
Extending LLVM for Lightweight SPMD
Vectorization: Using SIMD and Vector
Instructions Easily from Any Language

Robin Kruppe, Julian Oppermann, Lukas Sommer, Andreas Koch
Embedded Systems and Applications Group, TU Darmstadt, Germany

{kruppe,oppermann,sommer,koch}@esa.tu-darmstadt.de

Abstract—Popular language extensions for parallel program-
ming such as OpenMP or CUDA require considerable compiler
support and runtime libraries and are therefore only available
for a few programming languages and/or targets. We present an
approach to vectorizing kernels written in an existing general-
purpose language that requires minimal changes to compiler
front-ends. Programmers annotate parallel (SPMD) code regions
with a few intrinsic functions, which then guide an ordinary
automatic vectorization algorithm. This mechanism allows pro-
gramming SIMD and vector processors effectively while avoiding
much of the implementation complexity of more comprehensive
and powerful approaches to parallel programming. Our proto-
type implementation, based on a custom vectorization pass in
LLVM, is integrated into C, C++ and Rust compilers using only
29–37 lines of frontend-specific code each.

I. INTRODUCTION

CUDA demonstrated the advantages of extending an exist-
ing general-purpose language such as C++ with the ability to
seamlessly integrate serial code and parallel kernels written
in Single Program Multiple Data (SPMD) style, rather than
using a separate language for these kernels. However, CUDA
is not portable, especially not to current and future masked-
SIMD instruction sets, which lend themselves to a similar
programming style as demonstrated by ispc [1].

But even more portable parallel programming environments
such as OpenMP still require considerable compiler support
and runtime libraries and are therefore only available for a few
programming languages. Ideally, programs written in many
different serial languages could enable parallel processing
through far smaller, more targeted language extensions.

The ability to spawn and manage multiple threads as well
as communication between them is already widespread today,
so a minimalist approach may delegate these aspects to user
code rather than baking them into the language or compiler.

On the other hand, exploiting the SIMD or vector instruc-
tions of modern processors is also crucial for achieving high
performance, but manual access to these instructions from
general purpose languages is often non-existing, limited or
overly target-specific, while fully automatic vectorization is
severely restricted by the need to preserve serial semantics.

We therefore propose to limit the involvement of the com-
piler to automatically vectorizing SPMD-style kernels at the
request of the programmer, rather than providing a fully-
featured parallel programming environment. Specifically, we

describe a small set of intrinsic functions that can be used
by programmers to annotate (SPMD) code regions. These
code regions can then be vectorized by established approaches
whose implementation can be contained entirely in a shared
compiler middle end such as LLVM.

Thus all that is required to port this approach to more
languages is to expose the intrinsic functions to the user and
translate them to matching intrinsics in the optimizer IR, which
is typically trivial as such intrinsics are commonplace.

II. A SIMPLE EXAMPLE

To double each element of an array with n elements in C,
a programmer may write an SPMD kernel as follows:

void add_kernel(int n, float *x) {
size_t i = lane_id();
if (i > n) return;
a[i] *= 2.0;

}

When this function is vectorized, it processes as many ele-
ments at once as there are SIMD lanes on the target processor,
as the intrinsic lane_id() will be mapped to the index
vector <0, 1, 2, 3, ...>.

The programmer then writes code to schedule multiple
kernel invocations to cover the entire problem instance. The
best way to do this depends on the task at hand, but in this
example, a single-threaded implementation may be as simple
as the following loop:

for (size_t j = 0; j < n;
j += /* vector width */;) {

spmd_call(add_kernel, n, &x[j]);
}

The use of the spmd_call intrinsic indicates to the compiler
that the function add_kernel should be vectorized and the
vectorized version should be called with the given arguments
replicated into all SIMD lanes. It is still possible to call the
unvectorized function directly, and thus to share code (and
data) between parallel and serial parts of the program.

While repeating this boilerplate code for every instance
of parallel processing would be unacceptable, it is easily
possible to extract common patterns into library code without
modifying and rebuilding the compiler or compiler-provided

3452

278

runtime library. For example, a Rust programmer with access
to the aforementioned intrinsics can write a small library
enabling them to express the above example as follows at no
loss of performance:

parallel_for_each(x, |x_element| {
x_element *= 2.0;

});

Thus our approach shifts the power and responsibility of
creating higher-level or domain-specific abstractions for data
parallelism from the compiler to the programmer. This fills
a gap between purely serial or multi-threaded programming
without access to SIMD instructions on the one hand, and
more powerful and more heavyweight parallel extensions such
as CUDA or OpenMP on the other hand.

III. EVALUATION

We prototyped this concept by implementing a custom vec-
torization pass for LLVM based on previous research such as
Whole Function Vectorization [2] which vectorized OpenCL
kernels for CPUs. Our pass operates on LLVM IR and emits
the portable vector operations provided by LLVM, so it could
conceivably be used to target many different architectures,
although we have only evaluated it on one.

The pass can be plugged into the optimization pipeline of
any LLVM-based compiler, which we have done for C, C++

and Rust compilers. This integration, together with adding our
intrinsics, required only 29–37 lines of code per frontend.

Targeting the open GPGPU processor Nyuzi [3] and its
16-wide masked-SIMD unit, we achieve speedups of up to
10x over scalar code and are competitive with some manually
vectorized code.

The evaluation also confirms the utility of masked-SIMD
instruction sets: despite making no effort to exploit uniformity
of computations and control flow across SIMD lanes, our
implementation generates well-vectorized code and avoids pre-
viously observed slowdowns [2] on CPU architectures without
masked-gather and masked-scatter instructions.

IV. FUTURE WORK

In the future we hope to combine this approach with other
implementations of vectorization algorithms such as RV [4]
and apply it to other architectures such as Intel’s AVX-
512, Arm’s Scalable Vector Extension, or RISC-V’s upcoming
vector extension.

REFERENCES

[1] M. Pharr and W. R. Mark, “ispc: A SPMD compiler for high-performance
CPU programming,” in Innovative Parallel Computing, 2012.

[2] R. Karrenberg and S. Hack, “Whole Function Vectorization,” in Interna-
tional Symposium on Code Generation and Optimization, 2011.

[3] [Online]. Available: https://github.com/jbush001/NyuziProcessor/
[4] [Online]. Available: https://github.com/cdl-saarland/rv

279

