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Abstract—With the increasing popularity of RISC-V in the
academic and industrial world, an ever growing number of
open-source implementations of the instruction set have become
available. However, it is not an easy task to compare the cores to
one another, as they employ different interconnects, build systems
and so on.

This work presents an open-source catalog of RISC-V cores
for use on FPGAs. All of these cores have been wrapped as
drop-in compatible processing elements and can be used either
standalone, or integrated into the TaPaSCo SoC composition
framework. By using TaPaSCo, details of the bitstream genera-
tion flow and user-space interfaces are abstracted away, allowing
the user to focus on the needs of the concrete applications when
exploring the RISC-V landscape.

All of the catalog’s cores have been synthesized for a number
of hardware platforms, and are evaluated against each other
using state-of-the-art embedded processor benchmarks such as
Dhrystone, Embench and CoreMark. The results show that
the cores have a huge degree in performance variability. The
slowest cores achieve less than 100 MHz on large UltraScale+
devices, while better FPGA-optimized cores run in excess of
500 MHz. Accordingly, the benchmarks show a wide spread of
performance ranging from less than 0.5 CoreMark/MHz up to
over 2.5 CoreMark/MHz.

Index Terms—RISC-V, FPGA, soft-core

I. INTRODUCTION

The rising popularity of RISC-V in the industrial and academic
space resulted in a plethora of open-source RISC-V implemen-
tations. While all of these cores should follow their respective
RISC-V ISA version, all features of the cores not specified by
the ISA are left open to the respective designers. Accordingly,
a wide range of different interfaces and configurations is used
to add peripherals to the core, access memories or control
execution. One processor might use separate AXI interfaces to
access instruction or data memories, while another core uses a
single Wishbone bus to access both.

This heterogeneity results in practical problems when using and
exploring the core landscape. Someone interested in using an
open-source RISC-V core in their designs will find it difficult
to choose the right processor for their specific use-case. The
cores come with a variety of supported toolflows, and will

almost certainly not work out-of-the-box with the platforms
available to the user. Often, the cores come with only one
example project for a single FPGA platform that might not
always be a suitable target. Porting the cores to a better suited
target platform is tedious and error prone work, which is not
feasible to perform for all designs that might be interesting.

This paper contributes the following to solve some of these
problems:

1) A generalized catalog of open-source softcore processors
for easy drop-in use on Xilinx FPGAs.

2) Integration of the softcores into the accelerator framework
TaPaSCo [1] for one-click bitstream generation with a
given core.

3) The scripts to package any additional cores in a similar
manner.

4) A thorough evaluation of all presented cores with regards
to FPGA resource usage and performance over a range
of state-of-the-art microprocessor benchmarks.

In Section II, RISC-V is briefly introduced and the a variety of
available open-source RISC-V cores are presented. Afterwards,
the cores suitable for packaging are chosen. The packaging
of the cores and the integration into TaPaSCo is detailed in
Section III. Using the packaged cores, evaluation results for a
variety of FPGA based platforms are presented in Section IV.

II. OVERVIEW OF RISC-V AND SOFT PROCESSORS

Introduced in 2010, the RISC-V instruction set architectures
(ISA) has found increasing support in the industrial as well
as academic worlds [2]. Developed at UC Berkeley, the
architecture presents an interesting target for new developments
and innovation in the processor design world. Compared to
other architectures, RISC-V provides a number of distinct
advantages which makes it a prime target for development: (1)
The open source nature allows any interested party to develop
their own chips based on the ISA without the prohibitive license
costs incurred by competing ISA. (2) While the development
process of the ISA is open source, the major parts of the
ISA are already frozen making it an interesting target for



software developers as well. (3) Additional functionality is
available through a set of extensions which are also frozen
after stabilization. (4) The modularity makes the ISA suitable
for high performance as well as low-power chips. Specialized
application processors with dedicated accelerators are also
supported.

These advantages led to widespread community adoption and a
wide range of supporters, organized in the RISC-V foundation.
The toolflow based on GCC and LLVM is reaching maturity
and complex software, such as various Linux distributions, is
already available. Accordingly major players in the industry
as well as innovative start-ups participate in the ecosystem.
The hard disk drive and flash manufacturer Western Digital is
actively developing high-volume Flash controllers based on the
RISC-V architecture [3]. To increase adoption of RISC-V, they
furthermore released their SweRV design as open-source under
the Apache 2.0 license. The fabless semiconductor company
SiFive is a new company that focuses on developing cores
based on the RISC-V ISA adapted to a specific customers
needs and ranging from small in-order processors up to large,
multi-core, high performance, out-of-order designs [4]. Outside
of the industrial domain, many projects fueled by academia
or even hobbyists emerged. The creators of RISC-V at UC
Berkeley themselves developed a number of core designs such
as the BOOM processor [5]. Another interesting project is
GRVI Phalanx which implements 1680 GRVI RISC-V cores
onto a single Xilinx Virtex UltraScale+ VU9P FPGA [6]. Many
more cores exist and are under active development [7].

As the targets of the various development projects span a wide
range, not all cores are suitable for discussion in context of
this paper. This paper is highly focused around open-source
FPGA-optimized cores that are suitable for integration with
accelerators. Thus, five main points have to be fulfilled by the
cores: (1) Be compatible with the TaPaSCo Processing Element
(PE) scheme for interfacing accelerators. (2) Be available
to researchers and preferably open-source. (3) Be suitable
for implementation on FPGA targets. (4) Support recent ISA
versions. (5) Be 32 Bit ISA compatible.

The first requirement is highly important as the existing
TaPaSCo framework is used for bitstream generation of the
complete system-on-chip. Fortunately, TaPaSCo imposed only
very few rules on the processing elements it will integrate. The
main requirement is that the core uses AXI Memory-Mapped
interfaces for its memory accesses. Again, most of the cores
available already fulfill this requirement. Furthermore, most of
the cores fulfill the second requirement as well. This excludes
some proprietary commercial offerings, however, such as the
SiFive family of processors. The third requirement should
be fulfilled by most cores that fulfill the first requirement.
However, some aspects of ASIC-targeted designs, such as
memory generator usage, might make them infeasible for
efficient FPGA implementation. As to the fourth requirement,
the cores have to support recent versions of the ISA so they
can be targeted by the latest versions of the software toolchain.

Lastly, we restrict the evaluation to cores with 32 Bit ISA
for better comparability (even though a small-number of 64b
capable open-sources cores exist).

Following these selection criteria, these seven cores have been
considered for integration and evaluation in this study: Taiga [8],
VectorBlox Orca [9], Western Digital Swerv [10], Bluespec Inc.
Piccolo [11], Bluespec Inc. Flute [12], SpinalHDL VexRiscv
[13] and PicoRV32 [14]. Details of the specific cores can be
found in Table I. All of the cores support a current version of
the ISA and are available under various open licenses.

Some cores fulfilling our criteria were not considered for
evaluation due to a number of reasons. Some of the more
popular cores, e.g., Ariane [15] and SHAKTI E-Class [16],
require a complex build infrastructure, or have too-limited
external interfaces, making it hard to package them into the
TaPaSCo infrastructure. However, the selected cores already
cover a wide range and provide a good insight into the diverse
landscape of RISC-V processors.

A. Description of the Selected Cores

a) Piccolo and Flute: The two cores are developed by
Bluespec, Inc. and are coded in Bluespec System Verilog.
Several configuration options are available to enable a range of
instruction set extensions, and it is possible to switch between
32 and 64 bit as seen in Table I. Piccolo is targeted for
embedded systems and thus has a short pipeline of three stages.
Flute is designed for higher performance and uses a five stage
pipeline.
b) Orca: A RISC-V core from VectorBlox Computing Inc.
The pipeline has 5 stages, but can be reduced to 4. It can be
used in conjunction with a proprietary vector unit for higher
performance.
c) PicoRV32: A size-optimized RISC-V core from Clifford
Wolf. Due to its small size, high frequencies can be achieved.
The standard feature set is minimalistic, but can be extended
through configuration options.
d) SweRV: Western Digital’s RISC-V core for integration into
embedded systems. It features the most complex pipeline in
our selection, having 9 stages and a dual-issue execute stage.
The configuration options are restricted to the memory.
e) Taiga: The core from Simon Fraser University, Canada
is designed primarily for FPGA usage. The pipeline features
parallel execution units for an improved IPC. It provides TLBs
and MMUs to support operating systems such as a full-scale
Linux.
f) VexRiscv: The core written in SpinalHDL is highly flexible.
For configuration, a plugin system is used. It can be used as a
small core for embedded systems, but also configured up to a
Linux running system with MMU support.

B. Configuration Parameters

Many RISC-V cores come with a wide variety of configuration
options. For our evaluation, we used the same configuration
of a core throughout all benchmarks. For better comparability
of the compute performance, all cores are configured without



TABLE I
PROPERTIES OF SELECTED RISC-V CORES.

Core License Language ISA Pipeline Structure

Flute Apache 2.0 Bluespec SystemVerilog RV32/64I[A][C][D][F][MSU] 5-stage in-order
Orca BSD VHDL RV32I[M] 4 / 5 stages
Piccolo Apache 2.0 Bluespec SystemVerilog RV32/64I[A][C][D][F][MSU] 3-stage in-order
PicoRV32 ISC Verilog RV32I[M][C] 1 stage
SweRV Apache 2.0 SystemVerilog RV32IMCZ 9-stage dual-issue
Taiga Apache 2.0 SystemVerilog RV32IMA variable
VexRiscv MIT SpinalHDL RV32I[M][C][A] 2 to 5+ stages
Proprietary Proprietary unknown Proprietary 32 Bit RISC core optimized for target FPGA 3, 5, or 8-stage

caches. This provides a fair comparison between all cores
including the cores without support for caches. As the further
configuration process depends on the core, we present them
individually for each core.
a) Piccolo and Flute: Both are based on the same build system
and thus have the same options. We used the configuration
RV32ACIMU without support for floating point and privilege
levels. Caches were disabled manually.
b) Orca: The pipeline has the default length of 5 stages and
caches are kept disabled.
c) PicoRV32: Configuration with barrel shifter, fast multiplier
and divider.
d) SweRV: Default configuration without data and instruction
caches. Version 1.1 of the core is used.
e) Taiga: Configuration with multiplier, divider and AXI bus,
disabled data and instruction caches.
f) VexRiscv: Custom configuration with AXI4, multiplier and
divider, without data and instruction caches.

III. SYSTEM-ON-CHIP INTEGRATION

TaPaSCo is a System-on-Chip generator for FPGAs developed
at TU Darmstadt and available under LGPL [1]. Using TaPaSCo
a designer of accelerators can easily generate bitstreams for
a variety of platforms without having to deal with the low-
level platform integration work, dealing with PCIe interfaces
or off-chip-memory controllers. Additionally, TaPaSCo can
automatically find the throughput-optimal clock frequency for a
given design, or even optimal performance configurations based
on user-supplied metrics. Apart from the bitstream generation
aspects, TaPaSCo helps with the software integration as well
by providing an API and Linux kernel drivers for the supported
platforms. The driver and API are generalized and can be used
without user code changes on any of the platforms.

These aspects make TaPaSCo very suitable to host the explo-
ration performed in this work, as all cores will operate in the
same environment. Getting the required evaluation results is as
easy as packaging the cores in a suitable format, and expending
cluster compute time at synthesis and place & route. The
basic computation elements of TaPaSCo are called processing
elements (PE) and have a so-called T-Shape of three groups of
ports: Usually a PE has an interface for control that is attached
to a host (e.g., x86 or ARM CPU), an interface to the off-chip
memory provided by the selected FPGA, and some additional
signalling such as interrupts to indicate task completion. As

the RISC-V cores described in Section II-A do not fit this
shape directly, they are packaged with lightweight wrappers to
conform to the interface conventions.

Controller

Local Instruction
Memory

Local Data
Memory

Memory
Interconnect

RISC-V

Host Memory Access

Host Control

Offchip Memory

Interrupt

Fig. 1. Basic design of a RISC-V Core packaged as a TaPaSCo Processing
Element (PE). Execution is managed by the Controller. The program is loaded
into the local instruction memory which is mapped into the memory space
of the RISC-V core. The core can signal the end of processing by raising an
interrupt to the host.

First, a controller is added that is responsible for managing the
execution of the processor. After loading a new bitstream, all
processors it contains are initially held frozen. The controller
is then responsible to awaken each core once a program has
been loaded and the program execution started, both performed
via TaPaSCo API calls. Additionally, the controller is used
to indicate task completion to the host via an interrupt. To
this end, the RISC-V core uses memory-mapped registers to
indicate program completion, after which the controller then
issues an interrupt to the host and sends the core to sleep
again, awaiting further tasks. The program to be executed is
stored in a local instruction memory that is exclusively used by
this RISC-V core. The local memory can be accessed by the
host and can directly be loaded with a program before starting
execution. Additionally, the core has some local memory for
data. Shared memory with other cores on the device is realized
through a connection to the larger off-chip memory. Optionally,
an L2 cache can be inserted in front of the off-chip memory



through a TaPaSCo option to improve memory performance.
The schematic design of a TaPaSCo compatible packaged
RISC-V core is shown in Figure 1.

Apart from the hardware aspects, software for the cores
has to be compiled as well. GCC 9.1.1 RISC-V from May
2019 is used, with optimization level O2 and the architecture
specification rv32im to generate code for all of the evaluated
cores. Custom linker scripts are used to specify the memory
structure of the custom PE. The generated ELF files are stripped
with objcopy to generate a raw binary representation that
can directly be loaded through the corresponding local memory
API calls of TaPaSCo.

To execute a program on a given RISC-V, the standard TaPaSCo
API is used. A TaPaSCo job is created and launched, having
the current program as a parameter. TaPaSCo will make sure
the program binary is copied to the correct memory and starts
execution through the controller. Additional parameters can be
used to supply extra data, located either in the PE-local data
memory or in the shared off-chip memory, or to copy back
data to the host after execution. Finally, the controller records
the exact execution time in cycles and can thus be used as to
benchmark a TaPaSCo compute job.

Note that the RISC-V ISA actually specifies a mcycle register
for this purpose, but this might not always be implemented, or
(for some cores) does not count correctly.

A. Challenges

In practice, the integration process described above was not
always as straight forward. All of the cores do have slightly
separate addressing schemes. Some have separate ports for
instruction and data accesses, while others employ a shared
port. Another issue comes with the varied use of HDLs.
Especially SystemVerilog proved to be a major headache when
used in Vivado. Many of these cores required wrappers in
traditional Verilog before Vivado could process them. Some
of them even required changes to their code, as Vivado did
not support all of the features of SystemVerilog used in these
cores. Even correctly wrapped cores had some issues, as IP-
XACT packaging did not work flawlessly depending on the
naming conventions used for the AXI signals. Lastly, even
the packaged cores were not always working flawlessly. Not
all core developers are using a clear release schedule, e.g.,
Git-Flow, to ensure their master repository always contains
consistent states of the code. This led to broken commits which
were not entirely obvious before running code on them. Another
gripe was with the range of configuration options offered by
some cores, as some options simply did not function correctly,
even though they were supported by the code.

B. Local Memory Interface

The local memory is constructed as a Harvard architecture
with separate instruction and data memories. This is a result of
the dual-ported BlockRAM memories available on FPGAs. We
use one port of a memory for external access, the second port
is connected to the RISC-V core. As most cores have separate

instruction and data buses, we can avoid interconnect logic
between the core and memory and thus reduce latency with
this architecture.

The preferred interfaces for our architecture are AXI4 connec-
tions to instruction memory and to data memory. AXI4 Lite, as
used, e.g. in Orca behaves similar to a full AXI4 connection for
our purposes. We use a custom, latency optimized BlockRAM
controller to allow single cycle memory accesses via AXI.
Taiga uses non-AXI local memory interfaces for instruction
and data, which can be mapped to direct connections to
the underlying BlockRAM. As an exception to the rest,
PicoRV32 only has a single AXI interface, and does require
an intermediate interconnect to interface with local memory
and other peripherals.

IV. EVALUATION

The evaluation of the selected cores focuses on two main
aspects: (1) How well does the core work on a given FPGA,
considering resource usage and achieved frequencies? (2) What
is the absolute and relative (per MHz) performance of the
processors?

Additionally, we describe problems faced when evaluating the
cores. These might include, e.g., obvious inefficiencies when
targeting FPGAs, or undocumented behaviour, both of which
are always a nuisance when working with complex external
IP blocks.

For comparison with a core from outside the RISC-V world, a
proprietary softcore highly optimized for the target FPGA was
integrated into TaPaSCo as a golden reference. It supports
a configurable pipeline length, which we use to select a
performance-optimized 5 stage micro-architecture, as well as
a frequency-optimized 8-stage pipeline.

A. Hardware

Thanks to using TaPaSCo automation for the evaluation, the
main limiting factor for the evaluation were the available core-
hours on our compute cluster for mapping the hardware designs
to the target platforms. Utilizing the TaPaSCo Design Space
Exploration (DSE) feature, all cores are evaluated for four
different target architectures: (1) Xilinx VC709, Virtex 7 PCIe
based, (2) Xilinx AU250, Virtex UltraScale+ PCIe based, (3)
Xilinx ZCU102, Zynq MPSoC based, and (4) Xilinx PYNQ,
Zynq 7000 based. To give a good picture of the overall design,
the evaluation measures (1) maximum frequency for a single
core and the (2) resource utilization of a core.
a) Single Core Performance: With only one core, the de-
signs already show a vastly different suitability for FPGA
applications. As shown in Figure 2 the fastest cores in terms
of maximum frequency are the PicoRV32 and VexRiscv.
PicoRV32 even achieves frequencies slightly better than the
highly optimized 8-stage proprietary core.
b) Resource Utilization: For most of the FPGAs used, high
clock frequencies were the primary optimization goals. How-
ever, for some applications, the optimal configuration might
be a smaller core using fewer FPGA resources and only
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Fig. 2. Highest frequency achieved on the selected FPGA development
platforms for a variety of open-source RISC-V cores. Note that the frequency
itself is not a direct indicator for the performance, as certain cores might use
longer critical paths to increase IPC.

achieving a lower frequency, but which results in superior
overall performance, as it can be replicated more often for
parallel processing in a many-core architecture. Table II shows
the resource usage on all evaluated platforms. The numbers
show only the PE logic (core, controller and local memory),
and exclude the rest of the TaPaSCo infrastructure. BlockRAM
count is converted to RAMB36 equivalents. Overall, the
different platforms show a similar resource distribution.

As a result of the complex pipeline, SweRV has the largest
resource utilization. Orca has the smallest utilization followed
by VexRiscv, Taiga and PicoRV32. Piccolo and Flute have
a resource utilization in between. Surprisingly, the different
pipeline architectures of Piccolo and Flute influence the
resource utilization only marginally.

B. Performance

The previous section detailed how the cores map for the various
FPGA targets. Some cores might use higher frequencies to
gain performance at a lower IPC, while others utilize more
resources and longer critical paths to achieve a higher IPC.
This section combines the results of the previous section
and uses a number of widely-used benchmarks to measure
application-level performance. All measurements are done in
actual hardware using the target boards. When the FPGA target
platform lacks an integrated CPU (e.g., the PCIe-based boards),
a host machine using an AMD Ryzen 1600 CPU is used. All
numbers shown do not include transfer times and are solely
based on the execution times of the benchmarks of the different
softcores. In the benchmarks, all data resides inside the local
instruction and data memories and no accesses to external

memory are required. Therefore, the results do not depend on
offchip memory and are the same for all platforms.

Three benchmarks have been selected to give a broad perfor-
mance overview. Dhrystone is the oldest benchmark used here
and gives a basic idea of a given core’s performance either
as DMIPS or as DMIPS/MHz. The test is relatively simple
and parts of it can be optimized away by a modern compiler.
This requires some care to avoid getting unreliable results.
Secondly, CoreMark from the EEMBC family is used. Lastly,
Embench, a relatively new benchmark aiming to improve upon
the previous benchmarks is evaluated.
a) Dhrystone: is one of the most commonly used benchmarks
for comparing processor performance. The result of the
benchmark is given in absolute DMIPS, or normalized for the
clock frequency as DMIPS/MHz. The benchmark is relatively
simple to run on any processor but, partly due to its age,
does not give a very accurate representation of a processors
performance. These days Dhrystone cannot be used to precisely
compare performance across different test setups. The compiler
used and the optimizations applied have a huge influence on
the resulting DMIPS. Thus, the Dhrystone numbers reported
here should not be compared with results captured in other
target platform / compiler environments. But due to the long
tradition of using it to indicate performance, we have included
it here.
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Fig. 3. Results for running the Dhrystone benchmark on the VC709 platform,
both in absolute terms and normalized for the frequency. Dhrystone is a
relatively inexact benchmark, as modern compilers can heavily optimize certain
aspects of the benchmark away.

In Figure 3 the results of running Dhrystone on a VC709
is shown as absolute and relative performance. The best
performance by far is achieved by Taiga, which wins this



TABLE II
RESOURCE USAGE OF RISC-V CORES ON ALL EVALUATED PLATFORMS.

Flute Orca Piccolo PicoRV32 SweRV Taiga VexRiscv Proprietary 5-Stage Proprietary 8-Stage
A

U
25

0 LUTs 14208 3822 14635 4037 30075 4515 3793 2929 3977
Registers 11037 3139 10616 3341 16237 3239 3328 2765 4281

Block RAM Tile 36 32 34.5 32 62 34 33 36 37
DSPs 15 4 15 4 4 4 4 0 0

PY
N

Q

LUTs 13537 3917 13324 4143 30340 4504 3777 2902 3993
Registers 11343 3100 10454 3363 16261 3176 3305 2787 4239

Block RAM Tile 34.5 32 33.5 32 62 34 33 36 37
DSPs 15 4 15 4 4 4 4 0 0

V
C

70
9 LUTs 13381 4019 13512 4249 30399 4576 3795 2997 4150

Registers 11320 3115 10956 3296 16283 3207 3329 2779 3989
Block RAM Tile 34.5 32 33 32 62 34 33 36 37

DSPs 15 4 15 4 4 4 4 0 0

Z
C

U
10

2 LUTs 13178 3882 13466 4233 30128 4565 3906 2932 4057
Registers 11050 3115 10630 3345 16267 3216 3378 2766 4136

Block RAM Tile 34.5 32 33 32 62 34 33 36 37
DSPs 15 4 15 4 4 4 4 0 0

benchmark by a large margin in front of VexRiscv and Orca.
The other cores are closer together in relative performance but
none of them reach even close to 100 DMIPS on the VC709.
However, they are very competitive with the highly optimized
proprietary core. PicoRV32 has the lowest relative performance.
b) EEMBC Coremark: EEMBC is an organization that devel-
ops benchmarks for a wide variety of embedded microprocessor
applications. They offer benchmarks for domains such as auto-
motive, security, and networking in a variety of configurations
such as single- and multi-core. CoreMark [17] is a variant aimed
at all kinds of single-core microprocessors. It improves upon
Dhrystone in a number of ways. For example CoreMark avoids
API calls, to avoid measuring the quality of the C standard
library, instead of the processor. Additionally, CoreMark tries
to use more realistic code instead of the rather exotic code in
Dhrystone. However, the benchmark is still considered to be a
synthetic benchmark, and does not consist of real applications.
The results of the benchmarks are combined to a single score
called CoreMark, and can also be presented as CoreMark/MHz.

The results in Figure 4 show that Taiga is again lead-
ing, with a benchmark value of 2.53 CoreMark/MHz. It
is followed by Orca with 1.4 CoreMark/MHz, VexRiscv
with 1.2 CoreMark/MHz and Piccolo and Flute with 1.0
CoreMark/MHz. SweRV is comparable to the proprietary 5-
stage core. Again, PicoRV32 has the lowest performance.
c) Embench pre 0.5: Embench [18] is a relatively new
addition to the microprocessor benchmark world. Published
in June 2019 by a group annoyed by the existing embedded
benchmark environment, and also involved in the RISC-V
foundation, its main goal is to replace Dhrystone and CoreMark
as the defacto standard benchmarks with a better solution.
The benchmark consists of multiple actual applications
from of a variety of domains and does not include synthetic
programs writen solely for the purpose of benchmarking. The
current suite consists of: aha-mont64, crc32, cubic,
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Fig. 4. CoreMark (normalized by frequency) achieved when running EEMBC
CoreMark on the different cores, each running at optimal frequency for a
VC709 (See Figure 2). CoreMark has been developed as a replacement for
Dhrystone and aims to alleviate some of the problems such as over reliance
on API calls and the susceptibility to compiler optimization’s.

edn, huffbench, matmul-int, minver, nbody,
nettle-aes, nettle-sha256, nsichneu, picojpeg,
qrduino, sqlib-combined, slre, st, statemate,
ud, wikisort. Compared to the other benchmarks, Embench
specifies exactly how the final score should be derived. Each
benchmark’s runtime is normalized for a CPU_MHZ value
that is used to make sure the benchmark runs sufficiently
long even on very fast processors. The normalized runtime
is then compared to a reference platform consisting of a
PULP RI5CY core using GCC 10.0.0, and then reported as a
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Fig. 5. Results for Embench reported as speedup over the reference platform
as specified by the Embench manual. Embench is a relatively new benchmark
and has been developed to better mimic embedded system usage, compared to
Dhrystone and CoreMark. The benchmark is actively endorsed by the RISC-V
foundation.

speedup or slowdown relative to this platform. Additionally, a
geometric mean is used to combine the results of the different
benchmarks into a single score. Further insight is provided
through the geometric standard deviation of the runtimes.
Apart from the performance evaluations, Embench also has
support for code size evaluations. As the same binary is used
for all cores in our evaluation, code sizes have not been
considered here.

The results in Figure 5 do not contain data for the benchmarks
edn, slre and wikisort on the proprietary standard cores,
as these benchmarks failed to execute correctly on these cores.

The highest score is again achieved by Taiga and is followed
by Orca and VexRiscv. The other cores are similar or slower
than the highly optimized proprietary cores.

Note that the focus of this study was the evaluation of the cores
in a plug-in fashion within the common TaPaSCo framework,
as shown in Figure 1. Some of the cores can reach significantly
higher performance when operating from custom memory
structures. As an example, SweRV can profit immensely when
executing from its own Instruction Closely Coupled Memory
(ICCM), yielding CoreMark/MHz improvements on the order
of 5x over those shown in Figure 4. However, program loading
would then have to be performed using a special version of
the OpenOCD, instead of the general-purpose memory-mapped
loader used in TaPaSCo for all cores.

V. CONCLUSION AND OUTLOOK

Thanks to the open-source nature of RISC-V, development of
RISC-V cores has been taken up by both academia as well as
industry. This has resulted in a wide range of cores that have not
been easy to compare thus far due to their different interfaces
and stand-alone implementations. This paper enables that
comparison by running all of the cores in the same environment,
and also making them easily accessible as accelerator PE
using the general TaPaSCo API. The resulting packaged cores
can be evaluated and used on any platform supported by
TaPaSCo. The packaging scripts are released as open-source
on https://github.com/esa-tu-darmstadt/tapasco-riscv.

Most surprisingly, some of the open-source cores provide much
higher performance than the highly optimized proprietary cores,
with only very limited area overhead (e.g., Taiga and Orca
compared to the proprietary 8-stage core).

There is still potential to improve upon this study. One
important item would be the integration of the debugging
facilities supported by the cores. Currently, debugging is
mainly done through simulation, or “printf-debugging”. This
extension will be much easier once more cores adopt the RISC-
V debugging interfaces, instead of the current custom-made
solutions. Additionally, support for peripherals such as UART
controllers should also be integrated.

Also, the debugging facilities such as OpenOCD could be
repurposed to allow the loading of binaries into custom
memories, such as the SweRV ICCM, to allow far higher
execution speeds.
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