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Loop pipelining is an essential technique in high-level synthesis (HLS) to increase the throughput and resource
utilisation of FPGA-based accelerators. It relies on modulo schedulers to compute an operator schedule that
allows subsequent loop iterations to overlap partially when executed, while still honouring all precedence and
resource constraints. Modulo schedulers face a bi-criteria problem: minimise the initiation interval (II), i.e. the
number of time steps after which new iterations are started, and minimise the schedule length.

We present Moovac, a novel exact formulation that models all aspects (including the II minimisation) of the
modulo scheduling problem as a single integer linear program (ILP), and discuss simple measures to prevent
excessive runtimes, to challenge the old preconception that exact modulo scheduling is impractical.

We substantiate this claim by conducting an experimental study covering 188 loops from two established
HLS benchmark suites, four different time limits, and three bounds for the schedule length, to compare our
approach against a highly-tuned exact formulation and a state-of-the-art heuristic algorithm. In the fastest
configuration, an accumulated runtime of under 16 minutes is spent on scheduling all loops, and proven
optimal IIs are found for 179 test instances.
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1 INTRODUCTION
In contrast to software-programmable processors, which in the past have relied on increasing clock
frequencies and in recent years switched to coarse-grain parallelism (multi-/many-core), field-
programmable gate arrays (FPGA) focus on exploiting fine-grained instruction-level parallelism1

to achieve high performance. A high-level synthesis (HLS) system that creates FPGA-based acceler-
ators from sequential languages such as C must thus exploit all available sources of parallelism in
order to achieve a meaningful speed-up compared to the execution on a software-programmable
processor having a higher clock rate. One such source of parallelism is loop pipelining2: the par-
tially overlapping execution of subsequent loop iterations intended to increase the accelerator’s
throughput and the utilisation of the functional units within the datapath corresponding to the
loop’s computation. To this end, new loop iterations are started after a fixed number of time steps,
called the initiation interval (II).
Let T be the latency of the datapath representing the loop body. Executing n iterations of the

loop sequentially then takes n ·T time steps. Assuming that the loop’s inter-iteration dependences
allow it to be executed with an initiation interval λ < T , then executing n iterations will require
only (n − 1) · λ +T time steps, i.e. the last iteration is issued after (n − 1) · λ time steps and ends
after the T time steps to fully evaluate the result of the datapath. This means that the smaller the
interval is relative to the latency of the datapath, the higher is the theoretical speed-up achievable
through loop pipelining.

HLS-generated datapaths typically have to obey certain resource constraints, such as the number
of requests a memory controller can handle in parallel. Additionally, operations relying on scarce
FPGA resources, such as multipliers (called DSPs or DSP slices), might have to be time-multiplexed
between different uses in the datapath. We call the operations requiring these constrained hardware
blocks resource-limited operations.
After an initial warm-up time, a loop’s datapath executes operations from different iterations

in parallel. Therefore, it is no longer sufficient that an operation schedule fulfils the resource
constraints just individually for each time step. With the overlap, the constraints now have to hold
for entire congruence classes of time steps (step number modulo II).

Computing a (preferably small) feasible II and the associated operation schedule is called modulo
scheduling. The corresponding mathematical problem that minimises the II is NP-hard [21].

This paper makes the following contributions to the field.
• We present Moovac3, an exact formulation in the sense that it models all aspects of the
problem defined in Section 2.1, allowing it to compute an optimal solution. To the best of
our knowledge, Moovac is the first formulation based on integer linear programs (ILP) to
integrate the search for the optimal II, but is also competitive in a traditional, one-candidate-
II-at-a-time setting. Moovac delivers high-quality results faster than both a state-of-the-art
heuristic scheduler and a prior, highly-tuned ILP formulation.

• We investigate strategies to improve the practicability of exact modulo scheduling, namely
employing different time limits and upper bounds for the schedule length. In this context, we
propose improvements to an existing bound that lead to significantly better schedule length
estimates. The effects of the different time limits and bounds on the schedulers’ runtime and

1Technically, this is operator-level parallelism, as computations are typically mapped to datapaths comprised of intercon-
nected operator modules.
2In the context of VLIW processors, the equivalent technique is usually called “software pipelining”.
3“Moovac” is an acronym for “Modulo overlap variable constraint”.
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Table 1. Problem signature for modulo scheduling

Input
O = {1, . . . ,n} operations
Di ∈ N0 delay / latency of operation i ∈ O (in time steps)

E = {(i→j)} ⊆ O ×O dependence edges
di j , βi j ∈ N0 edge delay, and dependence distance, of (i→j) ∈ E
δi j = Di + di j sum of edge’s delay and its source operation’s delay

R = {mem, dsp, . . . } resource types
ak ∈ N available instances of resource type k ∈ R
Lk ⊆ O resource-limited operations of type k ∈ R
L =

⋃
k ∈R Lk union of all resource-limited operations

λ⊥, λ⊤ ∈ N lower bound and upper bound to the II search space

Output
λ◦ ∈ N a feasible initiation interval for the graph
ti ∈ N0, i ∈ O start time for operation i
Tλ◦ = maxi ∈O {ti + Di } schedule length for λ◦

solution quality are evaluated in an extensive experimental study covering 188 loops from
two HLS benchmark suites.

A preliminary version of this work appeared as [24].

2 BACKGROUND
We will now formally define the modulo scheduling problem (MSP) and present prior scheduling
approaches.

2.1 The modulo scheduling problem
The MSP is characterised by the signature in Table 1.

Input. The input comprises a directed graph consisting of a set of operations i ∈ O (nodes)
with a fixed integer latency of Di , and a set E ⊆ O × O of directed edges (i→j) modelling the
dataflow and other precedence relations among the operations. The edges carry a delay di j . We
define δi j = Di + di j to denote the sum of an edge’s delay and its source operation’s delay.
In addition to the usual intra-iteration dependences, a loop may contain inter-iteration depen-

dences, also known as recurrences or loop-carried dependences. As the latter dependences point
in the opposite direction of the normal dataflow, we also call them backedges. In order to handle
both types of dependences uniformly, each edge is associated with a dependence distance βi j
that specifies how many iterations later the dependence has to hold. Intra-iteration dependences
therefore have βi j = 0, whereas inter-iteration dependences are characterised by βi j ≥ 1.
The operations O are carried out on resources (e.g. logic gates, DSPs, memories . . . ), of which

some types, but not all, are limited in number4. Let R be the set of distinct resource types, whose
4While in reality all resources are limited, some, e.g. logic gates, can be meaningfully considered unlimited on current
FPGAs.
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Fig. 2. Modulo schedule for λ = 3 with T3 = 7

usage has to be limited when scheduling. We assume that every resource type k ∈ R provides ak
uniform and fully-pipelined instances that can accept new input data from at most one operation
at any time. This means that at most ak operations scheduled to start in time steps in the same
congruence class (modulo II) can use resources of type k concurrently.
We further assume that every operation requires at most one limited resource of type k . We

represent these resource-limited operations as members of the respective sets Lk . For brevity, we
define L to be the set of all resource-limited operations.

Lastly, the search space for feasible and practically relevant IIs is bounded by the parameters λ⊥
(lower bound) and λ⊤ (upper bound), which are explained in Section 2.2.

Figure 1 illustrates a complete MSP instance that will serve as a running example. It contains
three operations 7 , 9 and 11 (distinguished by their dark border) that compete for access to
the single instance of resource type q, as well as two backedges ( 7 → 11 ) and ( 12 → 10 ) with a
backedge distance of 1. If not stated otherwise, the operations have a delay of 1, and edges do not
incur a propagation delay.

Output. We seek an initiation interval λ◦ and an integer start time ti for each operation, so that
all dependence edges are honoured, i.e.

ti + δi j ≤ tj + βi j · λ
◦ ∀(i→j) ∈ E, (1)

and no resource type is oversubscribed in any congruence class (modulo II), i.e.

|{i ∈ Lk : ti mod λ◦ =m}| ≤ ak ∀k ∈ R andm ∈ [0, λ◦ − 1]. (2)

For any feasible interval λ, the start times imply the schedule length Tλ = maxi ∈O {ti + Di }, i.e. the
time step in which the last operation finishes. In particular, we are interested in the schedule length
Tλ◦ corresponding to the computed interval λ◦. The schedule length is conceptually equivalent to
the latency of the datapath and the makespan of the problem graph.

Figure 2 shows a valid modulo schedule for the running example with an initiation interval of 3.
The operations’ start times ti can be read off the column representing the first iteration. Observe
that the backedge ( 12 → 10 ) is obeyed under the overlapping, and at any given time step, only
one of the resource-limited operations is active.
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Objective. Modulo scheduling is a bi-criteria optimisation problem. The first objective is to find
the smallest II that satisfies (1) and (2). We refer to the optimal II according to this objective as
λ⋆. The second objective is to find a schedule for an interval λ with the minimal schedule length,
denoted by T⋆

λ .

In practice, minimising the II is far more important than minimising the schedule length, which
implies an order of the objectives. To this end, the overall aim is to lexicographically minimise the
tuple S = (λ◦,Tλ◦ ). The optimal solution to the MSP then is a schedule with S⋆ = (λ⋆,T⋆

λ⋆).

2.2 Bounds for the II search space
Modulo schedulers typically consider one or more candidate IIs during their operation. The search
space for sensible II values is defined by the following bounds.

A trivial upper bound λ⊤ is the length of any resource-constrained non-modulo schedule. IIs larger
than this value indicate that it would actually be faster to execute this loop in a non-overlapping
manner. We use a non-modulo SDC scheduler [7] with heuristic resource constraints to quickly
compute such a fallback schedule, and use its length to define λ⊤.

The lower bound λ⊥ is usually defined (e.g. in [25]) as λ⊥ = max(λ⊥rec, λ⊥res), i.e. the maximum of
the recurrence-constrained minimum II and the resource-constrained minimum II. Due to (1), the
recurrences (cycles) in the dependence graph impose a lower bound for any feasible II. We compute
λ⊥rec as the optimal solution to the following ILP5, defined for integer variables ti that model the
start time step for each operation i , and an integer variable λ that models the recurrence-induced II
to be minimised.

min λ (3)
s.t. ti + δi j ≤ tj + βi j · λ ∀(i→j) ∈ E (4)

The resource-constrained minimum II is defined as λ⊥res = maxk ∈R
⌈
|Lk |
ak

⌉
and follows from (2).

It is an application of the pigeonhole principle: A candidate interval λ cannot be feasible if the
loop contains more operations using a limited resource k than can be assigned to the available
resource instances in every modulo slot 0 . . . (λ − 1). Recall that we assume the operations itself to
be fully-pipelined, meaning that they are able to accept new input values in every time step.

In the running example, we determine λ⊥ = 3: the recurrence spanned by backedge ( 12 → 10 )
leads to λ⊥rec = 3. Also, we have λ⊥res = 3 due to the presence of three resource-limited operations
competing for access to one instance of type q. In this particular example, a simple as-soon-as-
possible schedule has a length of 6 and can serve as a valid resource-constrained non-modulo
schedule. Thus, we set λ⊤ = 6.

2.3 Operator chaining
The scheduling problem at hand is defined in terms of time steps. The operations in a loop’s
datapath will be started according to their assigned start time step by a controller circuit that is
also generated by the HLS tool.

Every combinatorial operation i (these operations haveDi = 0) instantiated on the FPGA requires
a non-zero amount of physical propagation time zi (e.g. in nanoseconds) to complete. Typically, a

5As noted by de Dinechin [8], this is a resource-free cyclic scheduling problem, which can be solved optimally in polynomial
time.
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HLS tool maintains a desired target cycle time Z for the datapath, which limits the time that can be
spent in a single time step. Operations in different time steps are decoupled by registers that hold
intermediate results.

However, not all operations require the same amount of time, e.g. logical operations and constant
bit shifts are trivial to perform on an FPGA, and have zi ≪ Z . This allows HLS tools to schedule a
chain of data-dependent operations into a single time step, as long as the accumulated physical
delay of the operations in the chain does not exceed the desired cycle time.

We support operator chaining by allowing chainable operations i ∈ O with Di = 0, and construct
additional edges to prohibit excessive chaining right before the actual scheduling. The basic idea is
to discover the longest (in terms of physical delay) combinatorial paths χu1up = (u1, ...,up ) with
Dul = 0 ∀1 ≤ l ≤ p between all pairs of a chainable operations u1 and up . Let ζu1up =

∑
i ∈χu1up

zi be
the accumulated physical delay along such a path. IfZ < ζu1up ≤ 2·Z ,u1 andup cannot be scheduled
to the same time step, and therefore have to be separated by an edge (u1→up ) with du1up = 1. In
all other cases, no edge is needed, as either all operations of the chain can be scheduled to the
same time step (ζu1up ≤ Z ), or the separation of u1 and up is transitively guaranteed (ζu1up > 2 · Z ).
Additionally, all edges from chainable to non-chainable operations also carry an edge delay of 1.

Note that these edges correspond to the cycle time constraints proposed by Cong and Zhang [7].
However, the advantage of explicitly adding them a priori to the MSP, instead of inferring equivalent
constraints when constructing the linear programs, is that the underlying path enumeration has to
be performed only once and thus can be reused when computing the bounds of the II search space,
and for each candidate II.

In the running example, a uniform physical propagation delay of 5 ns for the chainable operations
3 - 6 , and a target cycle time of 10 ns, was assumed. Note the several edges with an edge delay
of 1 that limit the amount of chaining to meet the desired cycle time.

2.4 Related work
Loop pipelining is most useful when targeting processors with multiple parallel function units.
Out-of-order processors rely on dynamic scheduling to derive the appropriate execution sequences
at run-time. Parallel in-order processors (such as VLIW architectures), or statically scheduled
hardware accelerators created by HLS, however, rely on the compiler/synthesis tool to pre-compute
their execution schedules.

The underlying MSP is the same, with the primary objective to find a schedule with the minimally
feasible II. However, VLIWmodulo schedulers (e.g. [9, 12, 17, 21, 23, 25]) typically face tight resource
constraints in each cycle (due to the limited number of functional units, registers, and buses). Often,
minimising the usage of one or more of these resources, e.g. the register pressure, is used as the
secondary objective instead of a schedule length minimisation.

Modulo schedulers targeting HLS (e.g. [5, 29]) face fewer resource constraints (hardware acceler-
ators may use dozens or even hundreds of operators), but need to support operator chaining to
achieve acceptable performance. Thus, when considering related work, not all techniques proposed
for one target may be beneficial for the other. Especially heuristic approaches may incorporate
the chosen secondary objective at the algorithmic level, making it harder to repurpose them for a
different problem variant than approaches based on mathematical formulations.
In this work, we evaluate different approaches as measured by their suitability for HLS modulo

scheduling.
Modulo schedules can be determined either by heuristics or by using mathematical formulations

to solve the problem exactly. While heuristics are not guaranteed to find the optimal solution
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(and often only produce feasible solutions), they usually come with a shorter computation time
compared to the exact approaches, which are typically associated with impractically long runtimes.

Heuristics. Since Lam [21] and Rau [25] laid most of the groundwork of the modulo scheduling
framework, many heuristic modulo schedulers have been proposed (e.g. [17, 23]). Codina et al.
[6] explain the differences in the most relevant approaches, and provide a detailed performance
evaluation. More recently, Zhang and Liu [29] implemented a modulo scheduler on top of a System
of Difference Constraints (SDC) [7]. By construction, an SDC is represented by a totally unimodular
constraint matrix, which guarantees that an optimal solution found by an LP solver will only consist
of integer values for the decision variables. The flexibility of the SDC framework enables the easy
integration of operator chaining into the modulo scheduling process. Improvements to this idea
resulted in the Modulo SDC scheduler proposed by Canis et al. [5], which uses a modulo reservation
table and a backtracking algorithm to handle the resource constraints heuristically, solving the
underlying SDC multiple times in the process. We include this approach in our experimental
evaluation as an advanced heuristic algorithm, and the representative of the state-of-the-art in
HLS-specific modulo scheduling.

All known heuristic approaches attempt to minimise the II by trying to find a feasible schedule
for various candidate IIs.

Exact approaches. Previously, theMSP has also beenmodelled exactly as an integer linear program
(ILP) for a single candidate interval λ. Several formulations have been proposed that can be classified
roughly according to their modelling of the operations’ start times ti , and handling of the resource
constraints.

Time-indexed formulations use binary decision variables xi,t per operation i and time step t to
represent that i starts in t . The resource usage is constrained by comparing the sum of the xi,t
variables over the relevant time steps with the number of available resource instances.

The formulation by Dinechin [9] exclusively uses such binaries to model the time steps up to a
predefined time horizon, i.e. an upper boundU for the schedule length, as ti =

∑U
t=0 t · xi,t . As the

formulation cannot be efficiently solved for large instances, a large neighbourhood search (LNS)
heuristic is proposed. It speeds up the scheduling process as a schedule for λ − 1 can easily be
constructed (if it exists) given a feasible solution for λ.

In the formulation by Eichenberger and Davidson [12], the start times are decomposed according
to the Euclidean division by λ, as ti = yi · λ+

∑λ−1
t=0 t ·xi,t . Here, binary decision variables model the

assignment of the start time to the congruence classes 0 . . . λ − 1, but integer variables yi represent
the so-called stage, i.e. the multiple of λ contained in ti . The formulation models dependence edges
as λ-many, but 0-1-structured constraints, which resulted in an almost tenfold speed-up over a
prior version [13].

Ayala and Artigues [3] compare the aforementioned time-indexed formulations and report that
the one by Eichenberger and Davidson [12] is always faster on their set of industrial instances. The
authors obtain stronger variants of the formulations by applying a Dantzig-Wolfe decomposition,
but rely on a column-generation scheme to cope with the increased number of decision variables.

Formulations using integer variables to directly model the (potentially decomposed) start times
promise to work with fewer decision variables overall. Our proposed formulation, Moovac, is
an extension to such a formulation from a task scheduling context by Venugopalan and Sinnen
[28]. A common element in integer-based formulations is the concept of overlap variables, i.e.
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binary variables that express an ordering relation on the values of the ti . Similar formulations were
proposed by Altman et al. [2] and Šůcha and Hanzálek [27].
In [2], the overlap scheme was inspired by a graph colouring problem. In contrast to Moovac,

the set of constraints in the formulation is not independent of λ, which is a precondition for the
integration of the II minimisation into the formulation.
The overlap mechanism in the formulation6 by Šůcha and Hanzálek [27] differs semantically

from ours: they define binary decision variables ŷi j to be 1 iff operations i and j are scheduled
to the same congruence class and therefore cannot use the same resource instance. For every
operation i , the number of conflicts i is involved in is counted and must be less than the number
of available resource instances of a given type. In comparison, our formulation approach models
conflicting resource instance and congruence class usage in a combined constraint that is defined
pairwise. Besides being more concise, this allows for future extensions such as selectively allowing
oversubscription of resource instances for mutually exclusive operations.

Fimmel and Müller [15] present an approach with II minimisation for a variant of the MSP where
the II is allowed to be a rational number, which they claim to be beneficial especially for small IIs.
Their formulation is a linear program comprised of binary and rational decision variables. The
resulting schedules associate each operation with two iteration-dependent start time steps. While
it would be possible to support such an execution model in an HLS tool, doing so would incur an
additional multiplexing overhead. Also, it remains unclear how they modelled the rational variables
in a standard ILP solver, which usually only support real- and integer-valued variables. Therefore,
we do not include this approach in our evaluation.

In addition to ILPs, the MSP can be solved with an enumeration scheme and extensive pruning [1],
or constraint programming (CP) [4, 11]. The CP framework allows to formulate more powerful
constraints, and therefore needs less abstractions as an ILP model. For example, comparable to
our proposed approach, Bonfietti et al. [4] also integrate the II minimisation into their scheduler.
The CP-based approaches can achieve competitive or better performance compared to heuristics
and ILP formulations by implementing highly problem-specific search strategies instead of the
more generic branch-and-bound techniques typically employed in ILP solvers. On the other hand,
implementing such a scheduler involves a significant engineering effort using a CP solver library,
whereas an ILP model such as ours can be passed almost verbatim to the ILP solver’s API. Also,
ILP-based approaches may benefit from improvements to the solver’s internal algorithms without
modification.

From this variety of exact approaches, we compare our proposed formulation against the formulation
by Eichenberger and Davidson [12], as it is a common reference point in the works cited above,
and generally had a lasting impact on the field [14]. At the same time, it appears to be the best-
known alternative formulation to be solved by an unmodified ILP solver, due to its efficient internal
structure. For brevity, we refer to this work as just “Eichenberger’s” formulation in the rest of this
paper.

3 THE MOOVAC FORMULATION
We propose to tackle the MSP by including as much information as possible into an Integer Linear
Program (ILP). To this end, we integrate the II minimisation into the formulation and obtain a
bi-criteria problem that we call Moovac-I. As discussed in Section 2.4, there are various different
6More precisely, our resource model with fully-pipelined operators corresponds to their unit processing time model.
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Table 2. Moovac-S: Decision variables

T ∈ N0 latest finish time (schedule length)
ti ∈ N0 ∀i ∈ O start time
ri ∈ N0 ∀i ∈ L index of resource instance used by operation
mi ∈ N0 ∀i ∈ L index of congruence class (modulo II)
yi ∈ N0 ∀i ∈ L helper in congruence class computation

εi j ∈ {0, 1} ∀k : i, j ∈ Lk

{
1 ri < r j

0 otherwise

µi j ∈ {0, 1} ∀k : i, j ∈ Lk

{
1 mi < mj

0 otherwise

approaches how to formulate a scheduling problem as an ILP, using different decision variables.
Recent work on a related scheduling problem has shown that using overlap variables is more
efficient than other approaches [28], so we take this approach here. Together with a linearisation
of otherwise quadratic constraints, we expect to achieve a problem structure that can be solved in
reasonable time for practically relevant problem instances. In addition, the entire runtime is used
to determine a feasible and potentially optimal solution, while a practical downside of single-II
approaches is that the time spent on unsuccessful candidate IIs is ultimately lost.

We also introduce a non-integrated variant of the Moovac formulation that follows the traditional
approach to modulo scheduling and models a single scheduling attempt for a particular candidate II.
Thus, we solve a formulation with only one objective, i.e. to minimise the schedule length. Solving
the MSP then requires an external driver that traverses7 the II search space until a feasible solution
is found. This single-II variant of the Moovac formulation is called Moovac-S.

We start by defining the simpler formulationMoovac-S and then present the necessary extensions
for obtaining the more general Moovac-I formulation.

3.1 Moovac-S
The problem signature of the Moovac-S formulation differs slightly from the general signature
in Table 1, as the II minimisation is handled outside of the linear program that is introduced in
the following sections. The bounds to the II search space, λ⊥ and λ⊤, are therefore passed to an
external driver, which is also responsible to return the resulting II value λ◦. During the search, the
driver chooses one or more candidate intervals λ that are passed to the ILP. Inside of the ILP, λ is a
constant.

Decision variables. We model the problem with the decision variables shown in Table 2: As stated
in the problem signature, the output we are seeking is a start time ti for every operation i ∈ O .
These variables are directly part of our ILP formulation. With the externally specified delay Di , an
operation i’s result will be available in time step ti + Di . The variable T captures the latest finish
time across all operations.

7Traditionally, increasing candidate intervals λ = λ⊥, λ⊥ + 1, . . . , λ⊤ are tried. We discuss in Section 5.4 why this is still
the most viable approach for our set of test instances.
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For every resource-limited operation i ∈ Lk using resource type k , we model the allocation of
one of the ak available instances to i with an integer variable ri , which contains an index in the
range [0,ak − 1].

Due to the nature of the modulo schedule, the start time of every operation ti can be decomposed
into a multipleyi of λ plus a remaindermi which is less than λ. The start time ti is then ti = yi ·λ+mi
We define such variables for all resource-limited operations i ∈ L.mi is the congruence class (modulo
II) implied by the current start time ti and is represented by an integer in the range [0, λ − 1]. yi ’s
value is bound to the integer division ti/λ.

Resource limit mechanism. A valid modulo schedule must not oversubscribe any of the resource
types k ∈ R in any congruence class m ∈ [0, λ◦] (cf. (2) in Section 2.1). A common abstraction
of this condition is the modulo reservation table (MRT) [25]. As illustrated in Figure 3, an MRT
contains a row for each resource instance, and a column for each congruence class (modulo the
current candidate II). Heuristic modulo schedulers often use an MRT as an explicit data structure,
and successively allocate operations to the cells of the table. In order for a schedule to be valid, it
must be ensured that each cell is occupied by at most one operation.

While we do not use an explicit MRT in the Moovac formulation, it is still a useful intuition, as
the ri andmi variables belonging to an operation i ∈ Lk induce an MRT-like structure for resource
type k . Our goal therefore is to model that no pair of operations i, j ∈ Lk shares an MRT cell.
Formally, we wish to enforce

ri , r j ∨mi ,mj ∀i, j ∈ Lk , i , j.

However, the inequality relations as well as the disjunction need to be linearised for the ILP
formulation.

To this end, we introduce the following overlap variables on all pairs of operations i, j ∈ Lk , i , j
that use the same resource type k : εi j = 1 indicates that i’s resource instance index is strictly less
than j’s resource instance index. Analogously, µi j = 1 models that i’s congruence class index is
strictly less than j’s congruence class index. With these variables, we can express ri , r j ⇔ ri <
r j ∨ri > r j ⇔ εi j +εji ≥ 1, andmi ,mj ⇔ µi j + µ ji ≥ 1. It follows that i and j are not in resource
conflict if and only if εi j + εji + µi j + µ ji ≥ 1 is satisfied. Figure 4 demonstrates the interaction
between two operations’ r andm variables and their corresponding overlap variables.

Note that the externally specified resource limits ak are modelled indirectly through the range of
resource instance indices [0,ak − 1] that can be assigned to the ri variables, or in terms of the MRT
intuition, through the number of rows that can be occupied by operations in each congruence class.
In contrast to time-indexed formulations such as Eichenberger’s, we do not explicitly count the
number of limited operations in a particular congruence class to ensure (2).

Constraints. Using the decision variables defined in Table 2, the ILP formulation of Moovas-S is
given in Figure 5. The default objective is to minimise the schedule length (M1).
We model the dependence edges with (M2), which are directly adopted from the precedence

constraint (1) in the definition of the MSP.
As both sets of overlap variables are defined by a strictly less relation, for a given pair of operations

i, j, εi j and εji , as well as µi j and µ ji cannot be 1 at same time. This is ensured by (M3) and (M6).
The overlap variables are bound to their desired values by the pairs of constraints (M4)+(M5)

and (M7)+(M8), respectively. For brevity, we explain their function in the context of µi j , as the
constraints for εi j work analogously. (M7) are fulfilled ifmi < mj or µi j = 0, and (M8) are fulfilled
ifmi ≥ mj or µi j = 1. In these constraints, the second expression uses the candidate II as a big-M
constant, meaning that its value is big enough to fulfil the constraint regardless of the rest of the
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Fig. 3. Modulo reservation table as induced by
the operations’ r - and m-decision variables.
Each resource instance can only be used by
one operation per congruence class, thus each
cell can be occupied by at most one operation.
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Fig. 4. Consider two operations i and j that
compete for the same MRT cell as indicated
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different assignments of r j andmj in relation to
ri andmi . For example, in the top right corner,
we assume r j = ri −1 andmj =mi +1, which is
an assignment that does not result in a resource
conflict.

expression. Due to the apparent contradictions, these constraints can only be fulfilled if and only if
mi < mj and µi j = 1, ormi ≥ mj and µi j = 0, resulting in the desired behaviour.

As derived above, constraints (M9) ensure a conflict-free resource usage for every pair of opera-
tions i, j, i.e. the operations are either assigned to different resource instances, mapped to different
congruence classes, or both.

(M10) define the congruence class indexmi as expressed by the operation’s start time ti modulo
II.
(M11) bound the resource instance indices for each limited operation of type k to be less than

the externally specified limit ak . Analogously, (M12) ensure that an operation’s congruence class
index is less or equal to the candidate II.
The latest finish time T is defined by (M13) to be greater or equal to the finish times of sink

operations, i.e. operations that do not have outgoing forward edges (i→j) with βi j = 0.
(M14) - (M16) are domain constraints to enforce non-negativity respectively boolean values for

the decision variables.

3.2 Moovac-I
The Moovac-I formulation conforms to the problem signature in Table 1.

Note that the structure of the linear program as defined by the Moovac-S formulation is already
independent of the concrete value of the candidate II: The set of decision variables and constraints
is the same, and only the numerical values in the constraints differ between scheduling attempts.
This is not the case in time-indexed formulations, such as Eichenberger’s, where the numbers of
binary variables xi,m and constraints (e.g. (20) in [12]) vary with the candidate II.
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min T (M1)
s.t. ti + δi j ≤ tj + βi j · λ ∀(i→j) ∈ E (M2)

εi j + εji ≤ 1 ∀k ∈ R : ∀i, j ∈ Lk , i , j (M3)
r j − ri − 1 − (εi j − 1) · ak ≥ 0 ∀k ∈ R : ∀i, j ∈ Lk , i , j (M4)
r j − ri − εi j · ak ≤ 0 ∀k ∈ R : ∀i, j ∈ Lk , i , j (M5)

µi j + µ ji ≤ 1 ∀k ∈ R : ∀i, j ∈ Lk , i , j (M6)
mj −mi − 1 − (µi j − 1) · λ ≥ 0 ∀k ∈ R : ∀i, j ∈ Lk , i , j (M7)
mj −mi − µi j · λ ≤ 0 ∀k ∈ R : ∀i, j ∈ Lk , i , j (M8)

εi j + εji + µi j + µ ji ≥ 1 ∀k ∈ R : ∀i, j ∈ Lk , i , j (M9)

ti = yi · λ +mi ∀i ∈ L (M10)
ri ≤ ak − 1 ∀k ∈ R : ∀i ∈ Lk (M11)
mi ≤ λ − 1 ∀i ∈ L (M12)

ti + Di ≤ T ∀i ∈ O : ∄j ∈ O : (i→j) ∈ E ∧ βi j = 0 (M13)

ti ∈ N0 ∀i ∈ O (M14)
ri ,yi ,mi ∈ N0 ∀i ∈ L (M15)
εi j , µi j ∈ {0, 1} ∀k ∈ R : ∀i, j ∈ Lk , i , j (M16)

Fig. 5. Moovac-S: Objective function and constraints for a candidate interval λ

In order to integrate the II minimisation into the Moovac-S formulation, we replace the formerly
constant candidate II with a new integer decision variable λ that is bounded to the II search space
as λ⊥ ≤ λ ≤ λ⊤. However, integrating the II minimisation naively has a major drawback: It results
in quadratic (i.e. containing a multiplication of decision variables) constraints (M7), (M8) and (M10).
We linearise constraints (M7), (M8) by replacing the occurrence of λ with the upper bound of

the II search space, λ⊤:

mj −mi − 1 − (µi j − 1) · λ⊤ ≥ 0 ∀k ∈ R : ∀i, j ∈ Lk , i , j (M17)

mj −mi − µi j · λ⊤ ≤ 0 ∀k ∈ R : ∀i, j ∈ Lk , i , j (M18)

This has no effect on the constraints’ functionality, as the interval value is used as a big-M constant
here.
The remaining quadratic constraints (M10) are broken down into individual constraints for all

possible values of yi . To this end, we need to introduce an upper bound Y for the yi variables. Recall
that the yi variables represent the value

⌊ ti
λ

⌋
in the calculation of operation i’s congruence class.
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Given an upper boundU for the schedule length8 (and in consequence, for all ti ), and using the II
search space’s lower bound λ⊥, the yi variables are bounded by Y =

⌊ U
λ⊥

⌋
.

With this bound and introducing new binary variables γȳi for ȳ ∈ [0,Y ] and all resource-limited
operations, constraints (M10) are replaced by:

γȳi = 1 → ti = ȳ · λ +mi ∀ȳ ∈ [0,Y ] : ∀i ∈ L (M19)
Y∑̄
y=0

γȳi ≥ 1 ∀i ∈ L (M20)

Y∑̄
y=0

ȳ · γȳi = yi ∀i ∈ L (M21)

The indicator9 constraints (M19) conditionally model the modulo decomposition for every
possible value of yi . Constraints (M20) force that at least one of these linearised decompositions
is selected for the solution. Note that the ≥-constraints are sufficient here, as at most one γȳi can
be non-zero due to the mutually-exclusive nature of the decomposition. Lastly, constraints (M21)
define the value of yi according to the selected decomposition. These constraints are not required
for the correctness of the Moovac-I formulation, but make solutions interchangeable between
Moovac-I and Moovac-S, a property we leverage in Section 4.1.

The MSP’s bi-criteria objective can now be modelled directly in the Moovac-I formulation, which
is defined by:

min λ (M22)
min T (M23)

s .t . (M2) − (M6), (M9), (M11) − (M16), (M17) − (M21)

4 STRATEGIES FOR MODULO SCHEDULING IN PRACTICE
We now discuss the use of time limits, and bounds on the schedule length. A time limit allows
to cap the worst-case solution times, whereas a schedule length bound is required to make the
integration of the II search in the Moovac-I formulation possible, and can help to narrow down the
solution space.

4.1 Time-limited operation
Since modulo scheduling is an NP-hard problem [21], we cannot rule out the possibility to encounter
problem instances that lead to exponential runtimes when solved with the exact approaches, or
cause the heuristic approach to get stuck.

To this end, we impose a time limit τ per candidate II. For all approaches, this includes the time
κ to construct the linear program via the solver’s API. Combining the exact approaches with a time
limit can lead to non-optimal solutions, however, we retain the ability to make statements about
the optimality of the returned solutions, as discussed in the following paragraphs.

Moovac-S, Eichenberger. Each scheduling attempt with the single-II Moovac formulation as well
as with Eichenberger’s formulation is executed as one invocation of the ILP solver, so a time limit
of τ − κ can directly be specified via its API.
8We discuss possible upper bounds in Section 4.2.
9An indicator constraint is of the form x = f → ⟨cons⟩: if the binary variable x has the value f , the right-hand side
constraint ⟨cons⟩ must be satisfied; otherwise, it may be violated. Indicator constraints are supported natively in modern
ILP solvers.
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When the solver returns from a scheduling attempt for a candidate interval λ, it reports one of
the following outcomes:

• Optimal. A schedule was found, and the solver proved that its length Tλ is optimal, i.e.
Tλ = T

⋆
λ .

• Feasible. A schedule with length Tλ was found, but the solver was unable to determine
whether it is optimal within the time limit. We only know that Tλ ≥ T⋆

λ .
• Unknown. No schedule was found within the time limit. We conservatively consider λ to be
infeasible.

• Infeasible. The solver proved that the attempt is infeasible.
Let λ◦ be the smallest II for which at least a feasible modulo schedule was found. λ◦ is the

optimal II if, trivially, λ◦ = λ⊥, or if all candidates λ− ∈ [λ⊥, λ◦) are known to be infeasible. In
case scheduling for λ◦ yielded an optimal schedule length, we have also found an overall optimal
solution S⋆ = (λ◦,T⋆

λ◦ ), otherwise we only have λ◦ = λ⋆.

Modulo SDC. The Modulo SDC algorithm starts a scheduling attempt with computing a non-
resource constrained schedule, and iteratively tries to assign resource-limited operations to their
designated time steps. The modulo reservation table (MRT) is queried for resource conflicts, and if
no conflicts arise, an operation’s assignment is fixed in the underlying SDC by adding new equality
constraints. Otherwise, a new constraint to move the conflicting operation to the next time step is
introduced. The SDC is solved afterwards to check the feasibility of the current partial schedule.
Should the schedule become infeasible, the algorithm uses backtracking to revert some of the
previous assignments and resumes.
It is apparent that such a scheduling attempt necessitates constructing and solving multiple

linear programs. We thus do not impose our time limit on the individual invocations of the LP
solver, but instead on the scheduling attempt as a whole, i.e. including the solver runtimes and all
MRT and backtracking operations.

In case the current candidate II is infeasible, the algorithm would potentially run until all possible
schedules were inspected. To that end, the algorithm maintains a budget of 6 · |O | backtracking
steps [5] to provide another failsafe for fruitless scheduling attempts. This mechanism is still in
place in our implementation, as otherwise, even simple problem instances would deplete the whole
time budget on infeasible candidate IIs.
The only situation in which an interval λ◦ returned by the Modulo SDC scheduler is known to

be optimal is if λ◦ = λ⊥, as the algorithm can only run out of time or backtracking steps, but never
prove infeasibility of a candidate II.

The algorithm contains no means to determine the optimality of the found schedule length.

Moovac-I. The integration of the II search into the Moovac-I formulation enables a different
solution strategy. Instead of performing the minimisation of the first objective (= the initiation
interval) by iteratively solving and minimising multiple ILPs for the second objective (= here, the
schedule length), we can optimise both objectives directly using a single Moovac-I-ILP.

ILP solvers handle multiple objectives either by attempting to solve the problem only once with
user-specified weights for the objective functions, or by addressing the different objectives in
individual steps, according to priorities given by the user. The latter, multi-step approach is more
suitable in the context of the modulo scheduling problems, because practitioners would almost
certainly choose weights that strongly favor better IIs anyway, as discussed in Section 2.1. Some ILP
solvers offer an API to perform multi-objective optimisation automatically. However, in order for
our approach to be solver-independent, and because it makes it easier to reason about the solution
quality in the presence of time limits, we implement the multi-step approach ourselves.
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To this end, we begin by setting a time limit of τ and instruct the solver to only minimise the II.
When the solver returns, it reports one of the following outcomes:

• Optimal. A schedule for an interval λ◦ was found and proven to be optimal, i.e. λ◦ = λ⋆.
• Feasible. A schedule for an interval λ◦ was found, but the solver was unable to determine
whether it is optimal within the time limit. We only know that λ◦ is optimal if it is equal to
λ⊥.

• Unknown. No schedule was found within the time limit; give up and report failure.

The interval computed in the first step, λ◦, is fixed during the second step. This allows us to
reduce the complexity of the current ILP by “downgrading” it to resemble the Moovac-S formulation.
We add a constraint to bind the decision variable λ to λ◦, and replace the constraints (M19)-(M21)
by the simpler Moovac-S-style version of the modulo decomposition, ti = yi · λ◦ +mi , ∀i ∈ L.

Again with a time limit of τ , the solver is now instructed to minimise only the schedule length.
Note that this is a “warm start” made possible by constraints (M21), meaning the feasible solution
from the first step is still valid for the modified ILP, and the solver will work on improving it.
Therefore, only two outcomes are possible after the solver returns the second time:

• Optimal. The solver proved that the current schedule’s length Tλ◦ is optimal, i.e. Tλ◦ = T⋆
λ◦ .

• Feasible. The current schedule has a length of Tλ◦ , but the solver was unable to determine
whether it is optimal within the time limit. We only know that Tλ◦ ≥ T⋆

λ◦ .

The reasoning about the optimality of the overall solution S = (λ◦,Tλ◦ ) is straight-forward:
We have S = S⋆ if and only if both steps yielded an optimal result according to their respective
objective. If optimality can be proven in the first step, but not in the second step, we trivially know
λ◦ = λ⋆. It is possible that we just find a feasible interval, but determine the optimal schedule
length for that interval. This situation is counted as an overall feasible solution.

Fallback schedule. Recall that we save a resource-constrained non-modulo schedule from the
computation of λ⊤. This schedule serves as a fallback in the unfortunate case that all modulo
scheduling attempts fail, and allows the compilation to continue after a guaranteed maximum time.

4.2 Bounded schedule length
Imposing an upper bound U on the schedule length is beneficial for practical modulo scheduling,
as it reduces the overall solution space of the combinatorial problem, and helps the LP solver to
give up earlier on fruitless branches in situations where the infeasibility of a partial solution is not
obvious to the solver, causing it to try increasingly late start times for operations in the search.
Additionally, such a bound is required to make the proposed linearisation of constraints (M19) in
the Moovac-I formulation possible.

While we desire U to be as tight as possible, any chosen bound needs to be an overestimate, i.e.
higher or equal to the optimal schedule length for a given λ, to enable the solver to find a feasible
solution for the given λ (and not to rule that λ out incorrectly).

Eichenberger’s bound. Eichenberger et al. [13] proposed and proved the following upper bound
for the length of a modulo schedule, which we adapt here to our notation. Let ∆ = max(i→j)∈E δi j ,
i.e. the maximum number of time steps that two operations connected by a dependence edge must
be started apart. We define

UEb = |O | · (∆ + λ⊤ − 1) . (5)
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Fig. 6. Distribution of modulo schedule lengths, and their bounds. Note the logarithmic scale on the Y-axis.

Intuitively, each operation i ∈ O requires at most ∆ time steps before the next dependent operation
can start, but may need to be deferred for up to λ⊤ − 1 time steps10 due to the modulo resource
constraints.

Improved bound. Figure 6 shows the distribution of best-known schedule lengths, and correspond-
ing bound values forUEb , for the test instances used in our experimental evaluation (Section 5.4). It
is obvious thatUEb overestimates the actual schedule length by roughly an order of magnitude. We
propose two improvements to Eichenberger’s bound that result in a safe upper bound UIm that is
much closer to the actual modulo schedule length (also shown in Figure 6).

Let ∆i = maxj ∈O :(i→j)∈E δi j denote the maximum number of time steps that any successor j of i
needs to be started after i . We define the improved bound as

UIm =
∑
i ∈O

∆i︸︷︷︸
a) assume sequential schedule

+
∑
k ∈R

|Lk |−1∑
q=0

⌊
q

ak

⌋
︸              ︷︷              ︸

b) account for shifts due to modulo resource conflicts

. (6)

This definition keeps the basic ideas in Eichenberger’s bound of a) assuming that in the worst
case, all operations need to be scheduled sequentially, and b) of accounting for the need to shift
operations to a later start time due to the modulo resource conflicts.

Our improvement to a) is straight-forward: Instead of assuming |O |-many same-sized windows
of time steps that are large enough to accomodate every operation in the MSP, we determine the
maximum number of time steps individually for each operation.

We now quantify the worst-case number of modulo resource conflicts more precisely to derive a
tighter estimate for b). First, unlimited operations never need to be shifted as, by definition, they
never compete for resources. Next, recall the intuition of the modulo reservation table (Figure 3)
for a resource type k with one available instance, and imagine it is successively filled with the

10More accurately, given a candidate interval λ, an operation i ∈ L may be deferred for λ − 1 time steps, because at that
point all possible congruence classes would have been considered. Choosing the upper bound instead results in a slightly
looser bound, but makes the individual scheduling attempts better comparable as the numerical value of the bound remains
constant.
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operations {l0, . . . , l |Lk |−1} = Lk competing for that k-instance during scheduling11. Operation l0
will not need to be shifted as it is the first operation to be assigned to the MRT. l1 may need to be
shifted for at most one time step if it conflicts with l0. l2 may need to be shifted for at most two time
steps if it conflicts with l0, and then with l1, which was already shifted by one time step to resolve
its own conflict with l0. In the worst case, all operations in Lk are in initially in conflict for using
the k-instance in the same congruence class. In general, an operation lq will need to be shifted for
at most q time steps, i.e. equal to the number of operations that are already assigned to the MRT.

This reasoning is easily extended to resource types k that provide ak > 1 available instances. In
that case, the required conflict-resolving shift amount increases only every ak operations, which
means that an operation lq will need to be shifted at most

⌊
q
ak

⌋
time steps in the worst case.

Summing the maximum shift amounts for all operations over all limited resource types, we arrive
at the expression in Eq. (6-b).

Note that we neither make any assumptions about the particular conflict-resolving shift amount
an individual operation might require, nor about the order in which operations are assigned to the
MRT, but rather estimate the maximum number of shifts to be expected for a set Lk as a whole.

For the running example (Figure 1), we computeUEb = 12 · (2 + 6 − 1) = 84, andUIm = (11 · 1 + 1 ·
2) + (0 + 1 + 2) = 16.

5 EXPERIMENTAL EVALUATION
We now compare scheduler implementations based on the Moovac-S, Moovac-I and Eichenberger’s
formulations, and the Modulo SDC scheduler, on a large set of typical high-level synthesis loops, in
terms of both the scheduling time and the quality of the resulting schedule lengths and minimal IIs.

5.1 Compiler context
We implemented all schedulers in the Nymble HLS compiler [18]. Nymble is based on the LLVM
framework [22], version 3.3 and uses the framework’s analyses and optimisations.
All function calls in the benchmark programs are inlined exhaustively. The resulting modules

are optimised with LLVM’s preset -O2, but without performing loop unrolling.

Intermediate representation. Nymble uses a hierarchical control-dataflow graph (CDFG) as its
main intermediate representation, i.e. the compiler constructs a CDFG for each natural loop in
the input program. Within such a graph, control information is translated to predicated dataflow,
and nested loops are represented as special operations. This IR allows us to attempt to modulo
schedule loops on all nesting levels and with arbitrary control structures, without the need to
perform preparative transformations such as if-conversion.
We rely on LLVM’s dependence analysis to discover intra- and inter-iteration memory depen-

dences. These dependences are encoded as additional edges in the CDFG, and handled uniformly
by the schedulers. Due to a technical limitation, we currently consider all of these backedges to
express loop-carried dependences to the immediately preceding iteration, leading to conservatively
larger IIs. However, we expect the impact on our results to be small, as in our compiler context, the
dependence analysis could only determine exact backedge distances βi j > 1 for less than 0.3 % of
the backedges that were constructed.

The schedulers operated according to the resource limits in Table 3.

11Note that while the ILP-based schedulers discussed in this work do not operate in such a way internally, it is still a helpful
conceptual model.
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Table 3. Resource limits

Resource type # available

Memory Load/Store 1 each
Nested loops 1
Integer Div/other 8/∞
FP Add/Sub/Mul/other 4/4/4/2 each

Table 4. Problem sizes

Metric min. med. avg. max.

# operations 19 54 125 2654
# res.-lim. ops. 0 4 12 221
# forward edges 28 81 245 6752
# backedges 2 4 42 1222

5.2 Reference schedulers
We implemented the Modulo SDC scheduler according to [5], but used a simpler height-based
priority function. Our implementation of Eichenberger’s formulation is based on the constraints
(1), (2), (5) and (20) in [12]. In both cases, the objective is changed to minimise the schedule length.

The dataflow graphs constructed by Nymble contain a unique start operation that is required to be
scheduled to time step 0. A corresponding constraint is added to all schedulers.

5.3 Test setup
We used Gurobi 8.0 as (I)LP solver for all schedulers.

The experiments were conducted on 2x12-core Intel Xeon E5-2680 v3 systems running at 2.8
GHz with 64 GiB RAM. The schedulers were allowed to use up to 8 threads and 16 GiB of memory
per loop.

Each experiment was repeated three times to compensate for varying system load, and for each
loop, we include in our evaluation the result of the “best” modulo scheduling attempt with regard
to the smallest II, schedule length, and lastly, scheduling runtime. The scheduling runtime always
includes the time to construct the respective linear programs via the Gurobi API. The generated
schedules were verified by RTL simulation of the hardware accelerators generated by Nymble.

5.4 Test instances
The modulo scheduling test instances, i.e. loops/graphs, used in this evaluation originate from the
HLS benchmark applications in the CHStone [16] and MachSuite [26] collections. We excluded
backprop, bfs/bulk, fft/transpose and nw from MachSuite due to limitations in Nymble that
prohibited the synthesis of these applications even without using the modulo schedulers evaluated
here. Also, we removed printf statements inside the computational kernels of CHStone’s aes and
jpeg applications.

In total, we obtained 354 loops to modulo schedule. Due to the exhaustive inlining performed in
Nymble, and the presence of small, idiomatic loops (e.g. array initialisations), we detected that 166
loops are identical or isomorphic to other loops.
The remaining 188 loops comprise our set of test instances used in the rest of this evaluation.

Table 4 characterises the sizes of the corresponding MSPs. The histogram in Figure 7 shows the
distribution of the best-known intervals λ• for the test instances, normalised to the range between
0 (= λ⊥) and 1 (= λ⊤). In summary, the majority of loops in our test set have a best-known II equal or
close to the lower bound of the search space. To this end, the single-II approaches in this evaluation
traverse the II search space in the traditional ascending order. In order to be able to complete
each individual experiment within 24 hours, we limit the search to at most 23 candidate IIs for the
single-II approaches, i.e. we attempt to schedule for λ⊥, λ⊥ + 1, λ⊥ + 2, . . . , λ⊥ + 22. All loops in our
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Fig. 7. Histogram of the number of loops according to the relative position of their λ• within the II search
space, i.e. 0 = λ⊥ and 1 = λ⊤.

evaluation have min(λ⊤, λ•) ≤ λ⊥ + 22, i.e. this attempt limit did not preclude any of the schedulers
from finding a feasible solution.

5.5 Comparison of approaches, time limits and bounds
In our first experiment, we schedule the test instances with the single-II Moovac formulation
(denoted by Mv-S), the Moovac formulation with integrated II minimisation (Mv-I ), Eichenberger’s
formulation (EB), and the Modulo SDC algorithm (MSDC).

We investigate time limits (Section 4.1) τ of 1, 5, 15 and 60 minutes, and impose either no upper
bound on the schedule length (denoted by ∞), or use the boundsUEb orUIm from Section 4.2.

While the time limit and schedule length bound seem independent on first sight, they both limit
the computational effort that the solver spends on a particular scheduling attempt. In the case of
the schedule length bound, this limit works indirectly by reducing the branch-and-bound solution
space.
To this end, we present the results of modulo scheduling with the different time limits and

upper bounds together, both in terms of scheduler runtimes (Table 5) and schedule quality (Table
6). Our methodology here is twofold: On the one hand, we provide accumulated runtimes and
quality measures for the computed initiation intervals across all instances as intuitive metrics for
the performance of a given configuration. However, this presentation disregards that all instances
are in fact independent of each other. To this end, we additionally count the number of instances
for which a configuration achieves a particular result, e.g. to schedule an instance between 10
and 100 seconds, or to prove optimality for a solution. This allows us to assess to which degree a
given configuration is practical on our representative benchmark set, and highlights the presence
of outlier instances (i.e. with exceptionally long runtimes or low quality schedules) as well as
their influence to the accumulated metrics. Note that outliers have to be expected for every exact
modulo scheduling approach due to the NP-hard nature of the underlying problem. However, if
their number is small, this does not automatically impair the scheduler’s practicability. Additionally,
a benefit of the ILP method is that a quality measure (i.e. the branch-and-bound method’s “gap”
value [19]) is available for any feasible solution, which allows the practitioner to decide to try
another scheduler (exact or heuristic) for the same problem.

We introduce the notion of the best-known interval λ• and tuple of interval and schedule length
S• to indicate the best solution found across all experiments conducted in this work, i.e. including
all approaches and configurations, as a reference point for loops for which the optimal solution is
not known.

TheMoovac-based schedulers outperform the other approaches in this experiment: The overall
fastest configuration isMv-I -UIm-1min with an accumulated runtime of 15.7 minutes for all 188 test
instances. At first glance, Mv-S-UIm , which finds the highest-quality solutions overall, seemingly
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has a significant advantage concerning the result quality over Mv-I -UIm , but note that the sum of
II differences (column “λ◦ − λ• : Σ”) is concentrated on only three loops (column “λ◦ − λ• : #”). For
all other loops, Mv-I -UIm delivers results on par with its single-II variant (columns under “# loops
with...”).

Mv-S-UIm andMv-I -UIm achieve the best trade-off between scheduler runtime and result quality
already with the 1 minute time limit. The runtimes increase with the time budget, but the result
quality is only improved marginally. In the 60 minute configurations, the solution space covered by
the Moovac-based schedulers for some instances becomes too large to fit in the 16 GiB allocated to
the experiments (column “OOM”).

Mv-S clearly benefits, in terms of runtime and quality, from the presence of an upper bound for
the schedule length, and from the tighter estimate that UIm gives compared to UEb . This effect is
even more pronounced for Mv-I , because the value of the bound directly affects the complexity of
the Moovac-I-ILP.

Being an exact scheduler as well, Eichenberger’s formulation achieves optimal results for almost
as many loops as the Moovac-based approaches. However, especially with the smallest time budget,
it is unable to find modulo schedules for several large instances (column “no S”), and runs out of
memory for one loop. Given more time, the solution quality improves, but unfortunately four more
loops cannot be scheduled within the 16 GiB memory limit. The accumulated runtimes and solution
quality is mostly unaffected by the choice of schedule length bound.

As expected, theModuloSDC algorithm is quite fast, but lacks the capability to prove optimality
of its solutions, and misses the the best-known IIs by at least 77, spread over 20 instances. Starting
with the 5 minute configuration, imposing an upper bound on the schedule length effectively
serves as a third measure (besides time limit and backtracking budget) to give up on fruitless
scheduling attempts, and limits the overall runtime to roughly 90 minutes. The quality metrics
remain unchanged over the four different time limits. Curiously, without a bound, one more loop
can be scheduled, which alone contributes an II difference of 77 toMSDC-UEb and -UIm . The length
of the schedule found byMSDC-∞ for this particular instance does not come near the values of the
bounds, though.

The maximum ILP construction time per scheduling attempt is below 10 seconds for the exact
approaches, and turned out to be negligible compared to the runtime of the solver’s branch-and-
bound algorithm. This excludes loops for which a scheduling attempt ran out of memory, because
we did not record the precise point in time when the memory limit was hit. We also did not record a
separate construction time for MSDC, as the linear program is constantly changed over the course
of the algorithm.

The performance profile [10] in Figure 8 shows a different view on the dataset for the 5 minute
experiment, as it relates the runtimes of different configurations for each individual loop: for every
configuration α and loop x , a ratio ρα,x of the runtime of α on x divided by the fastest runtime for x
is computed. In the plot, we count the number of loops that have ρα,x ≤ Θ for a given configuration
α , i.e. the number of loops whose runtime with α is at most Θ times worse than the best-known
runtime for x . The performance profile can be interpreted as the probability12 that a configuration
is able to modulo schedule a loop within a certain performance envelope. The higher the curve the
better. For example, the data point marked with dark blue square on the MSDC-UEb plot signifies
that the scheduler runtime for 92 loops (= 92

188 ≈ 49%) was at most twice as long as the fastest
runtime across all configurations in the performance profile. The intersection of the plots with the

12By dividing the loop counts by the total number of loops.
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Fig. 8. Performance profile of the scheduling times (5 minute time limit), showing the number of loops for
which a combination of an approach and a bound resulted in a scheduling time that is at most Θ times slower
than the fastest scheduling time for each individual loop. The table shows the values for the special case
Θ = 1, i.e. the number of loops for which a configuration defined the fastest scheduler runtime.

“Θ = 1”-line shows the number of loops for which a configuration set the fastest runtime. This data
is repeated in the table below the performance profile.
We observe that Mv-S-UIm is the fastest configuration to schedule 149 of the 188 loops (≈

79%), followed by Mv-I -UIm with 18 fastest runtimes. In general, the plots for the Moovac-based
configurations (excluding Mv-S-UEb ) and MSDC rise quickly, meaning that they are close to the
fastest runtime for the majority of instances. The slope of the plots for EB indicates that for
roughly 75 % of the loops, these configurations require at least 5x longer than the respective fastest
configuration.

The performance profile also hints at a key difference between Mv-S and Mv-I . The single-II
variant is often faster for an individual loop due to the simpler ILP formulation and the location
of the first feasible interval in the II search space (cf. Fig. 7). However, the practical advantage of
Mv-I is that its runtime is capped at 2 ·τ by design, which is reflected in the much faster accumulated
runtimes shown in Table 5. As discussed above, the quality metrics in Table 6 show that this novel
way of approaching the modulo scheduling problem comes with almost no loss in solution quality,
with Mv-I -UIm missing the best-known interval λ• for at most two additional instances compared
to Mv-S-UIm .

5.6 FPGA implementation
We used Nymble [18] to generate accelerator modules that are pipelined according to the schedules
computed in the experiments with the UIm-bound and 5 minute time limit. The non-loop parts of
the applications, as well as loops for which a particular scheduler could not compute a feasible
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Table 5. Scheduling times for combinations of approaches, time limits and bounds

Approach / Bound Loops classified by scheduler runtime (188 loops)

< 10 s 10-100 s 100-1k s 1k-10k s ≥ 10k s all

# Σ [min] # Σ [min] # Σ [min] # Σ [min] # Σ [min] Σ [min]

Time limit: 1 minute

Mv-S ∞ 168 0.7 8 5.9 12 92.0 - - - - 98.5
Mv-S UEb 173 0.5 5 2.7 10 82.9 - - - - 86.1
Mv-S UIm 174 0.4 5 2.8 9 71.3 - - - - 74.5
Mv-I UEb 155 0.7 32 26.1 1 2.0 - - - - 28.7
Mv-I UIm 171 0.5 15 11.2 2 4.0 - - - - 15.7
EB ∞ 165 1.2 10 6.1 8 60.0 5 112.6 - - 179.8
EB UEb 167 1.5 7 3.0 9 55.8 5 112.7 - - 173.0
EB UIm 167 1.3 9 5.5 7 52.1 5 112.7 - - 171.7
MSDC ∞ 172 0.7 7 4.6 8 46.8 1 17.1 - - 69.2
MSDC UEb 172 1.0 8 5.5 7 44.1 1 16.8 - - 67.5
MSDC UIm 172 1.0 8 5.4 7 44.4 1 16.9 - - 67.8

Time limit: 5 minutes

Mv-S ∞ 168 0.6 3 0.9 8 55.2 9 378.3 - - 435.0
Mv-S UEb 173 0.5 3 0.7 4 32.5 8 339.5 - - 373.1
Mv-S UIm 174 0.4 3 0.8 3 25.1 8 292.8 - - 319.1
Mv-I UEb 155 0.7 11 4.2 22 117.1 - - - - 122.0
Mv-I UIm 172 0.7 5 1.8 11 70.3 - - - - 72.7
EB ∞ 165 1.2 10 6.4 5 39.8 8 520.1 - - 567.6
EB UEb 167 1.5 8 4.4 5 45.6 8 538.0 - - 589.4
EB UIm 167 1.3 9 5.0 4 34.8 8 552.0 - - 593.2
MSDC ∞ 172 0.7 7 4.6 6 23.8 3 94.9 - - 124.1
MSDC UEb 172 1.1 8 5.6 6 30.5 2 49.0 - - 86.1
MSDC UIm 172 1.1 8 5.6 6 30.9 2 48.1 - - 85.5

Time limit: 15 minutes

Mv-S ∞ 168 0.7 3 1.0 5 62.4 11 952.1 1 225.0 1241.1
Mv-S UEb 173 0.5 3 0.7 3 37.5 8 797.1 1 225.0 1060.8
Mv-S UIm 174 0.4 3 0.8 2 30.0 8 655.0 1 225.0 911.2
Mv-I UEb 154 0.5 12 4.5 20 268.2 2 49.0 - - 322.2
Mv-I UIm 171 0.5 6 2.0 8 120.3 3 90.1 - - 212.9
EB ∞ 165 1.2 10 6.8 3 38.7 6 388.4 4 1058.5 1493.5
EB UEb 167 1.5 9 6.0 1 15.7 7 436.6 4 1064.3 1524.1
EB UIm 167 1.3 9 5.1 2 22.8 6 407.5 4 1074.4 1511.2
MSDC ∞ 172 0.7 7 4.8 6 24.1 3 180.7 - - 210.3
MSDC UEb 170 0.8 10 5.9 6 31.3 2 54.1 - - 92.1
MSDC UIm 170 0.7 10 5.8 6 31.2 2 52.8 - - 90.6

Time limit: 60 minutes

Mv-S ∞ 168 0.7 3 0.9 1 2.4 6 422.8 10 5614.8 6041.7
Mv-S UEb 173 0.5 3 0.7 1 7.3 2 120.0 9 4996.2 5124.7
Mv-S UIm 174 0.4 3 0.8 - - 4 250.0 7 4380.1 4631.3
Mv-I UEb 155 0.7 11 4.3 4 27.2 18 1140.2 - - 1172.4
Mv-I UIm 172 0.7 5 1.8 - - 11 720.9 - - 723.4
EB ∞ 165 1.2 10 6.7 1 8.1 6 407.1 6 4877.1 5300.2
EB UEb 167 1.5 9 5.7 - - 6 508.8 6 4886.9 5403.0
EB UIm 167 1.4 9 5.3 1 7.4 5 373.4 6 4753.0 5140.4
MSDC ∞ 172 0.8 7 4.9 6 26.1 2 52.8 1 420.4 505.0
MSDC UEb 171 0.9 9 5.8 6 32.7 2 49.6 - - 89.0
MSDC UIm 172 1.1 8 5.8 6 32.3 2 49.4 - - 88.6

The loops are classified into time brackets according to the scheduler runtime with a given approach. Columns “#” show the
number of loops that fell into a particular time bracket. Columns “Σ” show the accumulated scheduling time (in minutes)
for the loops within a time bracket. Loops that caused the scheduler to run out of memory (cf. Table 6) are accounted for
with the maximum available time to them, i.e. (min(λ⊤, λ⊥ + 22) − λ⊥ + 1) · τ for the single-II approaches, and τ for Mv-I .
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Table 6. Schedule quality for combinations of approaches, time limits and bounds

Approach / Bound # loops with ... λ◦ − λ•

λ⋆□ λ◦ = λ⋆ λ◦ = λ• S⋆□ S = S⋆ S = S• no S OOM Σ #

Time limit: 1 minute

Mv-S ∞ 173 183 184 171 182 183 2 - 5 2
Mv-S UEb 178 183 184 176 182 183 2 - 4 2
Mv-S UIm 179 184 185 177 182 182 2 - 2 1
Mv-I UEb 167 176 177 166 176 176 11 - 328 9
Mv-I UIm 179 182 183 177 181 181 5 - 52 3
EB ∞ 173 176 176 173 176 176 9 1 120 10
EB UEb 174 176 176 174 176 176 9 1 115 10
EB UIm 175 177 177 174 176 176 9 1 114 9
MSDC ∞ 146 166 166 - 152 152 3 - 77 20
MSDC UEb 143 163 163 - 143 143 4 - 141 23
MSDC UIm 143 163 163 - 143 143 4 - 141 23

Time limit: 5 minutes

Mv-S ∞ 174 183 184 172 182 183 2 - 3 2
Mv-S UEb 179 183 184 177 183 184 2 - 3 2
Mv-S UIm 179 184 185 177 183 183 2 - 1 1
Mv-I UEb 170 177 178 168 177 177 9 - 246 8
Mv-I UIm 179 182 183 177 182 183 4 - 16 3
EB ∞ 176 181 181 176 180 180 1 5 34 5
EB UEb 176 181 181 176 181 181 1 5 36 5
EB UIm 177 181 181 177 181 181 1 5 40 5
MSDC ∞ 146 166 166 - 152 152 3 - 77 20
MSDC UEb 143 163 163 - 143 143 4 - 141 23
MSDC UIm 143 163 163 - 143 143 4 - 141 23

Time limit: 15 minutes

Mv-S ∞ 174 183 184 172 183 184 2 - 2 2
Mv-S UEb 179 183 184 177 183 184 2 - 3 2
Mv-S UIm 179 184 185 177 183 183 2 - 1 1
Mv-I UEb 172 179 180 170 179 180 6 - 239 6
Mv-I UIm 179 182 183 177 182 183 4 - 12 3
EB ∞ 177 181 183 177 181 182 - 5 31 3
EB UEb 176 181 183 176 181 183 - 5 31 3
EB UIm 177 181 182 177 181 182 - 5 32 4
MSDC ∞ 146 166 166 - 152 152 3 - 77 20
MSDC UEb 143 163 163 - 143 143 4 - 141 23
MSDC UIm 143 163 163 - 143 143 4 - 141 23

Time limit: 60 minutes

Mv-S ∞ 174 182 182 172 182 182 2 3 30 4
Mv-S UEb 179 182 182 177 182 182 2 3 30 4
Mv-S UIm 181 183 184 179 182 182 2 2 28 2
Mv-I UEb 173 179 180 171 179 180 5 1 238 6
Mv-I UIm 179 182 182 177 182 182 3 2 30 4
EB ∞ 178 181 183 178 181 183 - 5 31 3
EB UEb 178 181 183 178 181 183 - 5 31 3
EB UIm 179 181 183 179 181 183 - 5 31 3
MSDC ∞ 146 166 166 - 152 152 3 - 77 20
MSDC UEb 143 163 163 - 143 143 4 - 141 23
MSDC UIm 143 163 163 - 143 143 4 - 141 23

The 188 loops are counted according to properties of the schedules (see Table 7) computed by a given approach.
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Table 7. Quality metrics used in Table 6

Column Description

λ⋆□ counts loops where the II is proven to be optimal by the approach, as discussed in Section 4.1
λ◦ = λ⋆ counts loops where the II is equal to the optimal II
λ◦ = λ• counts loops where the II is equal to the best-known II across all experiments, including loops where

λ• = λ⋆

S⋆□ counts loops where the tuple S = (λ◦, Tλ◦ ) is proven to be optimal by the approach, as discussed
in Section 4.1

S = S⋆ counts loops where the tuple S = (λ◦, Tλ◦ ) is equal to the optimal solution
S = S• counts loops where the tuple S = (λ◦, Tλ◦ ) is equal to the best-known solution across all experi-

ments, including loops where S• = S⋆

no S counts loops for which no modulo schedule could be computed within the time and attempt limits
OOM counts loops for which no modulo schedule could be computed within the memory limit

λ◦ − λ• considers the differences between each loop’s actual and best-known II. We set λ◦ = λ⊤ in case no
modulo schedule could be computed, and λ• = λ⊤ in case no modulo schedule is known (2 loops)

Σ accumulates the differences
# shows the number of loops that have λ◦ > λ•
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modulo schedule, are not pipelined and rely on the non-modulo schedules computed by the heuristic
fallback scheduler.

TaPaSCo [20] was employed to perform an out-of-context evaluation of these accelerators using
Vivado 2018.2 targeting a Virtex-7 xc7vx690tffg1761-2 device. The target frequency was set to
200 MHz for the CHStone applications, MachSuite::aes and MachSuite::md_grid, and to 320
MHz for the remaining MachSuite applications.

Figure 9 shows the maximum clock frequencies when using the modulo schedulers, in compari-
son to a entirely non-pipelined accelerator using only the fallback non-modulo schedule for all
loops. Unfortunately, chstone::aes and chstone::jpeg could not be implemented on the target
device due to routing congestion in the Nymble-generated microarchitecture for any scheduler
configuration, and are therefore excluded in the plot.
Overall, the frequency variations when using the different schedulers are moderate, and none

of the approaches (especially not the non-pipelined one) dominates this experiment. However,
note that the scheduling step is so early in the HLS flow that it cannot directly influence the later
decisions made by the logic synthesis tool that ultimately determine the design’s cycle time, so this
result is not unexpected.

6 CONCLUSION AND OUTLOOK
In this paper, we proposed Moovac, an exact bi-criteria formulation of the modulo scheduling
problem (MSP) that integrates the actual II minimisation and can be solved optimally by a standard
ILP solver.

An extensive experimental study in the context of a high-level synthesis compiler showed that
combining the Moovac formulation with a short time limit of 1 or 5 minutes per candidate II, and
an improved upper bound for the schedule length, results in a practically usable modulo scheduling
approach that finds optimal IIs in over 95 % of the test instances, and near-optimal IIs otherwise.
Exact modulo scheduling is justified by the clearly higher quality of the solutions compared to

a state-of-the-art heuristic approach. In the Moovac formulation, modelling the central modulo-
resource-constraints with overlap variables leads to overall shorter solver runtimes compared to a
prior, well-tuned ILP formulation. Often, our approach is even faster than the heuristic SDC-based
scheduler.

The focus of this work was to empirically study the practicability of a novel and exact formulation
of the MSP. In the future, we plan to investigate how the model can be improved based on research
into the more general class of cyclic scheduling problems in operations research literature.

MSP instances in the HLS context appear to comprise larger and denser dependence graphs than
those that occur in VLIW compilers. This could by caused, for example, by the many resource-
unconstrained operations, and the additional edges needed to model operator chaining. We plan to
devise a formulation-independent problem reduction algorithm that abstracts non-critical subgraphs
away in order to lower some of the HLS-specific complexity before passing the instance to the
actual modulo scheduler.

Additionally, we would like to devise a generator for MSP instances in order to determine which
problem sizes are still solvable in reasonable amounts of time, as well as to investigate which
particular problem structures cause long runtimes for the various schedulers.

Lastly, the overlap variable-based combined modulo resource constraints in the Moovac formula-
tion lend themselves to be selectively disabled. This can be exploited to perform exact predicate-
aware modulo scheduling, i.e., oversubscribing resource units with operations that are mutually-
exclusive at runtime.
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