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Abstract. In this paper we present TaPaSCo – the Task Parallel Sys-
tems Composer, an open-source, toolflow and software framework for
automated construction of System-on-Chip FPGA designs for task paral-
lel computation. TaPaSCo aims to increase the scalability and portability
of FPGA designs by performing the construction of heterogeneous many-
core architectures from custom processing elements, and providing a
simple, uniform programming interface to utilize spatially parallel com-
putation on FPGAs. A key feature of TaPaSCo’s is automated design
space exploration, which can be performed in parallel on a computing clus-
ter. This greatly simplifies scaling hardware designs, facilitating iterative
growth and portability across FPGA devices and families.
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1 Introduction

Compared to modern software development methods it has been and still is very
hard to achieve scalability and portability for FPGA-based solutions.

In this paper we present TaPaSCo, the Task Parallel Systems Composer,
an open source toolchain addressing these challenges. TaPaSCo consists of a
scriptable toolflow for the automated construction of heterogeneous, many-core
System-on-Chip hardware architectures, and a set of APIs to facilitate task paral-
lel computing on TaPaSCo FPGA accelerator designs. TaPaSCo aims to harness
and exponentiate the power of existing tools and approaches by providing the
missing glue between state of the art HLS tools and modern parallel computing
paradigms and languages: It allows the designer of FPGA accelerators to raise
their level of abstraction and disregard many specific features of the target FPGA
by delegation of optimizing these choices to TaPaSCo’s automated design space
exploration. Using TaPaSCo, existing designs can be more easily re-targeted to
new FPGAs and boards without requiring changes to the accelerators themselves.



Furthermore, this allows to postpone the decision for the target technology un-
til much later in the design process. TaPaSCo’s APIs complete the picture by
providing the necessary foundations to implement higher-level runtimes (e.g.,
OpenCL, OpenMP) for platform-agnostic application software.

The rest of this paper is organized as follows: Section 2 contains a brief
survey of related work, in Section 3 we give a general overview of TaPaSCo
and its primary design abstractions. Specifically, we aim to show how TaPaSCo
addresses portability, scalability and extensibility of FPGA hardware designs for
systems-on-chip. A practical usage example, including the actual commands for
using the tool, is discussed in Section 4. The simple use-case is the creation of a
many-core design using MicroBlaze CPUs as processing elements, demonstrating
the usage and advantages of TaPaSCo. However, the tool easily allows intermixing
of arbitrary kinds of PEs (software-programmable processors, IP blocks, HLS-
generated functions etc.) to create truly heterogeneous systems, as well.

2 Related Work

The work presented here is not focused on actual high level synthesis tools such
as Vivado HLS [20], Nymble [9], or LegUp [3]. Instead, it was initiated to ad-
dress common problems occurring when employing these tools: When trying to
assess the performance of HLS tools, one can either stop in simulation at the
cycle count level (using far from realistic assumptions about the behavior of
memory in a real system), or perform the experiments on real hardware. The
latter, however, requires one to implement the entire hardware and software
design required to run the experiments. Not only is this approach tedious and
error-prone, but most importantly the impact of the system design on overall
performance and characteristics greatyly reduces the comparability of different
implementations. This problem is precisely what motivated the work on Thread-
PoolComposer [12], our prior research effort in this area. TaPaSCo is based on
ThreadPoolComposer, which is in turn is closely related to previous work on
ReconOS [14], hthreads [15], or FUSE [11]. ThreadPoolComposer aimed to pro-
vide both programming and hardware abstractions to increase FPGA developer
productivity. But unlike the other approaches, ThreadPoolComposer focused on
typical high-performance computing systems using a mainstream, non-modified
Linux kernel, and catering for commercial (OpenCL, OpenMP) and academic
(X10 [4, 5], FastFlow [2]) parallel programming frameworks. Redsharc [17] is an
academic hardware/software system design framework with a similar approach
as TaPaSCo; it shares concepts such as the grouping of heterogeneous PEs into
clusters, and uniform, scriptable construction of cluster groups into architectures.
However, the Redsharc source is not publicly available, is not portable and does
not support current hardware. Furthermore, Redsharc is focused on hardware
architectures processing regular data streams, whereas TaPaSCo explicitly sup-
ports more general hardware that also allows random-memory accesses. Similar
commercial tools, such as Xilinx SDSoC and SDAccel became publicly available
later in late 2015/2016; the former works only on select boards of the Zynq



family of FPGAs, the latter only on select PCIe-based boards for OpenCL com-
puting and does not provide support for job dispatches or custom infrastructure
cores. In contrast, TaPaSCo allows much deeper customization, e.g., black-box
extension of existing cores with caches, using infrastructure cores to change the
interconnection (e.g., by buses, networks-on-chip) of processing elements and
interface adapters. TaPaSCo’s customizability is key to enable performance for
very different computing approaches by not imposing too many restrictions on
the design. In [7], ThreadPoolComposer was extended with automated design
space exploration capabilities to increase scalability of the designs even further.
TaPaSCo extends this significantly by providing a fully asynchronous job launch
interface, support for a memory hierarchy of device-local and PE-local memories,
a unified kernel module interface, and offering support for a wide range of FPGA
families from small embedded to high performance segments with PCIe Gen3/4-
based data transfers (currently supported boards: Digilent ZedBoard, Digilent
PyNQ, Xilinx ZC706, Xilinx ZCU102 UltraScale+ MPSoC, Xilinx VC709, Xilinx
VCU118 and NetFPGA SUME).

3 TaPaSCo

TaPaSCo consists of two main parts: An automated toolflow to generate System-
on-Chip (SoC) designs based on custom processing elements (PEs, e.g, as Ver-
ilog/VHDL, Bluespec, Chisel, or generated using HLS), and a general application
programming interface (API) and accompanying libraries to facilitate platform-
agnostic software development. In the following, Section 3.1 will focus on the
former, Section 3.2 on the latter. In Section 3.3, Section 3.4 and 3.5, we will
argue how TaPaSCo addresses the central issues of portability, scalability and
extensibility for future proofing FPGA designs.

3.1 Hardware Design Abstractions

TaPaSCo hardware designs as shown in Figure 2 consist of a configurable num-
ber of processing elements (PEs); PEs of the same kind are grouped into PE
clusters, which are in turn grouped into the Architecture of the design. Finally,
the Platform instantiates board- or FPGA-specific resources to implement data
and control accesses, and signaling, leading to the complete system shown in
Figure 3. TaPaSCo hardware designs are based on three fundamental abstrac-
tions (ordered by scope): A1: T-model of processing elements, A2: Architecture,
and A3: Platform. Each of the abstractions is implemented as a set of scripts
in TaPaSCo: A1 consists of scripts to configure the interface generation of sup-
ported HLS compilers. A2 is implemented in a modular Tcl script to perform
the wiring of PEs into clusters, and clusters into an Architecture, using suitable
bus topologies. The fundamental idea is to keep the Architecture independent
of the target FPGA, making it reusable across targets. A3 finally connects the
Architecture to the hardware components of the target FPGA board. The scripts
currently utilize the Vivado Tcl APIs to automate the wiring of high pin count
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Fig. 1. Basic T-shape of processing elements: Each processing element has a control
channel, a data channel and a signaling channel, all of which can be implemented by
arbitrary means, e.g., AXI4, or Avalon.

interfaces (e.g., AXI4). The T-model, named for its T-shape shown in Figure 1,
defines the interface requirements for a TaPaSCo PE module and abstracts from
implementation details. Each PE in the T-model requires three basic channels:
1. a control channel to communicate with the host, 2. a signaling channel to
indicate completion, and 3. a data channel to access data. The exact nature of
the channels (e.g., AXI4, Avalon, Wishbone, NoC, …) is determined by A2, the
Architecture: TaPaSCo supports heterogeneous PE architectures, i.e., groups of
different PE kinds scaling linearly. To achieve this, PEs are grouped into PE
clusters, each cluster containing all PEs of a kind and abstracting away the con-
crete number of contained individual PEs. The T-shape is repeated here: Each
cluster itself is T-shaped and can be wired like the PEs themselves (see Figure 2).
On the outermost platform-independent level, this process is repeated across
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Fig. 2. Processing elements of same kind are grouped into clusters using channel aggre-
gators for the three basic channels, e.g., AXI4 Interconnects and interrupt controllers.

clusters. The collective term we use to describe the automated wiring of all three
levels is Architecture, i.e., the organization and wiring of PEs into a heteroge-
neous pool as shown in Figure 3. In TaPaSCo, Architectures are designed to be
platform-agnostic: Whatever protocol or technique is used to actually perform
the wiring, this part of the design should remain portable. TaPaSCo currently
uses an Architecture based on AMBA AXI4: All control interfaces are AXI4Lite
slaves, all memory interfaces are AXI4 masters, signaling is done via a single
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Fig. 3. Using the T-model to hierarchically repeat the automated wiring process to
connect the individual clusters into a heterogeneous pool architecture. The availability
and presence of components in the Platform layer depends on the target FPGA and
board; the Architecture does not depend on their presence or availability, making the
essential design portable.

wire interrupt line. AXI4 Interconnects are used for both slave and master inter-
faces at the cluster and Architecture levels to wire the connections. Note that
TaPaSCo’s blackbox approach regarding the PE internals is suitable to support
many different compute architectures: The AXI-based architecture has been used
both in the random-access architecture discussed in Section 4 for near-data pro-
cessing, as well as for a complex high-performance Stereovision accelerator based
on a systolic array [7]. It would also be entirely possible to use TaPaSCo to
connect only a single PE (containing a full architecture inside). TaPaSCo does
not impose a model on the PE, it only facilitates easy spatial replication. The
last abstraction is called the Platform: All parts of the hardware design which
are specific to the target board (e.g., the FPGA, pin constraints, peripherals,
memory) are generated by the Platform abstraction. Minimally, a Platform must
connect the control interfaces to the host, provide some memory shared between
PEs and the host, and an interface toward the host for PE signals. Furthermore,
all peripherals and other infrastructure are instantiated here (e.g., memory con-
trollers, interrupt controllers). Platform scripts can be seen as smart base designs:
They instantiate target-specific infrastructure, but retain a significant amount
of configurability without requiring manual intervention by the user. Originally,
both ThreadPoolComposer and TaPaSCo used a fixed address map scheme to
facilitate communication between host and PEs. Now TaPaSCo solves this more
elegantly by storing the on-chip address map in a custom hardware module gener-
ated on the fly during composition. This address map is then queried at runtime



by the software layers. This approach yields great flexibility: E.g., every kind of
PE may have a different number and/or differently sized control interfaces. It is
also possible to integrate custom, user-defined infrastructure modules and use
the TaPaSCo software layers to communicate with them: The TaPaSCo scripts
for Architecture and Platform are skeletons with numerous injection points for
extensions, where plug-ins can be inserted to modify the design in flight.

Example 1. If a PE does not have a TaPaSCo-compatible register interface (see
[16] for a more detailed description of the register conventions used by TaPaSCo),
a plug-in can automatically instantiate a suitable wrapper and TaPaSCo continue
with the automated wiring. A different example can be found in the zedboard
Platform: The Digilent ZedBoard [6] has an on-board OLED display that can be
used to show the number of completion signals at each slot; this is achieved by
a plug-in that instantiates the corresponding display controller and wires it to
the design. Such modifications are common, especially when exploring different
variations of a design, e.g., using different DMA engines. To simplify the use of
such plug-ins, TaPaSCo provides support for so called features: Features can be
defined using a simple, but consistent key-value syntax and can be queried by
plug-ins during composition. This allows the user to easily pass configuration
values, and enable or disable specific plug-ins.

3.2 Software Design Abstractions

Key to providing a productive environment for FPGA developers is to eliminate
as many manual tasks as possible that are not directly related to the problem
at hand. This specifically includes handling low-level communications with the
hardware. Using an automated process as described in Section 3.1 to construct
hardware designs has the benefit of yielding very regular designs, which can
be used in software without requiring repetitive manual protocol implementa-
tions. The core abstraction for the application programming interface (API) of
TaPaSCo is the task-parallel model: Every computation is broken into tasks,
which can execute in parallel. Each work item of a task is split into a number
of individual jobs, each of which can be computed independently. This model is
widely used in heterogeneous computing, because it accommodates different com-
puting architectures by abstracting computation from concrete algorithm: The
user submits jobs to the abstract machine, which are then processed by any of its
available PEs, regardless of their internals. Even the original interface defined by
TaPaSCo s predecessor ThreadPoolComposer was already sufficiently portable
to also support execution on digital signal processors, without having to change
the host code, cf. [16]). In TaPaSCo’s software framework, a task corresponds to
a cluster and job corresponds to one execution of a single PE. At this granularity,
a domain expert can develop the core application by defining tasks and splitting
work items into jobs; this is the top-most, user-facing API that TaPaSCo defines
(for a concrete usage example see Section 4). To implement this rather abstract
API, TaPaSCo internally mirrors the abstractions of the hardware design (see
Figure 4): The TaPaSCo library is concerned with the Architecture. It manages
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Fig. 4. Software Layer Hierarchy in TaPaSCo: The top-level API provides task-parallel
abstraction, the Platform API provides a thin user-space layer above either a) the oper-
ating system primitives implemented in the TaPaSCo Loadable Kernel Module (TLKM),
which in turn interacts directly with the device(s), or, alternatively, b) interfaces with
a RTL simulator of the hardware design.

PEs and the address map, performs the communication required to transfer data
and arguments, launch a job, and wait for the result(s). In order to implement
the interactions in a platform-agnostic manner, the TaPaSCo library is imple-
mented on top of the platform library, which encodes primitive operations, such
as accessing a PE’s registers, or allocate/free and read/write device-accessible
memory. This allows any Architecture to be used on any Platform with the same
user application code. The platform library operations are themselves realized
using an operating system layer implemented in the TaPaSCo loadable kernel
module (TLKM): Without going into unnecessary details, TaPaSCo uses a fixed
set of ioctl commands, which need only be implemented at most once for each
Platform (often code can even be shared among families of devices). They are
sufficiently generic to accommodate a wide variety of transport mechanisms, from
shared memory (e.g., Zynq, MPSoC) to PCIe Gen3 (e.g., VC709). Please see our
documentation [13] for more details on the internal APIs.

3.3 Portability

The overall approach outlined in Section 3.1 and Section 3.2 has proven to be
very useful to isolate the domain expert (i.e., the application developer) from
the details of the chosen target platform: A TaPaSCo application’s code does
not need to be changed when executing on a different TaPaSCo platform.

This also applies to the hardware level: If a hardware module conforms to
the TaPaSCo interface requirements, it can be used on any supported platform.
Furthermore, TaPaSCo was designed to be easily extensible to new platforms: At
the time of writing, TaPaSCo supports seven different platforms, ranging from
small embedded boards using Zynq devices, up to high-performance PCIe-based
expansion cards with large FPGA devices .

3.4 Scalability

Scaling a TaPaSCo design, e.g., from using five PEs of a certain kind to 30 PEs,
requires only automated rebuilding of the hardware design via TaPaSCo. Ev-
erything else, including the application code, does not need to be changed and



will adapt automatically to the new design. Furthermore, additional support for
design space exploration in TaPaSCo simplifies a crucial task in optimization:
When designing an SoC with a large number of PEs, there will always be a
trade-off between the number of PEs in the design and its operating frequency.
More PEs means more potential for spatial parallelism and better area utiliza-
tion; however, with increasing area, path lengths in the design also increase,
making timing closure increasingly more difficult to achieve. Finding a good
trade-off for any given application can be a very tedious and slow trial-and-error
process. TaPaSCo supports the user by providing an automated design space
exploration (DSE) along three axes of operating frequency, area utilization, and
use of design variants. Each axis can be separately activated or deactivated in
a DSE run, e.g., to determine only the highest operating frequency for a fixed
number of PEs, or find the maximal number of PEs that will fit on a given device
at a fixed operating frequency. The algorithm first computes upper and lower
bounds for each activated axis. For the the operating frequency, TaPaSCo uses
an out-of-context synthesis run (abbreviated as OOC here) to perform a full
place-and-route on an otherwise empty target FPGA. Since this design is almost
unconstrained, this yields an overly optimistic approximation of the achievable
operating frequency. The lower bound is usually determined by the target FPGA;
by default, TaPaSCo cuts off at 50 MHz, discarding compositions with a lower
operating frequency. The remaining interval is then divided evenly in 5 MHz
steps by default, each step being the frequency component of a coordinate in
the design space. Bounds for area utilization are also based on out-of-context
synthesis: OOC yields an estimate of the area used by each kind of PE. The area
utilization for the entire design is then estimated using a linear extrapolation
based on the number of PEs of each kind and an estimation for the architectural
overhead. By default, TaPaSCo assumes zero overhead, making a very optimistic
approximation. This is justified, as modern place-and-route tools perform very
extensive optimizations and can compact similar circuits very aggressively, some-
times yielding lower values for area utilization than the linear extrapolation would
suggest. Since these optimization efforts are very hard to estimate a-priori for
any given design, TaPaSCo compensates by using an optimistic approximation
of the design overhead instead, to avoid cutting off viable designs. To increase
or decrease the area utilization, the initial composition is scaled linearly in the
number of PEs. This yields the area component of the design space coordinates.
Design variants represent different implementations of the same PE kind, e.g.,
using more Block RAM, or more pipeline stages, or different sizes of FIFOs. For
each cluster , a single variant is chosen; the design variants are then generated
combinatorially by combining with every variant of every other PE kind in the
composition. This yields the choice of a design variant as the third coordinate
component within the design space. Due to combinatorial explosion, the size of
the design space quickly exceeds the limits for brute force exploration. Therefore
TaPaSCo supports different heuristic functions to score each element in the de-
sign space and then explore batches of elements ordered by their score; at each
step, the design space is pruned, e.g., of the elements which have a lesser score



than the best element found so far. Since such explorations still require a lot of
computing power, TaPaSCo supports the use of the Slurm Workload Manager [1]
to parallelize the DSE across entire high-performance computing clusters.
Example 2. Assume the user specifies an initial composition consisting of three
different PE kinds, called A, B and C, with two PEs in the A cluster , four PEs
in the B cluster , and six PEs in the C cluster . In TaPaSCo syntax this would be
expressed as [A×2, B×4, C×6]; in the following, we will call such a configuration
a composition. When scaling linearly, the smallest composition with the same
ratios containing all PEs is thus [A× 1, B × 2, C × 3]. Also assume that TaPaSCo
has determined via OOC that the largest composition fitting on the target FPGA
is [A× 3, B × 6, C × 9]. This would yield three viable compositions in the design
space. Furthermore assume that the OOC for A has given us an fmax of 100 MHz,
75 MHz for B and 150 MHz for C. Since all PEs are clocked at the same frequency,
B provides the upper bound on frequency at 75 MHz. Leaving the lower cut-off at
the 50 MHz default yields six frequency coordinates: 50 MHz, 55 MHz, 60 MHz,
65 MHz, 70 MHz and 75 MHz. Finally, assume that only A has variants, called A0
and A1. Thus, the design space TaPaSCo will explore will contain a total of 36
elements (listed in Table 1). Details of the actual DSE algorithm, including the
heuristics used for pruning the search space, have been presented in [8].

Table 1. Initial design space for TaPaSCo DSE run. F = Target Design Frequency, R
= Replication Factor.

F
R 1 2 3

50[A0×1, B×2, C×3]
[A1×1, B×2, C×3]

[A0×2, B×4, C×6]
[A1×2, B×4, C×6]

[A0×3, B×6, C×9]
[A1×3, B×6, C×9]

55[A0×1, B×2, C×3]
[A1×1, B×2, C×3]

[A0×2, B×4, C×6]
[A1×2, B×4, C×6]

[A0×3, B×6, C×9]
[A1×3, B×6, C×9]

60[A0×1, B×2, C×3]
[A1×1, B×2, C×3]

[A0×2, B×4, C×6]
[A1×2, B×4, C×6]

[A0×3, B×6, C×9]
[A1×3, B×6, C×9]

65[A0×1, B×2, C×3]
[A1×1, B×2, C×3]

[A0×2, B×4, C×6]
[A1×2, B×4, C×6]

[A0×3, B×6, C×9]
[A1×3, B×6, C×9]

70[A0×1, B×2, C×3]
[A1×1, B×2, C×3]

[A0×2, B×4, C×6]
[A1×2, B×4, C×6]

[A0×3, B×6, C×9]
[A1×3, B×6, C×9]

75[A0×1, B×2, C×3]
[A1×1, B×2, C×3]

[A0×2, B×4, C×6]
[A1×2, B×4, C×6]

[A0×3, B×6, C×9]
[A1×3, B×6, C×9]

3.5 Extensibility

Given the vast variety of scenarios in which FPGAs are often used, it is impossible
for a generic toolchain like TaPaSCo to anticipate and support every use case out
of the box. Instead of a one-size-fits-all approach we opted for a high degree of
modularity and extensibility in all parts and aspects of TaPaSCo. Using plug-ins
and features to modify the hardware design generated by TaPaSCo has already
been discussed in Section 3.1. Adding new Platforms or Architectures is very easy,
too. But one of the core goals of TaPaSCo is to provide a re-usable foundation
for further work and to eliminate some of the tedious work for every prototyping
engineer or scientist. We therefore also aimed at making most parts of TaPaSCo
modular and allow for their standalone usage.



Example 3. Some people may not be interested in using the task-parallel ab-
stractions provided by the TaPaSCo API, but would still like to use the rest of
the toolchain to iterate their designs more quickly; in this case, the Platform
API can be used on its own to directly interact with the hardware. For others,
the TaPaSCo API may not be sufficiently abstract yet; in this case, TaPaSCo
can be used as a foundation for implementing more complex environments and
frameworks, such as OpenMP (cf. [18]), or OpenCL.

4 Case Study: MicroBlaze-based many-core architecture

TaPaSCo was recently used in a study of near data processing (NDP), where an
FPGA is inserted in between storage elements and the host, and simple data
processing tasks (which require no inter-task synchronization facilities) are of-
floaded to be performed by the FPGA instead of the host. This approach can
free the main CPU from trivial, but data-intensive tasks, such as summing or
calculating averages, and avoid expensive data transfers. To simplify the pro-
gramming of the system, the first prototype of the NDP system, called Shishito,
consists of MicroBlaze soft-core processors [19] with small local BRAM storage
and direct access to the memory controller. Each core runs independently of
and asynchronously to the others without synchronization across tasks. The fol-
lowing sections will discuss the design of the Shishito processing elements and
the overall architecture, then proceed to illustrate how TaPaSCo accelerated the
whole design and implementation process, showing the actual commands required
to assemble the SoC. The NDP use-case also employs capabilities just recently
added to TaPaSCo to describe and manage more complex memory systems (e.g.,
distinguishing between PE-global and PE-local memories).

4.1 Shishito Processing Elements

To allow TaPaSCo to automatically construct the SoC design for us, the first step
was to design a TaPaSCo-compatible MicroBlaze PE. The MicroBlaze processor
has a multitude of configuration options, from minor changes such as enabled/dis-
abled exception support, over support for optional instructions, up to different
instruction pipeline architectures. In the NDP scenario, the programs running in
the MicroBlazes are relatively simple. We thus deactivated most instruction set
extensions in favor of larger data caches. A common headache in this scenario is
to find a good size for the caches, so we decided to explore different sizes, where
both data and instruction cache share the same BRAM-backed storage. To make
this design work well with TaPaSCo, we needed to wrap it into the T-shape,
previously discussed in Section 3.1, as follows:

While the AXI4 memory interface can simply be turned on using a configu-
ration parameter for the MicroBlaze, the signaling and control interfaces require
additional modules. The control interface is implemented as an AXI4Lite register
file module written in Chisel, called MBCtrl. This module uses the direct wire
interface of the MicroBlaze to hold the processor in reset until the start register



is written. The processor will then start to execute its program, which should
end with triggering an interrupt at a local interrupt controller (see Figure 5).
MBCtrl receives and acknowledges the interrupt immediately, then puts the Mi-
croBlaze back in reset. Finally, it raises the interrupt on the external line to
signal completion to the host.

MicroBlaze Processing Element for TaPaSCo
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Fig. 5. Shishito processing element: MBCtrl provides an AXI4Lite slave interface for
TaPaSCo; BRAM is accessible via LMB from the MicroBlaze, as well as via an AXI4
controller. An optional DMA engine can transfer data between local and device memory.

In order to be able to communicate with the host via BRAM, we attached an
AXI4 controller to the local BRAM. This allows us to directly transfer the Mi-
croBlaze programs using the standard mechanisms of TaPaSCo (see Section 4.3).
The diagram in Figure 5 shows the final PE design for the prototype; this design
is assembled by a Tcl script for Vivado Design Suite. It could have been generated
by BlueSpec, or Chisel, or directly from Verilog/VHDL, just as well, but since
we are using several components from the Xilinx IP catalog, this approach was
the fastest. Note, however, that any of these approaches to define the PE would
have worked with TaPaSCo.

TaPaSCo only requires an IP-XACT [10] description of the module and the
T-shape of interfaces to perform the wiring of any PE automatically. In our case,
we used the Vivado Design Suite to generate an IP-XACT description of the PE
and packaged it into a .zip file, which can be directly imported into TaPaSCo:
tapasco import shishito.zip as 1337

The import command performs several actions: In general, it makes the PE
contained in shishito.zip available to TaPaSCo using the kind ID 1337. This kind
ID will later be used in the application to identify the kind of PE a job requires.
Note that this only identifies the abstract algorithm; different implementations
or algorithms performing the same computation will usually share the same kind



ID, since this knowledge should be hidden from the user. Unless given with the
--skipEvaluation command argument, the import command will perform OOC
synthesis and place-and-route for all targeted Platforms, in this case all known
Platforms (this could be restricted, e.g., to the ZedBoard Platform using -p
zedboard). OOC will yield estimations for both area utilization A per instance
and maximal operating frequency Fmax.

4.2 Shishito Architecture

The core goal of TaPaSCo is to free the engineer from having to focus on anything
not directly related to the acceleration problem at hand. In our case this means
that we will let TaPaSCo construct the entire on-chip architecture for us, leaving
us free to concentrate on the MicroBlaze PEs and their application code. To get
the software engineers up and running, we can generate a fully working bitstream
with two MicroBlazes for them with a single command:
tapasco -v compose [shishito x 2] @ 100MHz -p zedboard

The compose command can be used to construct a specific composition, without
using any design space exploration; in this case, the composition will include two
instances of our MicroBlaze PE running at 100 MHz and a bitstream will be gen-
erated for the ZedBoard. The low operating frequency and number of PEs ensures
that the synthesis time will be reasonably short, so we can use frequent iterations
while working in tandem with the software engineers on the application side. For
the final evaluation of the prototype, we will use the design space exploration
feature of TaPaSCo to find a good trade-off between number of instances and
operating frequency. By default, TaPaSCo will optimize job throughput, i.e., the
number of computation jobs per second. However, to estimate job throughput,
we need a good approximation of the average computation time required for
each job. Luckily, this is very simple: Once the MicroBlaze program is assembled,
the number of clock cycles for any given input can be determined by offline
simulation. A number of ways can be used to provide this data to TaPaSCo’s
DSE, the simplest being re-importing the PE with the additional data:
tapasco import shishito.zip as 1337 --averageClockCycles 1250000

Now we’re ready to harness the power of TaPaSCo’s automated design space
exploration:
tapasco explore [shishito x 2] in area, freq -p zedboard

The explore command will take an initial composition and a list of design space
dimensions; the initial composition determines the ratio of PE kinds to each other,
e.g., for an initial composition [A×1, B×2], TaPaSCo will only use compositions
where there are twice as many instances of B as of A when varying the area
utilization. The design space dimensions area and freq activate the exploration
along the area utilization and operating frequency axes, respectively. Note that
we used a -p zedboard Platform filter this time, to restrict the exploration to a
single Platform. By default, explore will spawn one thread for each active CPU



1 #include<vector>
2 #include<tapasco.hpp>
3
4 /* Perform automatic initialization of first device: */
5 Tapasco tapasco;
6 auto prog { /* MicroBlaze program */ };
7 std::vector<JobData> data { /* data for each job */ };
8 std::vector<JobFuture> threads;
9 /* Launch jobs asynchronously. */

10 for(JobData& jd : data)
11 threads.push_back(
12 tapasco.launch(1337, Local(InOnly(prog)), jd);
13 );
14 /* Wait for all jobs to finish. */
15 for(auto& t : threads)
16 t.wait();
17 /* do something with the result */

Listing 1: Excerpt of the main loop of the Shishito host program (C++17).

core on the executing machine performing a single composition run in parallel,
taking the top elements of the ordered design space (in this case ordered by their
estimated job throughput). The DSE will repeat this until it finds a design that
achieves timing closure automatically (see [7] for a more thorough discussion of
the algorithm itself). This will usually take a lot of time and computing resources,
but does not require any interaction. After a few hours, or days, depending on
the complexity of the design, TaPaSCo will generate a working bitstream with
close to ideal operating frequency and number of PEs.

4.3 Application Development with TaPaSCo

The last missing piece for our prototype is the application software: To be precise,
we need the MicroBlaze programs to execute on our PEs and a host program that
offloads the computations to the FPGA. Discussing the former is out-of-scope
for this paper, but the latter will be examined briefly to give an idea of software
development with TaPaSCo. Listing 1 contains excerpts from the host program
focusing on the main offloading loop. Assume that the executable binary code
of the target MicroBlaze program has been inserted as the array prog into the
source code, and the actual input data has already been split into a number of
JobData segments suitable for parallel processing, stored as data. Note that this
assumption is not unrealistic. In many simple cases, such as summing up an array
of numbers, an array_view data structure can be used on a raw data block to
perform a useful split very easily and at practically no runtime cost. In Line 14,
we launch a TaPaSCo job for each data element. This line looks intentionally,
but deceptively, simple. In fact, there is an enormous amount of work being
performed under the hood, which we can only briefly gloss over: In the launch
call, the kind ID 1337 is used to identify the target PE kind, as expected; the
program prog is wrapped in class constructors called Local and InOnly, which
simply serve as a type annotation for C++ template expansion in tapasco.hpp.
Seeing a Local argument, TaPaSCo will allocate PE-local memory for the data
block (as opposed to device-global memory) at the PE where the execution will
take place. It will then copy the executable code prog to the PE memory and



pass the handle returned by the allocation to the MicroBlaze program. For jd,
TaPaSCo performs much the same procedure, only that allocation takes place on
the device-global memory shared by all PEs. launch then proceeds to perform the
setup for the launch, starts the PE and returns a closure to the bottom half of
the launch to be executed asynchronously. The bottom half consists of 1. waiting
for the corresponding completion signal, then 2. copying back data from the
device-global memory for jd to the CPU’s memory location for jd, 3. releasing
of the allocated memory for prog and jd, and 4. finally releasing the PE. Note
that the bottom half does not launch a separate thread, but is instead executed
only at the call to its wait method in the loop below; each bottom half thus
executes on the main thread of the application. This approach allows us to hide
the fact, that a PE for the kind 1337 may not be available when calling launch;
in this case the job will be queued and executed as soon as a PE is available.
Since prog is marked InOnly, it will only be copied to the device, but not back
after execution. On the other hand, since jd is not marked InOnly, it will both
be copied to the device prior to the execution, as well as back to main memory
afterwards. There exists another type annotation called OutOnly, which allows
to specify the third case of elements, which need to be allocated on the device,
but not copied to the device before execution, only from the device afterwards
(e.g., data generated on the device).

4.4 Scaling out with TaPaSCo

Assuming our initial prototype on the ZedBoard was satisfactory, we can now
easily scale up to larger boards using TaPaSCo: E.g., we can simply target a
much larger ZC706 by running our DSE again with -p zc706, which will generate
a new bitstream, likely with significantly more PEs than on the ZedBoard, likely
even running at a higher frequency. The application code shown in Listing 1 does
not need to be changed at all to make use of the new PEs. In fact, since the CPU
architecture on ZC706 and ZedBoard is the same, it does not even need to be
recompiled!

5 Conclusion

We have shown how TaPaSCo can reduce the development effort required to
implement scalable, portable FPGA-based computing architectures by providing
both hardware and software abstractions for embedding custom accelerators in
FPGA designs. Furthermore, we argue that TaPaSCo’s design space exploration
facilities can remove guesswork and manual design iterations, while improving
upon the final result (cf. [8]). Last but not least, TaPaSCo is freely available as
open-source. It provides a reproducible baseline and is easy to extend, simplifying
benchmarking and performance evaluation for the academic FPGA community.
TaPaSCo is licensed under the GNU LGPLv3 and available on our public GitLab
website [13].
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