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Abstract—The recent maturity in High-Level Synthesis (HLS)
has renewed the interest of using Field-Programmable Gate-
Arrays (FPGAs) to accelerate High-Performance Comput-
ing (HPC) applications. Today, several studies have shown
performance- and power-benefits of using FPGAs compared to
existing approaches for a number of application kernels with
ample room for improvements. Unfortunately, modern HLS tools
offer little support to gain clarity and insight regarding why a
certain application behaves as it does on the FPGA, and most
experts rely on intuition or abstract performance models.

In this work, we hypothesize that existing profiling and
visualization tools used in the HPC domain are also usable for
understanding performance on FPGAs. We extend an existing
HLS tool-chain to support Paraver – a state-of-the-art visu-
alization and profiling tool well-known in HPC. We describe
how each of the events and states are collected, and empirically
quantify its hardware overhead. Finally, we practically apply our
contribution to two different applications, demonstrating how
the tool can be used to provide unique insights into application
execution and how it can be used to guide optimizations.

Index Terms—Visualization, FPGA, HLS, High-Level Synthe-
sis, High-Performance Computing, Performance Optimization

I. INTRODUCTION

The past decades’ pursuit for better and more productive
High-Level Synthesis (HLS) tools has recently sparked a flurry
of innovative research in using Field-Programmable Gate-
Arrays (FPGAs) in High-Performance Computing (HPC).
Here, FPGAs are being examined as alternative to traditional
accelerators, and also to possibly mitigate the effects of
Moore’s law by providing a silicon substrate whose func-
tionality changes through time. Today, several authors [1],
[2], [3], [4] have already demonstrated performance- and/or
power-consumption benefits of using FPGAs over server-class
general-purpose processors, many-core accelerators (e.g. Xeon
PHI), and graphics processing units (GPUs). However, while
most works show empirical benefits of using HLS and FPGAs
over alternative forms of computing, little clarity is provided
into why a certain application performs as it does, and where
opportunities to improve are.

High-Performance Computing has a long tradition of a
diverse arsenal of profiling and visualization tools, particularly
those aimed at understanding bottlenecks and limitations of
high-performance applications. Profilers and visualizers have
been developed for most parallel programming models, includ-
ing both thread-based [5], [6] and task-based [7] models.

In this paper, we hypothesize that existing HPC visualization
tools are sufficiently general to also be applied for understand-
ing FPGA applications compiled through HLS. Confirming
our hypothesis is important for several reasons: (i) it would
provide the means to better understand the performance HLS
tools yield, including identifying bottlenecks (e.g. memory-
, compute- or latency-boundness), and (ii) FPGAs could be
more seamlessly integrated into HPC tool infrastructures.

To test our hypothesis, we extend a state-of-the-art HLS
tool to include modules that continuously monitor states and
generate events based on the execution. Our HLS tool sup-
ports a sub-set of the OpenMP [8] 4.0 accelerator directives,
allowing for multiple forms of parallelism (SISD, SIMD,
MIMD) and also supports shared-memory synchronization
(thread-level barriers and critical sections). Our methods are
general and can be adopted for different HLS or visualization
tools. We demonstrate our efforts targeting the Paraver tool-
chain [6], which represents state-of-the-art in HPC profiling
and visualization, and is actively used in a number of HPC
centers to understand performance.

In this study we claim the following contributions:

• We describe in detail how to integrate support for an HPC
profiling infrastructure into FPGA High-Level Synthesis
flows, quantifying area and utilization as well as measur-
ing the impact on performance

• Using two different applications, we demonstrate how our
profiling infrastructure can be used to the understand per-
formance of HLS-generated accelerators, showing step-
by-step how to reason about and overcome the bottle-
necks.



II. BACKGROUND AND MOTIVATION

Understanding the performance of applications through vi-
sualization has long been an active research field in HPC.
Some noteworthy visualization methodologies include Score-
P [9], Vampir [5], and Paraver [6] (see the review by Isaacs
et al. [10] for a complete list); these tools are heavily used to
port and obtain performance in state-of-the-art HPC systems.
Many of these tools work both on general-purpose processors
(CPUs) and Graphics Processing Units (GPUs), and are used
to provide intuitive understanding behind both application
execution and performance.

The most common way of extending a particular program-
ming model or framework (e.g. OpenMP [8]) to support trace-
generation is to intercept API function calls and time-stamp
the related activities. For example, when a thread is created
(e.g. using pthread_create), a profiling library intercepts
the API call and time-stamps the thread creation and saves it
to a log. The log is later formatted and can be viewed using
one of said visualization tools, which also provide a rich set
of analyses. Due to the generality of modern processors, trace
generation is often trivial to implement with low overhead,
and much of the research focuses on other challenges, e.g.
compression, and how to manage the often tens of GB’s of
trace-data.

The situation is different for HLS on FPGAs. Here, there
are no easily available interception mechanism. While it is
possible to add tracing mechanics into the code itself – as is
done in CPU tracing – this can severely impact the hardware
generation, for example increase initiation intervals (II) of
loops through false dependencies, or impact memory behavior
or overheads. Furthermore, monitoring stalls and memory-
bandwidth is very hard since the application is not exposed
to those signals. Ideally, one would change the HLS compiler
itself to incorporate tracing and profiling. This option requires
access to the source-code of HLS compilers, most of which
are closed-source. Furthermore, the impact of fully supporting
all features of an HLS generated pipeline from the perspective
of hardware constructs known in HPC remains unknown and
unmeasured. While trace-generation and profiling indeed are
much more challenging on FPGAs than on general-purpose
systems, there can also be more rewards. For example, appli-
cations running on general-purpose systems are often oblivious
of low-level architectural details happening on CPUs (and
performance counters are often limited); on the other hand,
FPGAs are fully aware over its hardware, and much more (and
interesting) information can be obtained from its execution.

Our work aspires to unify performance visualization of
FPGAs to that currently existing in HPC, in order to leverage
the mature methodology available in HPC and also to help
bridge (and hence popularize) the use of FPGAs in HPC. Our
work, to the best of our knowledge, is the first effort to fully
integrate an HPC visualization framework into HLS compilers
in order to reason around performance and efficiency of the
HLS-generated code.

III. NYMBLE HLS COMPILER

In this work, the ability to collect information for HPC
performance visualization tools in HLS-generated FPGA-
accelerators is integrated directly in an automated compile
flow. The established academic HLS compiler Nymble [11]
serves as basis for the compilation flow.

Nymble originally targeted Xilinx devices and was adapted
to also target Intel FPGA boards for this work.

A. Compilation Flow

In earlier versions of Nymble, users had to use specialized,
custom annotations (C/C++ pragmas) to mark regions of
the application to be executed on the FPGA. The necessary
data-transfers were automatically inferred by the compiler,
pessimistically assuming that all data had to be transferred
to the FPGA and back to the host after execution.

In order to make the Nymble HLS compiler more accessible
for users from the HPC-domain, a new frontend was added
which uses the OpenMP target offloading constructs instead of
the custom, Nymble-specific pragmas. These constructs, stan-
dardized in version 4.0 and following the OpenMP standard,
do not only allow to denote target regions with standardized
annotations, but also allow users to clearly specify which and
how data has to be transferred, avoiding unnecessary costly
data transfers between CPU and FPGA memories.

With the new frontend, it is possible to use any C/C++-
program with OpenMP annotations as input to the Nymble
HLS compiler. The automated HLS flow will create an accel-
erator design for the target regions in the application (currently
limited to one target region per application) as Verilog HDL
code. Together with the architectural template shown in Fig. 1,
this accelerator forms a complete FPGA-design that can be
synthesized using the vendor’s standard tools (Quartus in
Intel’s case).

As shown in Fig. 1, the generated accelerator has access
to two different kinds of memory: Small, but fast local mem-
ories and the large external DRAM memory on the FPGA-
board, which is also used to exchange data between host and
FPGA-accelerator. Data-transfers are automatically handled as
specified by the corresponding OpenMP clauses (map). The
preloader can be used to efficiently pre-load data from the
external memory to the local memory for faster access, and
the hardware semaphore connected to the Avalon bus is used to
handle OpenMP synchronization constructs (critical and
barrier).

B. Execution Model

The execution inside the generated accelerator is organized
according to a static schedule computed at synthesis time to
determine the start times of individual operations.

However, for some operations, it is not possible to statically
determine their operation delay. One example of such variable-
latency operations (VLO) are (cached) memory accesses,
which allow Nymble to access local (BRAM) and external
(DRAM) memory. A second example of variable-latency op-
erations are inner (nested) loops with statically unknown trip
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Fig. 1. Overview of the architecture template, including the Datapath and Controller, generated by Nymble, and the integrated profiling unit. All components
are connected to four DDR4-banks through the Avalon bus.

count: These nodes are embedded into the dataflow graph of
the surrounding loop as a single operation node with statically
unknown delay. At runtime, the execution of the outer loop’s
graph is paused during execution of the inner loop.

At synthesis time, the scheduler assumes the expected
minimum delay for VLOs. To account for longer delays of
VLOs during execution, the surrounding hardware execution
needs to be suspended (stalled). The number of stalls, e.g.,
due to external memory accesses, is an important performance
figure.

However, fitting each operation with dynamic control sig-
nals (e.g., a handshake) would be too expensive in terms
of hardware resource consumption. The Nymble controller
therefore orchestrates the execution at the granularity of stages,
which contain all nodes active in a single pipeline stage of
the datapath. Controlling the execution at the granularity of
stages requires a smaller number of control signals and less
controller logic, while still allowing to suspend the execution
when a variable-latency operation, e.g., access to external
DDR memory, exceeds the delay assumed during scheduling.

The unique feature of the extended Nymble-MT [12] exe-
cution model employed in this work is that the model allows
for the simultaneous execution of multiple hardware threads.
Different hardware threads can be active in different stages at
the same time, significantly increasing the overall throughput
and resource efficiency of the accelerator. With the new
OpenMP-based frontend for the Nymble HLS compiler, paral-
lel OpenMP constructs (e.g., teams, teams distribute
or parallel) are directly mapped to parallel hardware
threads executing simultaneously in the generated accelerator.

In contrast to the basic C-slow execution model presented by
Leiserson et al. [13], Nymble-MT also uses thread reordering
to allow faster threads to overtake slower threads during

execution. To enable a stage for thread reordering, the stage
must be able to hold the context (e.g., intermediate results) of
all hardware threads for all operations contained in the stage.
As this requires significant amounts of hardware resources,
it is not reasonable to generally enable thread reordering
for all stages. Instead, Nymble-MT selectively enables thread
reordering only for those stages that actually contain variable-
latency operations, whereas the other stages in between form
a static region. In the reordering stages, a hardware thread
scheduler (HTS) selects one available thread for execution as
soon as the following stage becomes available. Huthmann et
al. also presented more elaborate techniques to optimize the
placement of reordering stages in [14], but this is out of scope
for this work.

IV. EXTENDING HIGH-LEVEL SYNTHESIS WITH HPC
PROFILING SUPPORT IN PARAVER

In this work, we extend the Nymble HLS compiler to
include the capability of sampling and monitoring states and
events, captured in the format required by modern HPC visu-
alization tools, by embedding hardware counters for profiling
directly into the generated accelerator.

Although the concrete implementation of this work is
specific to the Nymble compiler, the general methodology
developed in this work is generic enough to be used with and
integrated into the compilation flow of other academic (e.g.,
LegUp [15]) or industrial (e.g., Intel OpenCL [16], Xilinx
Vivado HLS [17]) HLS tools. Our additions have negligible
impact on the overall compile time.

In this section, we give a brief introduction to Paraver
and why we chose it, before going deeper into how different
metrics are implemented and collected inside our HLS tool-
flow.
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Fig. 2. The state transition diagram of our implementation for recording
OpenMP critical sections. It includes profiling both the time spent in acquiring
(spinning) on the lock as well as the time spent inside the protected section.

A. Introduction to Paraver

Paraver is a state-of-the-art visualization tool that brings
clarity into how applications execute in HPC environments.
The premise behind Paraver is that many bottlenecks in appli-
cations can easily be identified visually, such as how memory-
bound the application is, or the degree of load-(im)balance
across threads. Paraver visualizes the execution of actors (e.g.,
CPUs, Threads, MPI-ranks etc.) in a time-line view, where
different colors or values represent the behavior of the thread.

Paraver supports three types of records: states, events, and
communication. In this work, we have focused on supporting
states and events, and excluded communication since they are
primarily used for MPI communication, which for us is subject
for future work in visualizing multi-FPGA execution.

B. Hardware Collection of Paraver States and Events

As shown in the architectural template diagram in Fig. 1,
the profiling unit is integrated into the generated datapath
and directly hooks-into and snoops all compute pipelines that
compose the accelerator. The profiling unit is backed by the
external memory, with the collected performance counters
being periodically stored to external memory to avoid overflow
of the counters. There they can later be accessed from the host
for analysis.

As previously stated, Paraver supports three types of
records, out of which we support two: states and events. A state
describes the situation a thread is currently in, whereas events
are, on the other hand, near-instantaneous measurements of a
certain metric.

1) State Recording: States are useful in analyzing high-
level details regarding the execution, such as whether the
application is well-balanced (all threads contribute equally),
or how many serialization points exist in the application (the
time spent in critical sections). In our implementation, threads
can be in four different states, as shown in Fig. 2, and the state
information is available per hardware thread. The two basic
states are Running and Idle. The running state indicates that a
user (or run-time system) has loaded a context and explicitly
started the accelerator. The idle state indicates that there is no
currently loaded context, and/or the previous context finished
executing. Our representation of running/idle is identical to
how it is used for CPUs and GPUs.

Next to that, Nymble supports OpenMP #pragma omp
critical sections. In multi-threaded applications, critical
sections are used to provide thread-safe access to data. The
absence of critical sections can lead to race conditions, break-
ing the application. Since the timing of entering, exiting, and
waiting for the lock associated with the critical section is
important, these are recorded as a state of the pipeline. The
state Spinning is used to express that a thread is currently
waiting to enter the critical section, which is currently occu-
pied by another thread. The state Critical is used to track the
time a thread spends inside the critical section. As a thread
cannot resume computation while waiting to enter a critical
section, the time spent in state Spinning can be an important
performance figure.

The current state for each thread is stored in a register.
Because the state can change for multiple threads at once,
each time at least one thread changes it state, we record the
current state for all threads together with the current clock
count. Each state is represented as a 2-bit value: 00 for idle,
01 for running, 10 for critical, and 11 for spinning. The size of
each state record is 2∗Nthreads+32 bits wide. Each record is
saved into a buffer; when the buffer is nearly full, the buffer
is flushed to the external memory, and resumes operations.
Currently, the width of the buffer is equal to the data-width
of the external memory controller (512-bit), but can be tuned
with other sizes.

2) Event recording: In general-purpose processors, events
are often recorded by performance counters, and accessed
through tools such as PAPI [18]. They include metrics
such as memory-bandwidth (GB/s), compute performance
(e.g. FLOP/s), or how often resources stall (% stall cycles).
Implementation-wise, events are often collected for a certain
time (the sampling period), and are then time-stamped and
saved at periodic intervals.

In our methodology, we extended the HLS compiler to
automatically insert support for collecting metrics as events.
Recording an event is different from recording a state, as a
threads’ state can change at any time during execution, while
an event is only acquired at periodic intervals.

For each of the supported events, we added a performance
counter module to the accelerator. As we need to aggregate
values from multiple sources (stages, operations, and others),
this module has two inputs for each source. The event to
be recorded from that source, and a condition if the value
is valid. In each clock cycle, all valid values are added to
the running aggregate. All aggregated events are periodically
flushed to external memory. This period is user-adjustable, and
is a proxy over fine-grained information that is required, but
is also subject to a larger tracer – the higher the period, the
more data is produced. Next, we will introduce the different
metrics we support and how they are collected.

a) Stalls: As described in Section III-B, the Nymble-
MT execution model supports variable-latency operations. If
the execution of VLOs exceeds the minimum latency assumed
during static scheduling, the pipeline is stalled.

Stalls in HLS environments are different from stalls in a



void matmul(DTYPE* A,
           DTYPE* B,
           DTYPE* C,
           int DIM){
 #pragma omp target parallel map(from:C[0:DIM*DIM])\
   map(to:A[0:DIM*DIM], B[0:DIM*DIM]) num_threads(8)
 {
   int my_id = omp_get_thread_num();
   int num_threads = omp_get_num_threads();
   for(int i=0; i < DIM; ++i){
     for(int j=0; j < DIM; ++j){
       DTYPE sum = 0;
       for(int k=my_id; k < DIM; k += num_threads){
         sum += A[i*DIM+k] * B[k*DIM+j];
       }
       
       #pragma omp critical
       {
         C[i*DIM + j] = sum;
       }
     }
   }
 }

}

Fig. 3. Simple version of GEMM.

CPU or GPU. While a CPU only has a single pipeline that
can stall (a binary metric, the program counter stalls), in a
Nymble accelerator every stage that contains a variable-latency
operation can stall (a compile-time known discrete maximal
value). In our implementation, a stall can happen due to one
of two things: (i) a memory access takes longer than expected,
or (ii) a resource (e.g., memory port) is shared across many
threads and arbitration leads to a stall.

In this work, stalls are collected as events and the collection
of stalls is implemented by snooping the control signals. For
visualization purposes, it would be impractical to show per-
pipeline-stage stalls, as these may occur in large numbers.
Instead, we argue that an aggregated per-thread stall event is
more useful from a visual perspective.

A high number of stalls during execution can be an impor-
tant hint that the applications performance on the FPGA is
limited by the execution of variable-latency operations, e.g.,
due to latency when accessing external memory, or caused
by contention when entering a critical section, and can guide
optimization of the application.

b) Compute Performance: Compute performance in
Nymble can be classified as two types: floating-point and
integer performance. Each compute-stage in the pipeline has
a number of both integer- and floating-point operations sched-
uled onto it, determined at compile-time. By snooping the
control-bus associated with each compute-stage, we can watch
the value of the per-stage activation signal to determine
whether the arithmetic units in the stage are active. We can
then track the number of active units over time to measure the
complete performance. We collect the compute-performance
as an event, where each threads’ compute performance is
aggregated and sampled during an execution time window.

If the profiled compute performance falls short of the

void matmul(DTYPE* A,
           DTYPE* B,
           DTYPE* C,
           int DIM){
 #pragma omp target parallel map(from:C[0:DIM*DIM])\
   map(to:A[0:DIM*DIM], B[0:DIM*DIM]) num_threads(8)
 {
   int my_id = omp_get_thread_num();
   int num_threads = omp_get_num_threads();
   for(int i=0; i < DIM; i += num_threads){
     for(int j=0; j < DIM; ++j){
       DTYPE sum = 0;
       for(int k=my_id; k < DIM; k += VECTOR_LEN){
         VECTOR vA = *((VECTOR*) &A[(i*DIM) + k]);
         #pragma unroll VECTOR_LEN
         for(int v = k; v < k + VECTOR_LEN; ++v){
           sum += va[v-k] * B[v * DIM + j];
         }
       }
       
       #pragma omp critical
       {
         C[i*DIM + j] = sum;
       }
     }
   }
 }
}

Fig. 4. Vectorized version of GEMM.

expected performance, this can be an indicator that the ac-
celerator is not able to supply the arithmetic operators with
data due to excessive memory access latency. Preloading data
from external DRAM memory to local BRAM memory can
help to improve the overall compute performance.

c) Memory Performance: For inserting the performance
counters for memory accesses, there are multiple options: The
counters could be placed directly at each memory operation
in the pipeline, or they could be placed in the Avalon memory
interface of the CU. All memory operations in the pipeline
are multiplexed to one Avalon read- and one Avalon write
port per thread. Therefore, we decided to place the memory
performance counters in the central Avalon interface and
evaluate the memory requests coming from the operators, as
this reduces the footprint of the memory performance counters.

Tracking the memory bandwidth by collecting the memory
requests coming from the operators to the Avalon interface
incurs a small time skew. However, to get rid of this skew, we
would additionally need to track memory responses, which
would significantly increase the footprint of the profiling
infrastructure.

Information about the memory throughput of the application
over time can provide insights about the application’s memory
access pattern. Often, replacing many accesses to single data-
items with a single read of multiple data-elements (e.g., a
submatrix) into fast local memory can significantly improve
the memory bandwidth and, in turn, the overall application
performance.



void matmul(DTYPE* A,
           DTYPE* B,
           DTYPE* C,
           int DIM){
 #pragma omp target parallel map(from:C[0:DIM*DIM])\
   map(to:A[0:DIM*DIM], B[0:DIM*DIM]) num_threads(8)
 {
   int my_id = omp_get_thread_num();
   int num_threads = omp_get_num_threads();
   for(int i= my_id * BLOCK_SIZE; i < DIM; i += num_threads * BLOCK_SIZE){
     for(int j=0; j < DIM; j += BLOCK_SIZE){
       VECTOR C_local[BLOCK_SIZE];
       for(int k = 0, buffer = 0; k < (DIM+BS); k+=BLOCK_SIZE, ++buffer){
         VECTOR A_local[BUFFER_SIZE][BLOCK_SIZE];
         VECTOR B_local[BUFFER_SIZE][BLOCK_SIZE];
         if(k < DIM){
           for(int m=0; m < BLOCK_SIZE; ++m){
             A_local[buffer%BUFFER_SIZE][m] = *((VECTOR*) &A[(i+m)*DIM+k]);
             B_local[buffer%BUFFER_SIZE][m] = *((VECTOR*) &B[(k+m)*DIM+j]);
           }
         }
         
         if(buffer != 0){
           for(int x=0; x < BLOCK_SIZE; ++x){
             #pragma unroll BLOCK_SIZE
             for(int y=0; y < BLOCK_SIZE; ++y){
               DTYPE sum = C_local[i][j] * (buffer == 1 ? 0.0f : 1.0f);
               #pragma unroll BLOCK_SIZE
               for(int v=0; v < BLOCK_SIZE; ++v){
                 sum += (A_local[(buffer-1)%BUFFER_SIZE][x][v] 
                          * B_local[(buffer-1)%BUFFER_SIZE][v][j]);
               }
               C_local[x][y] = sum;
             }
           }
         }
       }
       
       for(int k=0; k < BLOCK_SIZE; ++k){
         *((VECTOR*) &C[(i+k)*DIM+j]) += C_local[k];
       }
     }
   }
 }
}

Fig. 5. Double buffering version of GEMM.

V. RESULTS

A. Experimental Methodology

All experiments were carried out using a Stratix 10 SX-
280HN2F43E2VG FPGA on an Intel D5005 PAC card using
the Quartus 19.2 software. The OpenMP frontend for Nymble
is based on LLVM version 9.

All performance measurements were captured using the
performance counters described in the previous section. For
visualization we used Paraver 4.8.2. Today, Paraver does not
support the notion of cycles. For all cases in the graphs where
microseconds are used, these are in fact cycles.

We used eight simultaneous threads in a single accelerator.
More than eight threads in a single accelerator did not increase
the performance further, because at this point all computing
resources are filled. Adding more threads only increases con-
gestion. Instantiating another accelerator would be possible,
but is out of scope for this work.

B. Profiling Overhead and Hardware Footprint

The inclusion of the necessary infrastructure for the state-
and event tracing of course incurs a small hardware overhead.
For our first case-study, investigation of the post-P&R results
shows that the inclusion of our tracing infrastructure increases
the number of registers by at most 5.4% (geo.-mean 2.41%)

Fig. 6. Paraver state-view showing the state each of the executing hardware
threads as a function of the execution time: Green represents a running state,
Red represents spinning on a mutex, Blue represents atomic execution inside
critical sections, and Black represents an idle thread.

Fig. 7. Visual comparison between the different GEMM versions and their
relative bandwidth over their respective execution time (absolute metrics
Paraver views are not included for space reasons).

and the number of ALMs by at most 4% (geo.-mean 3.42%),
so the footprint of the tracing infrastructure is comparably
small. The impact on the operating frequency of the accelerator
is negligible (maximum degradation 8 MHz at 140 MHz).

A direct comparison of the different performance counters
shows that each of the counters contributes similarly to the
hardware overhead, none of the counters could be identified
as being remarkably expensive.

For our second study, the number of registers is increased
by 1.3% and the number of ALMs by 1.5%. The impact on
the operating frequency of the accelerator is even smaller with
a degradation of only 1 MHz at 148 MHz.

C. Case-study: Matrix Multiplication

To illustrate how our methodology can be used to guide
optimizations and reason about performance of applications
compiled with HLS, we turn our attention to one of the
perhaps most important computational kernels: the general
matrix multiplication (GEMM). In order to demonstrate our
methodology, we consider matrices with size 512x512.

The starting point of our case-study is a naive imple-
mentation, as shown in Fig. 3. The version is a text-book
example of a GEMM implementation, and has been extended
to use OpenMP threads to parallelize the innermost loop, while
protecting the update to the C matrix with a critical section.
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Fig. 8. Figure showing the impact of blocking on the Paraver graph and
between two iterations of the matrix compute loop (the red line). We see that
we compute only on data stored in local memory (A), which is followed by
writing the local data back to external storage (B), and finally loading the
new block from external memory into local storage (C).

We start by profiling our initial GEMM version. This
version, for a matrix of 512x512 elements, takes 853,522,308
cycles to execute. We see the visualization for this version
in Figure 6 (top); while threads are mostly running without
interference, we do notice that there is a fair amount (1.54 %)
of time spent in critical sections and spinning on locks (1.57
%). This – in effect – extends the serial portion of the code,
limiting the parallelism (according to Amdahl’s law [19]),
which is shown in detail when zooming into the trace (Figure 6
(bottom)): thread 7 is spinning on the lock that protects the
critical section that thread 6 is currently in. We also see that
the memory throughput is quite low (Figure 7) throughout the
entire execution.

In the second version (called: No Critical Sections), we
distribute the work differently, effectively forcing threads to
work on elements in the output matrix C in isolation, removing
the need to protect it. This is a minor (and fairly non-intrusive)
change in application code, but removes all critical section-
and spin-states, enabling the application to fully execute in
parallel (only green states, not shown due to space-limitations)
and be memory-bound. We can see in Figure 7 that this version
has a slightly better memory throughput, which overall yields
a net improvement of 1.14x in execution time over the original
version with minor improvements to obtained bandwidth.

Being memory-bound, in the third version (called: Partial
Vectorization) (Fig. 4) we partially vectorize our application.
Here we vectorize the loading of the matrix A, and still
have B non-vectorized (since it needs to be transposed to
allow similar vectorization). The vectorization width is 128-
bit, which leads to a better memory performance, which can
be observed in Figure 7, yielding the expected improvement in
achieved memory throughput with wider accesses. This also
materialize in a 1.93x faster execution time over the previous

A B C

D

Fig. 9. Figure showing the profiling double-buffering in the Paraver graph.
Best contrasted against the results in Figure 8. We now see that the external
memory is being read from to prefetch the next block, concurrently with
computing the matrix multiplication on the current local block (A), except
for the final iteration where no prefetching is done, and only computation
is seen (D). Finally, we also see that segment C is working on a different
iteration (relative to the red lines, which separate individual iterations) than in
Figure 8, which is also due to the improved double-buffering scheme. Segment
B remains identical between the two figures.

version.
The fourth version (called: Blocked version), we take a step

back and try to apply a commonly used method: blocking the
algorithm. Blocking should be an effective strategy, as it trades
the expensive external memory operations for better, high-
bandwidth, on-chip BRAM bandwidth. Blocking is often used
for CPUs [20], GPUs [21], and even FPGAs [22]. Blocking
consists of two stages: (i) we first load the sub-matrices
into local BRAMs, and (ii) we compute on the local sub-
matrices. Furthermore, we vectorized the computation on the
sub-matrices, leading to better compute performance.

These two discrete stages can be seen when visualizing
the throughput and compute-performance (FLOP/s) trace in
Figure 8– we see the distinct compute phases as “spikes” in
the execution trace, which are dependent on the loading of
data (the upper throughput trace). The blocked version gives
us a net performance improvement of 5.28x over the initial
version. Interestingly, we also notice that this version yields a
lower external memory throughput compared to our previous
partial vectorized version (Figure 7). The reason for this is
that we trade much of the external memory bandwidth for
local memory bandwidth.

In the final version (called: double-buffering), we remedy
the problem of distinct load- and compute-phases. Instead, we
re-write our application such that a thread performs the pre-
load the next iterations’ blocks while computing on the blocks
currently available. The code for this version is seen in Fig. 5.
We can see the impact on performance of this optimization in
Figure 9, and we clearly see a different and more beneficial be-
havior compared to Figure 8: the sequential read and compute



DTYPE pi (int steps, int threads){
 DTYPE final_sum= 0.0;
 DTYPE step = 1.0/(DTYPE) steps;
 #pragma omp target parallel map(to : step) \
   map(tofrom: final_sum) num_threads(threads)
 {
   int step_per_thread= steps/omp_get_num_threads();
   int start_i = omp_get_thread_num()*step_per_thread;
   VECTOR sum = {0.0f};
   DTYPE local_step= step;
   for (int i=0; i< step_per_thread; i+=BS_compute) {
     #pragma unroll BS_compute
     for(int j=0; j < BS_compute; j++) {
       DTYPE x = ((DTYPE)(i+start_i+j)+0.5f)*local_step;
       sum[j] += 4.0f / (1.0f+x*x);
     }
   }
   #pragma omp critical 
   for(int i=0;i<BS_compute;i++) {
    final_sum+= sum[i];
   }
 }
 return final_sum;
}

Fig. 10. Infinite series for π calculation, distributed across multiple threads
using OpenMP.

behavior is removed, as the memory accesses and compute
are now running in parallel. This also has a beneficial impact
on achieved external memory throughput, where it reaches the
highest performance out of our GEMM candidates (Figure 7).
Overall, this version is 19x faster than our initial version.

D. Case study: Infinite series for π calculation

In the second case study, we show how problems with the
scaling of algorithms can be analyzed using the state-view of
Paraver. For this, we use an infinite series for calculating π
(source shown in Fig. 10), which we distribute onto multiple
threads. The sum-reduction of the individual results is done
using a critical section. Figures 11, 12, and 13 show the
Paraver state traces for 1, 4, and 10 million iterations respec-
tively. For 1,000,000 iterations, the hardware only achieves
0.146 GFLOP/s. From the trace, it can be seen that the
overhead of starting the individual threads by the software
causes the earliest threads to be finished before last ones are
even started. If we increase the iteration count to 4,000,000, all
threads are starting to get executed in parallel, resulting in an
increased performance of 0.556 GFLOP/s. Further increasing
the number of iterations to 10,000,000 gives us a performance
of 1.507 GFLOP/s. Unfortunately, since we are using only
single-precision computation, further increasing the number
of iterations results in numerical instability. Ignoring the
instability, increasing the number of iterations to 15·109 would
give us 36.84 GFLOP/s.

From this case study we can see that the bottleneck for small
computational loads is located in the communication between
the software and hardware, so we will look into how we can
improve our interface.

Fig. 11. Paraver state-view (colors explained in Fig. 2) for π with 1 million
iterations divided onto 8 threads. Here it can be seen that not all threads are
executing simultaneously, resulting in a performance of 0.146 GFLOP/s.

Fig. 12. Paraver state-view (colors explained in Fig. 2) for π with 4 million
iterations divided onto 8 threads. Compared to Fig. 11, the threads are now
running more and more in parallel, resulting in a performance of 0.556
GFLOP/s.

Fig. 13. Paraver state-view (colors explained in Fig. 2) for π with 10 million
iterations divided onto 8 threads. Compared to Fig. 12, most of the time is
spent running all threads, resulting in a performance of 1.507 GFLOP/s.

VI. RELATED WORK

The SoCLog [23] platform provides real-time acquisition of
profiling data for FPGA-based System-on-Chips. The primary
metric of collection is activity and the authors visualize said
activity on a time-line. They show-case their work on DCT
application, showing how different traces of two versions
(one un-optimized and one optimized) differs in their frame-
work. Compared to our work, which also captures activity
(IDLE/RUNNING), we also incorporate many more metrics
to provide a more truthful and informative picture of the
execution. Curreri et al. [24] profile FPGA throughput between
producer and consumer in HLS applications. The authors
visualize the performance as a DAG where nodes represents
producers and consumers, and edges data communication
(throughput), showing both absolute and relative performance.
Compared to our work, we aggregate and abstract throughput
performance in both off- and on-chip memory, showing it per-
thread and per-FPGA, rather than per-consumer/producer, and
we are more consistent with how HPC application display
these metrics.

Additionally, we support more metrics than only through-
put. Podobas et al. [25] used Paraver to reason about and
demonstrate the effect of resource-sharing and arbitration on
load-(im)balance in multi-threaded FPGAs similar to our work
in this paper. This work extends their work by including a
much richer and complex set of events. Calagar et al. [26]
researched source-level profiling using their tool Inspect,



which links the generated hardware (Verilog) to source-level
(C/C++) constructs in order to provide understanding around
what hardware is generated, and what is happening through
a familiar gdb-like interface. Our work focuses more on the
visualization of real-time performance, but in the future could
also benefit from linking traces with source-level annotations
in a way similar to what they proposed. The OmpSs [27] task-
based eco-system supports offloading OpenMP tasks to FPGA
accelerators [28], and the authors also support Paraver trace-
generation during FPGA execution. Their work focuses mostly
on visualization how the host processor orchestrates FPGA
execution, e.g., memory transfers to-and-from the FPGA itself
rather than what happens inside the accelerator (as this work
does). Curreri et al. [29] provides a general methodology
for profiling High-Level Languages (essentially HLS) for
FPGAs, and create a hardware module capable of capturing
performance metrics. They demonstrate their framework on
a molecular dynamics application in Impulse C. Our work
extends this by collecting many more diverse metrics, and we
are also not limited to streams, but we also include threads.
Both Intel and Xilinx offer visualization tools and profiling
information for various parts of their respective HLS flow,
including reporting performance bottlenecks (e.g., high initia-
tion intervals) and what memory interfaces were synthesized
for what operation (e.g., coalesced, burst, etc.), often linking
performance problems back to source code. Our work extends
both of these by focusing on profiling dynamic execution in a
multi-threaded environment, where we also include concepts
of threads, critical sections, and achievable throughput.

VII. CONCLUSIONS

In this work, we have developed a profiling infrastructure
with OpenMP-based frontend that can be included directly into
an HLS toolflow that produces traces that can be used with
state-of-the-art performance visualization tools. The infrastruc-
ture was included into the Nymble HLS compiler and used
with the Paraver visualization tool, but is sufficiently general
to be included in other HLS tools and to be used with other
HPC visualization tools.

Using two different applications, we demonstrated how the
performance visualization can be used to precisely analyze
performance bottlenecks, and successfully optimize the per-
formance by restructuring the HLS input code.

In the future, we plan to extend our infrastructure for
communication between FPGAs in a multi-FPGA setup and
evaluate how the collected traces can be used for profile-
guided optimization in the HLS compiler.
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