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ABSTRACT
Recent research has shown the potential for using program-
mable network components such as switches for distributed
data processing. Opportunities include in-network caching
and the execution of distributed SQL operations such as joins
or aggregations. However, a major weakness of the current
generation of programmable switches is that the hardware
still has many limitations not only with regard to what type
of operations are supported in a switch (e.g., no loops), but
also that the switches can often not sustain processing at
line-rate.
As a first contribution of this paper, we propose a new
switch architecture that can be employed as an in-network
co-processor for analytical SQL workloads. Different from ex-
isting commercial switches, our switch architecture is based
on an FPGA design and supports complex operations at
line-rate. As a second contribution, we discuss how a typ-
ical distributed database architecture has to be changed
to efficiently leverage the new switch architecture. In our
evaluation we show that our new switch architecture can
significantly speed-up distributed query processing by up to
7× compared to traditional shuffle-based approaches without
in-network processing capabilities.

1. INTRODUCTION

Motivation. Scalable database systems for analytical work-
loads such as Terradata, Microsoft Parallel Data Warehouse,
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or Amazon’s Redshift are being used today for analyzing
massive amounts of data in distributed setups. These sys-
tems exploit the sheer amount of nodes to leverage data
parallelism by shuffling data back and forth. While this
paradigm is quite successful, recent papers [7, 1] have shown
that data parallelism in a distributed setup does not neces-
sarily lead to improved performance especially in modern
main memory databases due to high communication costs or
inefficient utilization of the network.
Therefore, many recent papers have suggested to improve
the performance of distributed databases by optimizing their
network usage with the help of high-speed networks and
RDMA [11, 12]. While RDMA allows to leverage high net-
work bandwidth and low latency in database systems, it is
not the only option of modern network technologies that
can be leveraged by distributed data processing systems.
An interesting direction is that network components such
as switches are becoming programmable and thus allow to
offload processing into the network itself.
This opens up many possibilities for tailoring the network
stack to data processing, ranging from opportunities such
as in-network caching to the execution of distributed SQL
operations inside network components, i.e., in-network pro-
cessing (INP) [4, 2, 8]. However, especially for in-network
processing, a major weakness of the current generation of pro-
grammable switches is that the hardware still cannot sustain
processing on line-rate and is not capable of many memory
intensive operations, such as the computation of SQL joins
or aggregations [2, 6] which need to keep an intermediate
state.

Contribution. In order to address this challenge, we make
the following contributions. First, we propose a new switch
architecture that can be used as an in-network co-processor
for analytical SQL workloads. The switch architecture relies
on a system on a chip (SoC) design that leverages an FPGA
and provides larger amount of DDR3 main memory in the
switch to execute query pipelines, i.e., sequences of multiple
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Figure 1: Overview of our Processing Scheme.

SQL operators. By using this architecture we thus cannot
only process data at line-rate, but also support more memory
intensive operations inside the switch, such as hash-table
building and probing.
Second, we show how a typical distributed database archi-
tecture can be adopted to efficiently use our new switch
architecture. The main idea is that the database comes with
a set of pre-compiled query pipelines that are installed in the
FPGA. During query compilation the appropriate pipeline
is chosen. Furthermore, the query optimizer is extended
to determine the best execution strategy of leveraging the
in-network co-processor.
Finally, in our experimental evaluation we show that our
optimized query processing scheme which utilizes the new
switch architecture significantly speeds-up distributed join
processing by up to 7×, compared to a traditional shuffle-
based approach without INP. In contrast to traditional query
processing, our INP-enabled scheme can eliminate the over-
head of shuffling intermediate results and thus reduces the
communication between nodes in a distributed database.

Outline. The remainder of this paper is structured as fol-
lows. In Section 2 we first give an overview of our in-network
processing (INP) architecture for analytical SQL workloads
and how it can be integrated into a distributed database. Af-
terwards, we present how query processing and optimization
has to change to push SQL operations into the switch and
then discuss the design details of our switch architecture in
Section 4. Finally, we report initial experimental results in
Section 5 and conclude with the limitations of our current
prototype and a discussion of future directions in Section 6.

2. SYSTEM OVERVIEW
This section provides an overview of our proposed INP-based
query processing scheme and discusses its main differences
compared to traditional distributed query processing.

Query Processing. To illustrate the main idea of our dis-
tributed query processing that utilizes our proposed switch
design, we first review classical distributed query execution
and then discuss the changes compared to our scheme. A
typical setup of a shared-nothing database consists of one
master and several compute nodes, as well as one switch
connecting the nodes. As an example query, consider the
execution plan in Figure 2 that could result from the SQL
statement SELECT * FROM A JOIN B JOIN C.
In the classical distributed query processing, A and B are
first shuffled according to the join key. Then, each node
builds a hash table over B (assuming B is the smaller table)

A B
Shuffle Shuffle

Build HTProbe HT

Shuffle

C
Shuffle

Build HT

Probe HT

⋈

⋈

Classical Execution

Figure 2: Example of Query Plan for Classical Execution.

and uses tuples from A to probe in that hash table. For the
subsequent join, the intermediate result of A ./ B as well as
relation C need to be shuffled again, such that the joins can
be executed by building and probing into the hash table of
C. Thus, each join (if data is not co-partitioned) typically
requires one expensive shuffle operation.
In order to avoid the repeated shuffling of data, we propose
a new execution scheme that utilizes our proposed switch for
in-network processing. Figure 1 shows the two main steps
of our scheme. As a first step, the master node determines
and compiles an optimal execution plan when a new SQL
query arrives (Figure 1 1©). Next, the master node places
the different steps of the plan on the worker nodes as well
as the switch (Figure 1 2©). How an optimal execution plan
for our switch architecture is created and how the pipeline
placement is performed will be described in more detail in
the next section.
The equivalent query plan for INP execution is shown on
Figure 3. For now, assume that the plan is the optimal one
for our example query. As can be seen in the two figures, the
classical - Figure 2 and the INP-based plan Figure 3 consist of
two types of pipelines (probe-pipelines and build-pipelines),
the INP-based plan splits the plan into multiple pipelines
that can be placed on worker nodes or the switch respectively.
As a consequence, different from the traditional plan many of
the Shuffle operators can be completely avoided since the
probe steps are executed all in the switch. In the following
we will discuss the implications of the differences in more
detail.

Discussion. As mentioned before, the main conceptual dif-
ference of our scheme is the elimination of shuffling, and in
particular the re-shuffling of intermediate join results. This
is beneficial, since shuffling comes with several challenges.
First, shuffling operations are so called pipeline breakers,
since the streaming of tuples through an operator pipeline is
stopped (i.e., the shuffle operation only starts once the pre-
vious intermediate result has been materialized completely).
This however, limits the degree of parallelism of the execu-
tion since following phases of a query need to wait for the
completion of previous ones. For instance, the second join of
our example query can not be computed until the result of
the first join has been materialized.
Second, shuffling usually means that significant amounts
of data need to be transferred via the network, since also
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Figure 3: Example of Query Plan for INP Execution with
Operator Placement.

the intermediate results need to be partitioned and sent to
all workers. The cost of shuffling intermediate results is
even higher in a data warehouse setup. This is because,
in a star schema with one very big fact table and multiple
smaller dimension tables that need to be joined, the cost of
shuffling the fact table and the resulting intermediate results
is dominating the overall query execution cost. Considering
the example query plan shown in Figure 2, the fact table
could be represented by relation A and the dimension tables
by B and C.
Finally, we are less sensitive to skew, since typically one
node receives more data than the others. When multiple
nodes send to a single node, the network link of the node
gets congested and slows down overall execution (also known
as incast problem).

3. QUERY PROCESSING
In this section we describe how the database architecture
can be adapted to leverage the FPGA-based switch.

3.1 Query Compilation
The query compilation resembles a physical execution plan
for a given query. One important decision in distributed
systems during optimization is where to execute pipelines
optimally. Consequently, our adapted query compilation
takes the FPGA switch as a processing unit into account.
When employing an FPGA for query processing, it is not
feasible to synthesize a complete configuration (a so called
bitstream, i.e., the executable logic on the FPGA) on a query-
to-query basis, as bitstream generation can take multiple
hours. However, once the bitstream is generated and installed
on the switch FPGA, re-configuring the switch to use a
different pre-installed bitstream only takes a few milliseconds.
Hence, our system allows to install a set of bitstreams for
pre-generated pipelines to execute multiple different queries
efficiently.
Figure 3 shows a physical operator plan for our example
query. As shown, each worker is only responsible to send
its part of the relation to the switch, which executes the
main query pipelines, i.e., building and probing pipelines for
executing joins. To support generic queries inside the switch,
the pre-generated pipelines provide different signatures. For
instance, the intermediate hash table for table B needs to
store keys and values of 8 Bytes, whereas table C needs 4
Byte keys and 10 Byte values.

The master node thus tries to choose the best fitting signa-
ture, if there is no exact match it takes the next larger one.
This clearly induces memory overhead, e.g., if the relation
has a 64 Byte value, then the master chooses the 128 Byte
pipelines. However, this should not be a common case, since
optimal signatures can be generated as soon as the workload
is known.

3.2 Query Optimization
In a traditional database system, the optimizer is respon-
sible for finding the best plan. INP has a slightly different
execution model and mandates an extension to the existing
cost-based optimization. We therefore propose the following
optimization objective: The optimizer should reduce the
number of re-shuffle operations by offloading computation to
the switch. These pipeline-breaking operations are especially
expensive, since they require synchronization until the query
execution proceeds. Moreover, the limited memory of the
switch has to be taken into account. Therefore INP should
be applied for the most beneficial joins and the optimization
problem is in fact a constrained optimization problem.
In our prototypical implementation we only consider left-
deep join trees with primary-foreign relations as in Figure 2
for INP, since this is a common join structure in analytical
workloads.
In the following, we first explain our notation and then derive
our cost model. We are considering a left-deep plan which
consists of a left-deepest relation L (L might be an input
relation or an intermediate result) and a set of tables Ti which
are joined with L. The number of workers is defined by N .
|R| denotes the cardinality of any relation R and ts(R) the
size of a tuple in R. The subset of tables indexed by I which
are qualified for INP is defined as L

⋃I
i=1 Ti. For instance the

query plan shown in Figure 2 consists of the tables A,B,C.
However, due to high memory requirements, or lower costs
of a shuffle-based join, the optimizer could define I such
that only A and C are joined with INP. Consequently, the
intermediate result of A ./ C would be joined with B with
the shuffle-based approach.

Cost Model for Classical Model. Based on the network
cost of one relation, we describe the network cost for the
classical approach used in distributed databases which is
based on data shuffling. Later, we derive a new cost model
for our INP-based query processing scheme. The following
equation describes the cost for sending the qualifying tuples
of one relation over the network:

crel(R) = |R| ∗ ts(R) (1)

In the classical cost model, the cost to create an intermediate
join of the tables indexed by I is thus given by the following
equation:

cshuffle(I) =
N − 1

N

(
crel(A) + crel(A ./ Ti1) + . . .

+crel(A ./ Ti1 ./ . . . ./ Tim−1) +
∑
i∈I

crel(Ti)
) (2)

To explain the above equation we calculate the cost for the
plan shown in Figure 2, with four workers, and the following
parameters.
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Relation Size (|R|) Tuple Size (ts(R)) crel(R)

A 100.000 32 3.200.000
B 10.000 10 100.000
C 10.000 10 100.000
AB 100.000 32 3.200.000

We consider the complete plan in our example - the interme-
diate result consists of A,B,C, therefore the costs of A,B,C
can be included in the Equation (3). These describe the cost
for shuffling A,B,C. Besides these input relations, we also
shuffle the intermediate result of A ./ B. Hence, we include
those costs as well, resulting in:

cshuffle(I) =
N − 1

N

(
3.2× 106 + 3.2× 106 + 100× 103 + 100× 103

)
(3)

Finally, we assume that only 3
4

of the data is shuffled in the

uniform case w/o skew and 1
4

is kept locally. Consequently,

the network cost for the given plan is 3
4
∗ 6.6× 106.

Cost Model for INP. Now, the INP cost model can be
derived from the classical model. The major change is to
avoid re-shuffling of intermediates and thus they are removed
from the equation. Hence, the following equation holds:

cINP (I) =

(
crel(L) +

∑
i∈I

crel(Ti))

)
(4)

As shown in the equation, the network cost of the INP
approach is determined only by the tables and tuples sizes
and not by the intermediate results. We again apply this
cost function to the example above.

cINP (I) =
(
3.2× 106 + 100× 103 + 100× 103) (5)

This gives the following network costs for the INP approach
3× 106.
Hence, the cost improvement of the classical approach vs.
the INP based approach is cINP(I) − cshuffle(I) depending
on the set of tables used to apply INP. The optimization
problem is now to choose I ⊂ {1, 2, . . . , n} such that this
improvement is maximized while the memory constraint in
the switch

∑
i∈I |Ti| ≤ CRAM is satisfied. Note that also

I = ∅ is considered in this optimization problem, i.e. INP is
not applied at all.

Theoretical Analysis:. This paragraph discusses the pre-
viously introduced cost-models and elaborates when INP is
beneficial. Note, however INP is not a complete replacement
of the traditional approach, but rather an optimization which
can be used for some cases. We first show the effect of the
network cost crel(A) from A in relation to the other tables
Ti. Based on Equation (1) the cardinality and the size of the
tuples have an impact on the network cost of A. To analyze
the effect of increasing costs of the left deepest relation we
again use our query plan from Figure 2 with four workers.
Figure 4 shows on the x-axis the network cost of crel(A) in
relation to B,C, i.e., 0.1 means that the cost of the relation A
is only 10 percent of B,C. To show the effect in isolation we
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Figure 4: Cost analysis for different table ratios. With bigger
relation A in comparison to B & C, the INP approach greatly
reduces cost.
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Figure 5: Cost Analysis for varying number of joins. Relation
costs (crel) are kept the same for all joined relations.

thus fix B,C to the same size. The y-axis shows the outcome
of the cost functions for cshuffle(A,B,C) and cINP (A,B,C).
The plot shows that if the costs for A is smaller than the cost
for B,C, the classical approach is more suitable. Since the
intermediate results will be cheaper, shuffling only a fraction
of our relation (N−1

N
) is cheaper than sending everything

to the switch. However, INP is more efficient if the cost
of A exceeds B,C, thus we avoid expensive reshuffling on
intermediate results.
The best performing strategy is not only determined by the
costs of A,B,C. The number of joins also influences the
decision. Therefore, the next plot analyzes the effect of the
number of joins when A and Ti have equal costs. Figure 5
shows on the x-axis the number of joins and the y-axis shows
again the costs of the two strategies.
By avoiding the intermediate shuffle, the INP approach is
clearly beneficial if the number of joins increases. In conclu-
sion we have shown that the INP approach is beneficial if the
cost of A is high compared to the other relations and further
if the number of joins is high. Both of these circumstances
are often met in data warehouse scenarios.

Cost-Model Extensions. This paragraph extends the pro-
posed cost-model to support selections, co-partitioning, and
skew. Selections can be modeled by multiplying crel (R) with
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Figure 6: Overview of the proposed architecture on the NetFPGA SUME board. Data is processed as a stream of 64 bit words
provided by the Xilinx 10G Ethernet Subsystem. The Ethernet packets are parsed using a Bluespec-generated packet parser.
The extracted hashing and probing requests are forwarded to the hashing and probing infrastructure.

the selectivity. This not only allows to support selection
predicates but other types of joins as well. Co-partitioning
is only relevant to the classical approach and is modeled
trivially by removing the relations from the equation. As-
suming that A,B are co-located in our example query, they
can be joined locally and there is no need to shuffle A,B.
However, it is still necessary to shuffle A ./ B and C. In
the INP approach, all tables need to be sent to the switch,
and consequently co-partitioning has no effect on the costs.
Skew is modeled by applying a write amplification factor to
the costs of cshuffle(I). Furthermore, skew often leads to the
incast problem; i.e., the ingoing link on the worker receiving
the large amount of skewed data becomes congested and acts
as a bottleneck. Hence, the write-amplification factor models
that skew since it increases the shuffle cost. In contrast, the
INP approach is not affected by skew since in the best case
data does not need to be shuffled at all.

4. SWITCH DESIGN
In the following, we describe the design of our switch architec-
ture that can be optimally used as an in-network co-processor
for typical analytical SQL workloads. We first explain the
hardware platform our switch is based on before we explain
how different query pipelines for hash table building and
probing are supported inside our switch architecture.

4.1 Hardware Platform
The platform chosen for the demonstrator is the NetFPGA
SUME [13], based around a Xilinx Virtex 7 FPGA, 8 GB of
DDR3-SDRAM memory and four SFP+ connectors. Those
connectors can be used to interface the FPGA with off-the-
shelf SFP+ solutions common in data centers, either via
fiber optics or direct-attached cables. The bandwidth of all
ports is 10 Gbit/s.
The switching hardware itself is described in Bluespec Sys-
temVerilog, a Hardware Description Language (HDL) that
combines high-level features of functional programming lan-
guages with the performance of hand-crafted low-level HDLs
such as SystemVerilog or VHDL.
This section describes the different stages of packet processing
in the proposed architecture: (1) Packet Parsing, (2) Hash
Table Generation, and (3) Hash Table Probing.
For designing our switch architecture we leverage the TaPaSCo
[5] tool chain. The tool chain provides all necessary steps to
bring hardware acceleration to a variety of platforms, in many
cases avoiding the need for explicit hardware development
knowledge. The tools assist with all necessary steps such as

bitstream generation, bitstream loading and interfacing to a
host computer for control and monitoring tasks. TaPaSCo
assists the designer finding the optimal working conditions
for a given architecture. Furthermore, TaPaSCo has already
been employed succesfully in other in-network-processing
applications [3].

4.2 Ethernet Packet Parsing On FPGA
The interface to the SFP+ connectors is provided by Xilinx
through their 10 Gigabit Ethernet Subsystem IP core. The
packets received over SFP+ are provided by the core as a
stream of 64 bit words at 156 MHz.
The streams of all four interfaces are collected in their corre-
sponding packet parser infrastructure in the proposed archi-
tecture, as shown in Figure 6. These packet parser units can
operate at line rate and are completely independent from
each other. The packet stream is parsed using a custom pars-
ing state machine generator. Common functionality such as
dropping packets for the wrong destination MAC address or
with the wrong protocol is done on the fly as soon as the
relevant data is available.
Requests, in our case the probe or hashing modes, are im-
mediately forwarded out of the parsing module for further
processing. These taps into the parsing pipeline can occur
at any processing step and provide very flexible protocol
handling. Previous parts of the packet can also be examined
in later steps by explicitly marking certain parts of the packet
as relevant for later processing.
The extracted requests are then stored in FIFO buffers to
be collected by the hashing and probing infrastructure for
actual processing.

4.3 Hash Table Generation
The example application demands very high hashing perfor-
mance from the system. Each of the 10 Gbit ports results in
over 38× 106 hash table inserts per second. The architecture
should support this throughput for all pipelines in parallel.
Latency, on the other hand, is not important as an insert
does not result in any feedback to the sender. Accordingly,
the sender will simply send out the pipelines without wait-
ing for ACK signals or similar. The hash table generation
architecture supports only insert operations, as deletes are
not required, and probes are handled by a different part of
the design.
Key Value Stores on FPGA are a well-researched field [9,
10]. These approaches usually differ from CPU based hash
table implementations as FPGAs have different strength and
weaknesses. For example, the FPGA can process wider words,
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Figure 7: Setup used to evaluate the proposed architecture.
Four nodes with Xeon 5120 CPUs are connected via 10 Gbit/s
links to a central Zyxel XS3700 switch. The NetFPGA
SUME-based switch is connected with two SFP+ Fiber and
two Direct Attached cables. The FPGA is installed in a
host PC for simplified monitoring via PCIe. The host only
performs management tasks, and thus does not process any
packets on its own.

such as 512 bit whereas a CPU based implementation has to
consider the caching infrastructure of the given processor.
The design proposed here works in the following way:

1. Hash the key provided in the request by the parsing
stage to calculate a bucket.

2. Retrieve the corresponding bucket from the main mem-
ory. All buckets are 512 bit in size, which corresponds
to the data path width of the DDR3 controllers.

3. Place the key and value tuple in the first free position in
the bucket and write the bucket back to main memory.

All of these stages are pipelined and multiple requests are
processed at any time. The pipelining might result in Read-
after-write hazards which are dealt with by the look-ahead
buffers. These buffers inject the answer read from the mem-
ory, including the newly added tuple, whenever a succeeding
insert request hashes to the same bucket.
To spread the hashing load over memory as much as possible
an interleaved approach is used. Each of the hashing units
uses all of the available memory but only every third entry
belongs to a certain unit. For example address 0 stores
bucket zero of hash table zero, address 64 stores bucket zero
of hash table one and address 128 stores bucket zero of hash
table two. This scheme allows for much better utilization
of all the available memory resources compared to a simple
block-wise arrangement.
The performance of this architecture is completely deter-
mined by the random access Read/Write performance of the
DDR3 controllers and is typically around 56× 106 inserts
per second per memory controller. Higher performance can
be reached by utilizing newer devices with memories such as
HBM having higher random access speed.

4.4 Hash Table Probing
Compared to the table generation, probing has to meet even
higher performance requirements. For every probing request,
all stored hash tables have to be probed in parallel. For one
10 Gbit/s link and three hash tables this combines to about
120× 106 requests per second in total.
The architecture itself closely resembles the design of the

insert units but without the write-back part. Every lookup
requires three steps:

1. Hash the key provided in the request by the parsing
stage to calculate a bucket.

2. Retrieve the corresponding bucket from the main mem-
ory.

3. Return the key contained in the bucket, or an invalid
flag if the key is not found.

Again the performance is completely determined by the per-
formance of the DDR3 controller. Considering that only
reads, and no writes, are necessary the performance is about
75 % better at around 98× 106 probes per second per mem-
ory controller.
The results of the probes are forwarded to a combination
unit which is responsible for answering the probe requests.
The retrieved tuples are combined with the original request
and forwarded to the SFP+ parsing units which in turn send
out the completed requests to their destination.

4.5 Performance
The architecture is shown to be able to handle packet pro-
cessing at line rate and even multiple channels in parallel.
The hashing mechanism is able to handle around 30 Gbit/s
of traffic and is only limited by the available random access
performance of the memory controllers. The probe units are
able to process up to 197× 106 tuples per second using two
DDR3 controllers.

5. INITIAL RESULTS
In the following, we show the initial results of our new switch
design in a distributed database.

5.1 Setup and Workload
Our experiments were executed on a five node cluster – one
master node and four compute nodes. Each server has an
Intel(R) Xeon(R) Gold 5120 CPU @ 2,20GHz processor and
384GB RAM, running Ubuntu 18.04. All machines were
equipped with a 10 Gbit/s NIC. The four compute nodes
are connected via CAT 6 RJ45 Ethernet Cables to a Zyxel
XS3700 switch (without INP) and our FPGA-based switch
(with INP capabilities). The FPGA switch is attached to our
compute nodes using two SFP+ DAC cables from Digitus
and two SFP+ fiber transceivers by FLEXOPTIC. A picture
of our experimental setup is shown in Figure 7.
Based on this setup, multiple experiments were conducted to
demonstrate the performance of our proposed architecture
(referred to as NetJoin) over a baseline without INP. The
experiment represents a shuffle-heavy scenario like described
in Section 2. A table A is joined together with three other
tables B, C & D. The join shows similarity to a data warehouse
setup with A being the fact table with foreign keys to the
dimension tables B, C & D.
In our setup, all tables are pre-partitioned such that no join
partners can be found locally without the need of sending
one of the tuples over the network. In data warehousing,
typically one of the dimensional tables in a star schema can
be co-partitioned with the fact table and thus shuffling can
be avoided for the first join in a plan where the co-partitioned
dimension table is joined. However, this optimization can be
applied for both processing schemes; the traditional shuffle-
based and our INP-based scheme and both would benefit
equally. In our experiments, we thus show the performance
of both schemes without this optimization.
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Figure 8: Experiment 1. Four nodes joining ranging A relation sizes (5× 106 to 5× 109 tuples) with fixed B, C & D relations
(50× 106 tuples). Link speed on each node at 5 Gbit/s. For small sizes of A, the shuffling overhead is too small to make a
significant impact on runtime. Larger sizes of A, compared to relations B, C & D, result in increased overhead due to the
required shuffling. Accordingly, NetJoin is increasingly faster compared to the baseline as it does not need to shuffle the tables.
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Figure 9: Experiment 2. Shuffle skew on four nodes joining ranging A relation sizes (5× 106 to 5× 109 tuples) with fixed
B, C & D relations size (50× 106 tuples). Link speed on each node at 5 Gbit/s. NetJoin executes with same runtimes as
compared to the unskewed scenario shown in Figure 8(a). The baseline however is impacted by the bottleneck resulting from
the non-uniformly distributed join keys.

Finally, a last important fact is that the NetJoin makes
use of raw Ethernet frames, such that higher level protocols
do not split up packets and no performance overhead is
introduced. In our paper (as well as other INP papers
such as [6]), we do not yet handle dropped frames. Instead,
throughout the experiments we made sure that the amount of
dropped tuples are monitored and limited to at most 2%. For
providing reliability, a light protocol could be implemented
on top of raw Ethernet which does not introduce a significant
performance penalty.

5.2 Experiment 1: Uniform Join Keys
The first experiment shown in Figure 8 scales the size of the
A relation in comparison to relations B, C & D. The left graph
(a) shows the runtime of the distributed hash join over the
varying sizes of the A relation. The B, C & D relations sizes
are 50× 106 tuples, and with the A relation ranging from
5× 106 to 5× 109 tuples. Since the join keys are uniform,
each of the four nodes receive the same amount of tuples

when shuffling the relations.
The results show that as the A relation size is small, the
NetJoin does not perform better than the baseline since
reshuffling the intermediate results is inexpensive due to
A’s small size. As the A relation size grows, the NetJoin
outperforms the baseline. Even though the nodes in the
NetJoin have to completely send their local partitions of
all relations to the switch, the reduced cost of reshuffling
compensates for this. The speedup as shown in Figure 8(b)
shows an over 2× performance gain against the baseline with
the A relation 100× bigger than B, C & D.

5.3 Experiment 2: Skewed Join Keys
To show that our in-network execution scheme is more re-
silient against skew compared to a traditional query pro-
cessing, we generated skewed join keys. The skew was such
that when shuffling the relations on four nodes, 80% of all
tuples go to Node 1, 13% to Node 2, 5% to Node 3 and the
remaining 2% to Node 4.
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Figure 10: Experiment 3. Scaling number of executed joins in query from 1 to 4. All relation sizes are fixed to 50× 106 tuples.
NetJoin is slower for 1 join since the complete relations are sent to switch. With more joins NetJoin outperform the baseline
through not having to shuffle intermediate joined relations. With relation A bigger than joined relations, the speedup increases
further as demonstrated in Experiment 1.

Since the initial prototype only uses raw Ethernet frames,
conducting this experiment for the baseline meant that Node
2, 3 & 4 needed to throttle the speed of outgoing packets to
Node 1. This ensured packets were not being dropped due
to congested in-going link to Node 1.
As shown in Figure 9(a) such skewed shuffling scenario heavily
affects the performance of a distributed join, not only because
the compute intensity and memory consumption are not
equally distributed, but also because of incast congestion in
the network switch. Since Node 2, 3 & 4 all need to send
80% of their local relation to Node 1, the in-going link is
acting as a bottleneck and other nodes throttle down their
sending rate.
However, with our NetJoin, skew on the join key does not play
a role since no network shuffling is taking place. Figure 9(a)
shows an identical runtime of the NetJoin, but with the
baseline performance severely suffering in comparison to
Figure 8(a). The speedup shown on Figure 9(b) reports a
speedup of 7× for the largest A relation size.

5.4 Experiment 3: Scaling Number of Joins
As discussed in Section 3, not only the relation size of the
left deepest relation, but also the number of joined relations
has an impact on the query runtime. In this experiment we
show that our proposed approach is superior to the classical
query processing when the number of joins increases. This
is also true for the sub-optimal case when the size of the left
deepest relation is not larger than the other relations (i.e.,
the fact table and dimension tables have the same sizes).
The experiment is executed by fixing all relation sizes to
50× 106 tuples. Figure 10(a) shows the runtime of queries
with 1 to 4 joins. As already shown in the cost analysis
in Section 3 (Figure 5), the baseline cost increase with a
higher gradient than the cost of NetJoin (INP). Moreover,
we can see that only after two joins the INP-based approach
outperforms the classical approach.
Additionally, we also conducted an experiment where the fact
table is larger than the dimension tables. In this case, the
INP-based approach again outperforms the classical shuffle-
based approach by a higher factor.

6. CONCLUSION & FUTURE WORK
This work is motivated by the observation that existing
programmable switches cannot process memory intensive
operations and thus are not suited for distributed query
processing.
To overcome this issue, we proposed a new FPGA-based
switch architecture. By using an FPGA-based design we are
flexible to process different incoming queries at line-rate. The
high-level FPGA programming paradigm used here provides
considerably more flexibility than existing solutions, such as
P4’s match+action stages.
Furthermore, we also discuss initial directions where to adapt
distributed query processing to leverage the capabilities of
INP. The main idea is to avoid expensive shuffling operations
by offloading more complex query pipelines to the switch.
We show that our proposed execution scheme can thus speed
up query processing for left-deep join plans by up to 7×.
However, our prototype has also shown some limitations that
we could not yet address. We leave these limitations for
future work. One of the limitation of the current design is
that the output of a probing pipeline cannot be larger than
its input due to congestion. By using a more recent FPGA
board to realize the switch, up to 256 GB of DDR4-SDRAM
plus 8 GB of very fast HBM will be available, thus allowing
the implementation of a better caching scheme. This cache
could allow us to better control the congestion of the outgoing
link by buffering/stalling some tuples before sending out.
Finally, while the initial results of our prototype are promis-
ing, there are many other open routes for future work that
we have not been able to address yet. For example, in a real
data-center setup multiple switches are involved. To that
end, we could use parallelism in the network by using multi-
ple of these switches. Furthermore, another direction would
be fault-tolerance or isolation of multiple queries which are
all not yet handled in our current design.
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