

For each nesting depth d ∈ {1, . . . , dmax} we generate a new intermediate
version of the program by extracting the kernels K with dK = d based upon
the previous extraction step. A copy of this intermediate version can then be
arbitrarily optimised prior to the estimation step, without influencing the next
extraction step.

Figure 3 illustrates this process. From left to right, the successive extrac-
tion, based on the discovered depth property, is shown. The module stays
executable in all intermediate steps, making it possible to instrument and run
it at any time.

4.2 Latencies

In order to schedule the graphs, we need to determine the latency of each
operation, i.e. the number of time steps needed for an operation’s completion.
We deduced a realistic latency model from different sets of latency parame-
ters used in existing HLS systems, e.g. Legup or Nymble. The latency model
associates each operation with a latency, e.g. a single-precision floating point
multiplication takes 8 cycles in the Nymble model. Operations may have a
latency of zero, e.g. combinatorial operations such as integer additions, and
several pseudo operations (e.g. type casts) that are needed for the consistency
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depth = 1

depth = 3

depth = 2

depth = 3

depth = 2

depth = 3

void bar() {
  … 
  for (…) {
    …
  }
  …
}

void foo() {
  …
  for (…) {
    …
    for (…) {
      …
      bar();
      …
    }
    …
  }
  …
}

int main() {
  foo();
  return 0;
}

void bar() {
  … 
  for (…) {
    …
  }
  …
}

void foo() {
  …
  extr.kernel.14(…); 
  …
}

int main() {
  foo();
  return 0;
}

void extr.kernel.14(…) {
  for (…) {
    …
    for (…) {
      …
      bar();
      …
    }
    …
  }
}

void bar() {
  … 
  for (…) {
    …
  }
  …
}

void foo() {
  …
  extr.kernel.14(…); 
  …
}

int main() {
  foo();
  return 0;
}

void extr.kernel.14(…) {
  for (…) {
    …
    extr.kernel.23(…);
    …
  }
}

void extr.kernel.23(…) {
  for (…) {
    …
    bar();
    …
  }
}

void bar() {
  … 
  extr.kernel.9(…);
  …
}

void foo() {
  …
  extr.kernel.14(…); 
  …
}

int main() {
  foo();
  return 0;
}

void extr.kernel.14(…) {
  for (…) {
    …
    extr.kernel.23(…);
    …
  }
}

void extr.kernel.23(…) {
  for (…) {
    …
    bar();
    …
  }
}

void extr.kernel.9(…) {
  for (…) {
    …
  }
}

a) Depth discovered b) Depth 1 extracted c) Depth 2 extracted d) Depth 3 extracted

Fig. 3: Kernel depth and successive extraction

of the IR, but do not result in actual hardware. Function calls are accounted
for with the estimation for the called function, or are associated with a fixed
cost in case the callee is external or unknown.

4.3 Execution frequencies

The execution models require that an execution frequency βB is available,
estimating how often each basic block B, and therefore each operation, is
executed in a typical run of the input program. The frequencies are always
scaled to represent how often a block is executed on average during a single
activation of its parent function F . For example, a block B that is part of a
conditional branch is usually not executed every time F is called, resulting
in βB < 1. On the other hand, if B is part of a loop, it will potentially be
executed multiple times during an activation of F , resulting in βB > 1.

To acquire these frequencies, we designed our own simple instrumentation
framework based on inserting counters in each basic block. Inserting the instru-
mentation code at the IR level allows us to account for all transformations that
were applied to a kernel. This mechanism delivers exact execution frequencies,
at the slight disadvantage common to all dynamic profiling approaches that
these are tied to a particular set of runtime parameters.

5 Model validation

In order to confirm the validity of our execution models, we now compare the
estimations computed by the SpExSim tool to cycle counts obtained by RTL
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Fig. 4: Relative errors in estimated cycle counts (compared to simulated
HLS-generated hardware) for benchmarks from the CHStone suite

simulation for actual hardware accelerators generated by the HLS tools LegUp
4.0 [1] and Nymble [7].

Note that the execution models only apply to the actual computation, and
SpExSim intentionally does not try to model tool-specific properties besides
the employed microarchitecture, such as the memory/cache architecture (e.g.
[8]) or additional delays inherent to the controller implementation. However,
these omitted properties can have a large impact of the simulated cycle counts,
so for the sake of this comparison, we created two specialised versions of our
tool to mimic LegUp and Nymble as closely as possible.

HLS tools usually leverage common functionality from software compiler
frameworks for analysing and optimising the input program. We observed that
variations in this preprocessing step, i.e. the LLVM version as well as the
selection and order of applied passes, had great influence on the accuracy of
the estimations. To this end, we tapped into the HLS tools’ compilation flows
and invoked SpExSim on the intermediate representation of the program just
before the actual synthesis step.

We use benchmark applications from the CHStone suite [5] that come with
pairs of golden inputs and outputs. The estimations are based on the exact ex-
ecution frequencies that are obtained by our custom instrumentation method,
and correspond to a single execution of the respective application with these
predefined inputs.

LegUp For the comparison with LegUp, we compiled and simulated the CH-
Stone benchmarks with LegUp’s pure hardware flow that translates the entire
program, i.e. its main() function, to an RTL description. Accordingly, we in-
structed SpExSim to perform the estimation for the main() function as the
only kernel. We also mimic LegUp’s loop unrolling behaviour by using the
same threshold value of 192.
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During the estimation, we limit the scheduler to place chains of up to 4
combinatorial operations into a time step. Additionally, the scheduler obeys
the limit of at most two concurrent memory accesses per time step as imposed
by the memory system generated by LegUp. Depending on the scope (e.g.
“global” or “local”) a memory location is accessible from, reading from memory
takes either 1 or 2 cycles [2]. We enhanced our latency model to respect this
by approximating the actual partitioning algorithm with a simple heuristic.

Nymble Nymble expects the user to add #pragmas to the source code to specify
which part of the program should be compiled to a hardware description, and
extracts this region into a separate function. All function calls within the scope
of the hardware #pragmas are fully inlined into the hardware function. We let
SpExSim perform the estimation on this hardware function.

We deactivated the cache simulation that is normally used in the simula-
tion environment for Nymble-generated accelerators, and instead assume that
memory accesses finish within a single clock cycle. The number of concurrent
memory accesses is limited to 1 load and 1 store per clock cycle. As in the
LegUp-specific SpExSim version, chains of up to 4 combinatorial operations
are placed into a single time step.

As Nymble is not yet able to exploit the modulo schedules as computed by
the Moovac algorithm to the same extent as the Pipeline model in SpExSim,
we use the list schedulers in both systems and do not apply loop pipelining
in this validation. This setup still allows us to show that the estimation of
a loop’s single-iteration latency conforms to its actual execution within the
generated accelerator.

The plot in Figure 4 shows the relative errors of the Blockwise estimation
compared to the simulation of a LegUp-generated hardware accelerator, and
the Pipeline estimation compared to a Nymble-generated hardware module.
The geometric mean of the absolute values of the errors is 2.26 % for the
Blockwise model, and 7.31 % for the Pipeline model. Please note that for the
largest relative errors (dfmul/Blockwise, dfadd, motion/Pipeline), the absolute
difference between estimation and simulation is less than 300 cycles.

6 Results

Now that we have successfully validated our estimation for both execution
models in the previous section, we now discuss SpExSim’s use to survey large
codebases for HLS-opportunities in greater detail. For heterogeneous plat-
forms, it is common to only extract compute-intensive parts of a program to
the hardware accelerator, so we present estimation results per kernel. To this
end, we introduce the notion of a significant kernel, which we define as a loop
whose execution makes up for at least 20% of the overall program execution
time.
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Testcase Nesting Source Testcase Nesting Source
depth location depth location

adpcm 1 adpcm.c:850 dfmul 1 dfmul.c:137
adpcm.c:846 dfsin 1 dfsin.c:173

aes 1 aes_dec.:116 gsm 1 lpc.c:134
blowfish 1 bf.c:840 mips 1 mips.c:139
dfadd 1 dfadd.c:215 motion 0 main
dfdiv 1 dfdiv.c:144 sha 1 sha.c:210

Table 1: CHStone kernel characteristics

As described in Section 4, we successively extract kernels at an increasing
nesting depth from the input program, in order to find the sections of code
most suitable for HLS. For the purpose of this evaluation we then identify
the nesting depth with the highest number of significant kernels, allowing us
to study the input program at the finest level of granularity possible. Tables
1 and 2 list the significant kernels for the applications from the CHStone [5]
and MachSuite [15] benchmark suites and give the respective nesting depths
at which the kernels have been extracted.

For each significant kernel we compute two characteristics: The Spatial
factor 2 gives the speed-up of a spatial execution in the blockwise model over
a purely sequential execution and indicates the possible improvement resulting
from the spatial distributed computing paradigm used on FPGAs. The Pipeline
factor 3 on the other hand reports the speed-up of a pipelined execution in the
Pipeline model over the execution in the Blockwise model and characterises a
program’s suitability for loop pipelining.

Figure 5 gives the resulting factors for all significant kernels extracted from
input programs from the CHStone and MachSuite benchmark suite. These esti-
mates were computed by SpExSim, which optimised the kernels with LLVM’s
presets -O3 and -std-link-opts, but neither used loop unrolling nor inlining.
The schedulers were parameterised to allow one concurrent load and store
operation each, and chained up to 4 combinatorial operations in one time
step. For the Pipelined model, actual modulo schedules were computed by the
Moovac scheduler [11] with a time limit of 2 minutes per scheduling attempt.

The results indicate that all significant kernels would benefit from a spa-
tially distributed execution model. On top of that, SpExSim estimates that 9
kernels would benefit from an accelerator that uses a pipelined microarchitec-
ture. Note that in order to compute the speedup of the Pipeline model over the
sequential execution, one needs to multiply the Spatial factor with the Pipeline
factor, e.g. for stencil/2d, the estimated speedup (disregarding clock-frequency
differences) is 3.22 · 1.58 = 5.09.

2 Spatial factor = Exec.-Time(Sequential)
Exec.-Time(Blockwise)

3 Pipeline factor = Exec.-Time(Blockwise)
Exec.-Time(Pipeline)
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Testcase Nesting Source Testcase Nesting Source
depth location depth location

aes 1 aes.c:191 md/grid 1 md.c:16
backprop 1 backprop.c:264 md/knn 1 md.c:24
bfs/bulk 0 main nw 1 nw.c:30
bfs/queue 0 main sort/merge 1 sort.c:38
fft/strided 1 fft.c:8 sort/radix 1 sort.c:84

fft/transpose 1 fft.c:244 spmv/crs 0 main
1 fft.c:127 spmv/ellpack 0 main

gemm/blockeed 1 gemm.c:15 stencil/stencil2D 1 stencil.c:7
gemm/ncubed 1 gemm.c:8 stencil/stencil3D 0 main

kmp 1 kmp.c:31 viterbi 1 viterbi.c:18

Table 2: MachSuite kernel characteristics
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Fig. 5: Factors for applications from CHStone and MachSuite

7 Conclusion

We have introduced SpExSim as a tool to quickly survey large legacy code
bases, searching for kernels potentially profiting from a low development ef-
fort mapping to an FPGA using C-based high-level synthesis. The tool targets
a spatially distributed and a pipelined model of computation based on es-
timations for two different hardware microarchitectures. The estimations for
both microarchitectures have been validated to lie within 2.26% and 7.31%
respectively. As our evaluation showed, many high-level language programs
contain regions of code suitable for HLS. The interesting kernels discovered by
SpExSim can then be manually examined for additional optimisation poten-
tial (e.g. adding performance-enhancing HLS directives), yielding even further
speedups.
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