
nKV: Near-Data Processing with KV-Stores on
Native Computational Storage

Tobias Vinçon, Arthur Bernhardt, Ilia
Petrov

[firstname].[surname]@reutlingen-university.de
DBlab, Reutlingen University

Lukas Weber, Andreas Koch
[surname]@esa.tu-darmstadt.de

ESA, Technische Universität Darmstadt

ABSTRACT
Massive data transfers in modern key/value stores result-
ing from low data-locality and data-to-code system design
hurt their performance and scalability. Near-data processing
(NDP) designs represent a feasible solution, which although
not new, have yet to see widespread use.

In this paper we introduce nKV, which is a key/value store
utilizing native computational storage and near-data process-
ing. On the one hand, nKV can directly control the data and
computation placement on the underlying storage hardware.
On the other hand, nKV propagates the data formats and
layouts to the storage device where, software and hardware
parsers and accessors are implemented. Both allow NDP op-
erations to execute in host-intervention-freemanner, directly
on physical addresses and thus better utilize the underlying
hardware. Our performance evaluation is based on execut-
ing traditional KV operations (GET, SCAN ) and on complex
graph-processing algorithms (Betweenness Centrality) in-situ,
with 1.4×-2.7× better performance on real hardware – the
COSMOS+ platform [22].
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1 INTRODUCTION
Besides substantial data ingestion, yielding an exponential
increase in data volumes, modern data-intensive systems
perform complex analytical tasks. To process them, systems
trigger massive data transfers that impair performance and
scalability, and hurt resource- and energy-efficiency. These
are partly caused by the scarce bandwidth in combination
with poor data locality, but also result from traditional (data-
to-code) system architectures.
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Figure 1: KV-Store transferring data along a tradi-
tional I/O stack (a); and (b) nKV executing operations
in-situ on native computational storage.

Near-Data Processing (NDP) is a code-to-data paradigm
targeting in-situ operation execution. In other words, op-
erations are executed as close as possible to the physical
data location, utilizing the much better on-device I/O per-
formance. NDP leverages several trends. Firstly, hardware
manufacturers can fabricate combinations of storage and com-
pute elements economically, and package them within the
same device – so called NDP-capable computational storage.
As a result, even commodity storage devices nowadays, have
compute resources that can be effectively used for NDP, but
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are executing compatibility firmware (to traditional stor-
age) instead. Secondly, with semiconductor storage tech-
nologies (NVM/Flash), the device-internal bandwidth, paral-
lelism, and latencies are significantly better than the external
ones (device-to-host). Both lift major limitations of prior ap-
proaches like ActiveDisks [1, 24] or Database Machines [5].

Wide-spread, high-performance persistent key-value stores
like LevelDB or RocksDB [9] tend to rely on a traditional
layered-storage stack (Figure 1). It simplifies their architec-
ture, allows for more flexibility and eases data management
and administration. However, layers within the DBMS (e.g.
Storage Manager or access methods), but also underlying
the file- and operating system encapsulate information and
functionality necessary for the successful utilization of NDP
techniques. Firstly, NDP operations executed on-device re-
quire the physical address ranges of the data to be processed.
In traditional storage, address information is scattered along
the layers of the storage stack (DBMS, File System, OS) and
hidden behind layers of abstraction (Figure 1). Secondly, NDP-
operations need to navigate through and interpret the phys-
ical data on-device. To this end data formats and layout
accessors are necessary on device. However, data format def-
initions are only available within the DBMS or sometimes
within the application on top. Moreover, data layouts (page
or record) and traversal methods for the data organization
(files or LSM-trees) are typically hard coded in the DBMS
and thus not available on device.

To address the above, in this paper, we present nKV, which
is a key/value store utilizing native computational storage and
near-data processing (Figure 1). nKV eliminates intermediary
layers along the I/O stack (e.g. file system) and operates di-
rectly on NVM/Flash storage. nKV directly controls the phys-
ical data placement on chips and channels, which is critical
for utilizing the on-device I/O properties and compute par-
allelism. Furthermore, nKV can execute various operations
such as GET or SCAN or more complex graph processing
algorithms like Betweenness Centrality as software NDP on
the ARM-cores and as hardware-software NDP (HW/SW-
NDP) using corresponding FPGA-based accelerators. The
necessary FPGA hardware is built in the form of simple pro-
cessing elements that can be used to offload certain tasks
from the ARM-cores. Under nKV we target host-intervention-
free NDP-executions, i.e. the NDP-device has the complete
address information, can interpret the data format and ac-
cess the data in-situ without host interaction. To reduce data
transfers nKV also employs novel ResultSet-transfer modes.
nKV is resource efficient as it eliminates compatibility layers
and utilizes freed compute resources for NDP. nKV performs
1.4×-2× better than RocksDB: GET latency – 1.4×; SCAN –
2×; BC execution time – 2.7×.

This paper is organized as follows. In the next section we
describe the data organization of RocksDB and the challenges

it poses to NDP. In Section 3 we describe the architecture of
nKV and how those NDP-challenges are addressed in terms
of interface extensions (Section 3.1), in-situ data processing
(Section 3.2), as well as operations and algorithms (Section
3.3). The architecture of the underlying NDP hardware accel-
erators is described in Section 5. We discuss the experimental
results in Section 6 and conclude in Section 8.

2 BACKGROUND
In contrast to traditional data organizations, where data is
updated in-place, LSM-trees [21] have been proposed as an
out-of-place update structure to tackle the sustained update
and insertion rates of modern workloads and provide query
capabilities at the same time. Classical LSM-trees [21] com-
prise multiple B-Tree-structured index components (C0 to
CK , Fig. 2) that are stored in new locations and have constant
size ratios r = |Ci+1 |/|Ci |, i ∈ [0,K). An insert or update op-
eration hits the C0 component that is located in memory.
Once it reaches a size threshold, it is flushed to disk and is
merged with the C1 component. The merge processes grad-
ually move data from C0 to CK , purge outdated KV-Pairs,
reclaim space and indirectly ensure hot-cold data separation.

nKV builds on RocksDB [9], which introduces one inde-
pendent LSM-Tree per column family to separate the access
characteristics of different database objects. Modern LSM-
Tree variants (surveyed in [19]) are multi-levelled. Modifi-
cations to an LSM-Tree are first placed in the main mem-
ory component C0, which comprises a set of MemTables in
RocksDB. These are realized as memory-efficient data struc-
tures such as SkipLists. Whenever a MemTable reaches a
given size limit, it becomes immutable and a new one is
created to accommodate further modifications. Later on, im-
mutable MemTables are transformed into Sorted String Tables
(SST) and flushed to the secondary storage (Fig. 2), whereas
each LSM-tree component C1..CK comprises multiple SSTs.
Thereby, the contained key-value pairs are placed into mul-
tiple data blocks in sort order of the key. Furthermore, an
index block that comprises key-offset pairs pointing to each
data block (a sparse index) is prepended. Index blocks reduce
the access complexity to key-value pairs within the SST.
During the flush to C1 no merge occurs for performance

reasons. Consequently, overlapping key-value ranges of SSTs
can occur (consider SST12-SST1n , C1, Fig.2). Merge steps to
underlying layers C2 . . .CK , called compactions, take either
SSTs only on the level above or combine them with SSTs on
the target layer, based on the given strategy (e.g. tiered or
levelled). Either way, all KV pairs of the input SSTs are sorted,
out-dated entries are pruned, and the results are stored in
new SSTs on the target level (see dotted box, Fig. 2). Hence,
key ranges in SSTs bellow C1 do not overlap anymore. Yet,
keys may appear on multiple levels with different values
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(consider Key11 or Key70), to account for the temporal dis-
tribution of updates to a given key-value record. For instance
Key70 has been updated multiple times: Key70 on C1 is the
most recent record and its existence invalidates Key70 onC2
and C3.

To retrieve a key-value record based on the key, theGET (key)
first traverses the MemTables and the immutable MemTables
on C0. If the respective key is not found, the index block of
one or more SSTs in C1 has to be read (as SSTs may overlap
onC1, but not onC2...CK ). By parsing the key-offset pair, the
data block, which might contain the key, can be identified
and also has to be read from secondary storage. If the key is
still not found, layers (C2...CK ) have to be traversed similarly.
Due to the data organization and the compaction process,
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Figure 2: Conceptual organization of the multi-level
LSM-Trees in RocksDB/LevelDB.

a key can now reside only in a single SST per level. Range
scans with or without key predicates behave similarly, but
are more complex and are supported by other internal struc-
tures (like fence pointers). Consider SCAN ([Key68,Key70]),
which traverses all levels and retrieves Key70 from C1, and
Key69 and Key68 from C3.

However, if a scan involves value predicates, e.g. SCAN (0 ≤

Val ≤ 7), the only option is to iterate over the entire dataset,
yielding a significant increase of I/O transfers, which in turn
has enormous potential to be improved via NDP.

3 ARCHITECTURE OF nKV
Native computational storage. One of the underlying de-
sign principles behind nKV is that native storage enables
efficient NDP (Figures 1 and 3). In this sense nKV extends
[29]. Native storage is storage that is operated without inter-
mediary/compatibility layers of abstraction along the critical
I/O path, and is directly controlled by the database. This
means that nKV can directly operate on NVM/Flash storage
using physical addresses and thus can precisely control phys-
ical placement of SST data. It is this physical placement that
allows utilizing the on-device I/O bandwidth and the FPGA’s
compute parallelism.

nKV physically places SST data blocks and SST index blocks
on different LUNs and Channels (see Figures 2 and4). This
allows for reaching the internal bandwidth (Table 2) by re-
questing index and data blocks asynchronously and utilizing
processing parallelism of FPGA-based processing elements
(PEs). Besides, individual levels of the LSM-Tree are physi-
cally separated on different chips and LUNs to improve I/O
throughput and parallelism since I/O-heavy compaction jobs
do not block the entire device, reducing demand pressure on
the bus.

Furthermore, nKV operates directlywith physical addresses,
to access (read or write) precisely the physical pages that
are needed. This, in turn, is essential for reducing read- and
write-amplification. Moreover, it inherently avoids costly
host round-trips for logical-to-physical address translation.
Native storage eliminates these information hiding effects
incurred through layers of abstraction and thus simplifies
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the NDP-operations. Hence, native storage leads to leaner
NDP-functionality.

ComputationPlacement.By using native computational
storage, nKV can directly place computations on the hetero-
geneous on-device compute elements, such as ARM-cores
or FPGA-based processing elements. nKV can execute var-
ious operations such GET, SCAN or more complex graph
processing algorithms like Betweenness Centrality as soft-
ware NDP on the ARM-cores or with hardware support from
the FPGA (cf. Section 5). The experimental evaluation in-
dicates that some NDP operations such as NDP_GET(key)
perform best on the ARM-cores, while other operations like
NDP_SCAN(value_condition), benefiting from parallelism,
perform best on the FPGA. For its NDP-operations nKV
utilizes hardware/software co-design to handle the proper
separation of concerns and achieve best performance.

3.1 NDP Interface Extensions
NVMe support. nKV has a dedicated high-performance
user-space and in-DBMS NVMe layer (Figure 3). It is very lean
and tightly integrated with the rest of nKV. The native NVMe
integration can control multiple NVMe submission and com-
pletion queues either through dedicated threads or through
the transactional context. Moreover, it reduces the I/O over-
head as it allows the seamless creation of I/O and NDP tasks,
the precise allocation of transfer buffers for the DMA engine,
and prioritizable placement within the NVMe submission
queues. The deep database integration additionally avoids
expensive synchronization between user- and kernel-space,
and shortens the I/O paths even further as no drivers are
involved along the critical access paths. Internally, the native
storage command set is translated to specific NVMe I/O and
NDP tasks. Although these resemble the standardized NVMe
commands, they define a new category - n over NVMe. In
nKV, they can be scheduled either for synchronous or for
asynchronous execution.
Command set. Besides the classical native storage in-

terface, nKV introduces NDP-Extensions [29] in terms of a
generic NDP_EXEC() command. It takes the following pa-
rameters, among others:

(i) Command Identifier – Unique identifier of the NDP
function;

(ii) the SearchKey or SearchKeyRange(s) – for GET or SCAN;
(iii) the ResultsSet Size;
(iv) AddressMappings – these are ranges of physical ad-

dresses, where the physical data to be processed is
located;

(v) Min/Max Keys – RocksDB supports a type of zone
map range filter that can be used on device to skip
processing some index/data blocks;

(vi) Miscellaneous – command specific parameters such as
data format definitions.

nKV composes the NVMe command based on the given
parameters, current state and address information, and its
transactional context. After placing it in the NVMe submis-
sion queue and DMA transferring the parameters to the
device, the NDP command is then executed. The result set is
handled by the ResultSet processor, which also observes the
execution status. Finally the ResultSet is transferred to nKV
by the DMA engine. An NDP-operation can invoke multiple
low-level NDP commands synchronously or asynchronously.

3.2 In-situ Data Access and Interpretation
Under nKV, the NDP-device can interpret the data format
and access the data without host intervention (synchroniza-
tion with the host) [28]. To this end, nKV extracts definitions
of the Key- and Value-formats, and passes them as input pa-
rameters to the NDP-commands. Moreover, the data format
such as the Key- and Value-formats can be automatically ex-
tracted from the DB-catalogue (system-defined) or can be
defined by the application.
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Figure 4: In-situ access and data interpretation in nKV,
based on layout accessors and format parsers.

nKV employs a thin on-device NDP-infrastructure layer
that supports the execution and simplifies the development of
NDP-operations (Figures 3). It comprises data format parsers
and accessors that are implemented in both software and
hardware (Figure 4). The in-situ accessors traverse and extract
the contained sub-entities of the persistent data. Whereas,
the in-situ data format parsers process the layout of each
persistent entity, and extract the sub-entities by invoking
further accessors (Figure 4).

KV-Stores like LevelDB or RocksDB [9] organize the per-
sistent LSM-Tree data into so called String Sorted Tables (SST)
– see Sect. 2. To process aGET(key) request, for instance, nKV
first identifies the respective SST and invokes an NDP_GET
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command with the corresponding physical address ranges,
the respective Key- and Value-formats as well as further pa-
rameters. First, the SST layout accessor is invoked to access
the data and the index blocks. Subsequently, the index block
parser is activated to interpret the data and verify if the key is
present and extract its offset. If this is the case, data block ac-
cessor and parser are invoked to extract the Key/Value entry.
In case of an NDP_SCAN(key_val_condition) operation, the
KV accessor is subsequently invoked to extract it, followed
by a field parser to extract its value and verify the condition.
This way, nKV extends scans in classical KV-Stores. Typically,
they are only able to process filter criteria on key-embedded
attributes, but not filter predicates involving the value.

3.3 Operations and Algorithms
Lookup. KV-Stores offer fast (low-latency, high parallelism)
retrieval of a value, based on its key, through the GET(key)
operation. In nKV, this operation first performs a lookup
within main-memory components (MemTables, Fig. 2) re-
gardless of execution model. If the search key is not found,
the lookup will proceed scanning the deeper LSM-Tree levels
by processing their indices first and eventually their asso-
ciated data blocks. Both, index and data block scanning are
I/Os intensive in the traditional stack (Figure 1), while with
NDP, these can be performed efficiently on-device.

Scan.Asmentioned in Section 3.2, Scans can be performed
either on Key- or Value-embedded attributes. The index
blocks of the LSM-Tree might be leveraged to navigate to
necessary data blocks for key-attribute scans, similar to the
Lookup operation. However, there is no auxiliary structure
to accelerate scans on value-embedded attributes. Either way,
multiple data blocks have to be examined depending on the
selectivity of the filter-predicate. Consequently, Scans usu-
ally result in a high amount of data transfers, which NDP
can significantly reduce.

UDF: Betweenness Centrality. Many applications in-
volve more complex algorithms. Such user-defined functions
(i.e. Betweenness Centrality) can also be supported by nKV.
The specific algorithm implemented within nKV relies on
[6] and measures the degree, to which nodes stand among
each other. The logic involves shortest-path searches over
the given nodes and therefore results in a variety of lookups
and scans involving random and sequential I/O.

3.4 Data Consistency, Database
Maintenance and NDP

In parallel to the execution of NDP functionality, nKV allows
the processing of database maintenance e.g. compactions.
Such parallel operations might result in new data or even
changes to the LSM-Tree. Yet, as nKV’s NDP-operations are

executed on a snapshot of the physical data, concurrent mod-
ifications do not effect its consistency. This can be ensured by
firstly, the underlying mechanism of Copy-on-Write (CoW),
secondly the precise placement through the native storage
interface, and thirdly, the direct control of the physical GC
by nKV. Moreover, nKV requires no on-device bad-block
re-mapping like other native storage management solutions
[4], since bad-block management and wear-leveling are han-
dled directly within the database engine [23]. Thus native
storage management [23] leverages the the above issues by
DBMS managed physical-to-logical address mapping and
data placement.

3.5 Result Set Handling
Unnecessary data transfers may occur depending on how the
result of an NDP-operation is transferred back. Therefore, Re-
sultSet management additionally helps to avoid unnecessary
stalls of processing resources. nKV aims to reduce the data
transfer overhead caused by a Volcano-style record-at-a-time
model. Instead it aims to bulk-transfer the ResultSet. The
former is simpler, but leads to more frequent shorter burst
transfers causing bus overhead. The latter results in fewer,
but longer bursts leveraging the throughput-optimized PCIe.
Each NDP call in nKV defines a maximum ResultSet size

as a parameter. The NDP ResultSet-Processor (Figure 3) al-
locates on-device resources for it: either in DRAM, or if the
contention is high, it allocates a temporary region on Flash.
As long as the actual result size does not exceed the prede-
fined one, the ResultSet is sent back as bulk DMA-transfer,
to leverage the full performance of the DMA engine. Al-
ternatively, it may be pipelined to the next NDP-operation.
Furthermore, nKV has a built-in extension mechanism that
in the worst case may preemptively request more physical
space from the DBMS, as it manages the logical-to-physical
address mapping [23].

4 HARDWARE-ARCHITECTURE
The COSMOS+ platform [22] is a PCIe-based extension-card.
It contains all the required hardware-modules to function
as a regular NVMe-based SSD. It can be fitted with up to 2
DIMM-extensions containing Flash modules. The available
Toggle-NAND Flash-extensions can be configured in SLC or
MLC mode. In this work, they are configured as SLC with 16
dies organized in two channels.
The main computational engine of the COSMOS+ plat-

form is a Xilinx Zynq-7000 SoC (XC7Z045-3FFG900) that
combines two 667 MHz ARM Cortex-A9 cores with an FPGA
(Figure 5). In the The COSMOS+ platform [22], the FPGA-
portion is used to implement the required SSD-infrastructure.
This infrastructure is made up of two separate domains: The
first one is responsible for accessing the flash memory. It
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comprises one or many Tiger4-controllers with correspond-
ing low-level flash interfaces. For each channel, a distinct
Tiger4-controller, as well as a low-level interface, is required.

The second domain contains primarily an NVMe-Core,
which allows access from the host to the device via the NVMe
interface. The NVMe-Core also wraps the actual low-level
PCIe-interface.
Both of these domains are running at different clock-

frequencies. While the flash domain uses a 100 MHz clock,
the NVMe-Core is running at 250 MHz. When planning to
extend this platform, the following aspects are relevant:
1) The amount of resources on the FPGA-portion (PL) of

the SoC is limited. While the platform can be fitted with
more flash-DIMMs, this also requires more flash controllers.
This in turn impacts the resource requirements. In this work,
one flash-DIMM is used with 2 flash controllers. While this
limits the available flash memory and the corresponding
parallelism, it also frees up resources for different use (i.e.
computational processing elements).
2) Since the different domains are running at different

clock-frequencies, the extensions should be able to run at
the same clock-frequencies. In the case of the COSMOS+
platform, this is not a huge problem, since most hardware-
accelerators can run at 100 MHz and can therefore reside in
the flash-domain.

A simplified view of the architecture is depicted in Figure
5. It also includes the nKV hardware extensions described in
this work (Section 5).

Cosmos+ OpenSSD
Zynq-7000 SoC

Device
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Low Level Flash

Interface

Tiger4 Flash

Controller

AXI Interconnects

ARM A-9 based
Processing

System (PS)

Device
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PCIe
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 Host

Extension

PE 1
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Device 

Figure 5: A simplified view of the architecture of the
COSMOS+ OpenSSD [22], including the proposed ex-
tension.

5 HARDWARE-ACCELERATION
Using the baseline architecture (Figure 5), specific processing
elements (PEs) are implemented, allowing to move compu-
tation from software running on the ARM-cores to the pro-
grammable logic of the SoC, potentially improving latency,
throughput, and available parallelism. The PEs are written
in Chisel3 [3] using a relatively simple architecture that can
be subdivided into four distinct domains (cf. Figure 6):

The control-domain consists of a register file, holding
a number of control registers, which are accessible using
an AXI4-Lite interface. The corresponding addresses are
mapped into the address space of the processing system (PS),
so that the ARM-cores can read and write these registers and
thereby control and configure the PE. The control registers
hold the required parameters for the functionality provided
by the processing elements (e.g. the memory addresses of
the input and output). In addition, the signaling to the ARM-
cores is also done using these registers. One register indicates
whether the PE is busy, while another can be used trigger
the execution.

The memory-domain contains a load and a store unit.
These are connected to the PSs DRAM-interface, allowing
the PE to access the device DRAM. Both the load and the
store unit perform data transfers in chunks of 32 KB, which
corresponds to the size of a single data-block in our RocksDB-
configuration. The transfers are performed using AXI4 bursts
to maximize throughput. The data-width of the AXI4-Bus
is 64 bits and the AXI burst length is 16. Generally, longer
bursts allow higher throughput, due to the sequential access
pattern. Unfortunately, the Zynq-7000 family only supports
a maximum burst length of 16.

Processing Element

Memory Accessor Comutation Control

Load Unit Tuple
Input Buffer Filtering Unit

Data
Transformation

Unit
Tuple

Output Buffer

Control 
Register File

Store Unit

AXI4Full
DRAM

AXI4Lite
CTRL

Store Unit

Figure 6: The overall Microarchitecture of the pro-
posed Parser Processing Elements.

The accessor-domain is responsible for converting the
different data granularities (64 bit words vs tuples) between
the memory and the computational domain. The tuple input
buffer will buffer incoming 64 bit data words from the load
unit, until a complete tuple is available. This will then be
passed to the filtering unit. Similarly, the tuple output buffer
will receive a resulting tuple and split it into words of 64
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bits to allow transfer to memory via the store unit. In this
context, a tuple corresponds to a key-value pair (kv-pair).

The computational domain is comprised of two dis-
tinct modules. The first one is the filtering unit, which ac-
cepts single kv-pairs as input. Depending on the control
registers, the filtering unit will then pass on matching kv-
pairs to the data transformation, while non-matching ones
are discarded. In the current implementation, the filtering
unit can be configured to apply a single predicate on a kv-
pair. This is done using three parameters: the column selector
(i ∈ [0,n − 1], where n is the number of distinct data-fields),
the compare operator (op ∈ {nop,=,,, >, ≥, <, ≤}) and a ref-
erence value (c) to compare against. Considering a kv-pair
t = (t0, t1, t2, . . . , tn−1), the following expression is evaluated:
r = ti op c . If r is true, the kv-pair will be passed on, else it
will be discarded.

The last module transforms the data into the required
output format. This corresponds to a projection of tuples
and allows the automatic removal of RocksDB-metadata or
unnecessary tuple elements. The transformed tuple is passed
back to the accessor-domain, to be stored back to the device
DRAM. The complete microarchitecture of the PEs is also
depicted in Figure 6.
Building atop of the baseline architecture of COSMOS+

(Figure 5), we developed an extended architecture, which
contains additional processing elements. In particular, we
built two different processing elements for the specfic evalu-
ation dataset (the database-of-research-papers): One for the
data of the paper themselves (paper-PE), and another one
for the data of the references (ref-PE). Initial experiments
showed, that the paper-PE can process a 32 KB block of data
faster than the two Tiger4s controllers are able to provide it
(due to the flash latency). Thus, we employ a single paper-PE
in the final architecture. For the handling of the paper refer-
ences in the database, much more data has to be processed
multiple times. In this case, the flash latency becomes less
relevant, since the reference data is cached in the on-device
DRAM and does not have to be fetched from flash memory
each time. Thus, the architecture can keep multiple ref-PEs
busy. To keep the interconnects balanced, we opted for seven
ref-PEs, yielding a total of eight PEs (including the single
paper-PE). Generally, it would be possible to increase the
number of PEs, but all active PEs compete for access to the
on-device DRAM. Thus, there will be a point of diminishing
returns considering overall throughput as soon as the full
memory bandwidth is saturated. Instead of replicating PEs
for more throughput, it might be more reasonable to use
multiple different PEs to increase flexibility of the hardware
acceleration.
The baseline and extended hardware designs were syn-

thesized and implemented using Xilinx Vivado v2019.1. The
resulting resource utilizations are reported in Table 1, both in

Table 1: FPGA-Resource Utilization of the Baseline
and extended Architectures, including hierarchical
utilizations of relevant sub-modules.

Slices BRAM DSPs
abs. % abs. % abs %

Baseline 14544 26.61 78 14.31 0 0
Tiger4 8174 5.81 15 2.75 0 0
NVMe-Core 4312 7.89 29 5.32 0 0
LL Flash 475 0.87 5 0.92 0 0

Extended 35667 65.26 101 18.53 0 0
paper-PE 33103 15.14 0 0.0 0 0
ref-PE 4012 1.84 0 0.0 0 0

Available 54650 100.00 545 100.00 900 100

terms of absolute numbers, as well as relative to the resources
available on the Zynq 7045 chip. The baseline results indi-
cate that the Zynq has many spare resources. Even though
small, a large fraction of its hardware resources are unused.
The main reason for this lies in the flash-configuration. For
a platform with two flash-DIMMs and the full parallelism,
eight flash controllers and flash interfaces are needed. In our
design, we only use one flash-DIMM with two controllers/in-
terfaces, which vastly reduces the resource-requirements.
These free resources are then leveraged by our extended

architecture to offload computations from the ARM-core to
the FPGA. In doing so the hardware accessors and format
parsers can be instantiated multiple times. In fact, nKV uses
two different kinds of parsers with up to seven instances.

Another interesting point is the vast difference in resource
requirements between the paper-PE and the ref-PE. The
reason for this lies in the different sizes of the parsed kv-pairs.
The kv-pairs processed by the paper-PE are 136 bytes each,
while the kv-pairs processed by the ref-PE are merely 36
bytes each. Apart from the data-size, the number of distinct
data fields also plays an important role, due to the number
of required comparators.
Finally, there is a complete lack of DSP utilization. DSPs

are hard-wired special-function slices which provide fast
arithmetic and logical operations, that are typically relevant
in the context of digital signal processing. For our work,
DSPs could be interesting for arithmetic comparisons as well
as pattern recognition.
For future extensions of this work, the above could be

exploited to reduce Slice-utilization, or to implement more
complex functionality within the PEs.

6 EVALUATION
For the evaluation, the COSMOS+ board [22] (see Figure
5) is attached over PCIe 2.0 x8 as an NVMe block device
supported by Greedy FTL to realize traditional storage. The
host server is equipped with a 3.4 GHz Intel i5, 4GB RAM and
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Figure 7: Break-Down of Execution Times within the NDP Stack with HW support.

runs Debian 4.9 with ext3. We configure both RocksDB [9]
and COSMOS+ [22] with a 5MB cache. COSMOS+ is directly
mapped into the userspace and controlled by native NVMe.

We evaluate nKV on a 2.4GB research paper graph dataset
from Microsoft Academic Graph [27]. It comprises approx.
48 million Key/Value-pairs: 3.8M papers, 40M references,
18K venues, and 4.2M authors. For each experiment, we
report the average execution times of three cold test runs.
The baseline for our experiments is RocksDB using block-
device storage (Blk) on top of GreedyFTL and ext3. Perfor-
mance results of GET(key), SCAN(value_predicate) and BC
are reported for three different stacks: Blk as baseline, soft-
ware NDP (NDP:SW ) on the ARM and FPGA-assisted NDP
(NDP:SW+HW ).

6.1 Low-level Flash Properties
Physical data placement and the on-device Flash character-
istics play an essential role in nKV. The following Table 2
shows the on-device latency and bandwidth, measured by di-
rectly issuing page reads to the Flash Management Unit. The
level of parallelism is controlled by data placement on either
different Channels, LUNs or both. While a single page-read
takes approx. 300µs, careful data placement on Channels and
LUNs reduces latency down to 94µs with full parallelism
(Table 2). However, an upper limit of around 217 MB/s can
be observed for sequential and random workloads, which is
due to the bus limitations of COSMOS+.

6.2 Experiment 1: Lean Native Stack
One important conceptional characteristic of NDP with nKV
is the removal of traditional compatibility layers to sim-
plify the access stack. To verify this property, we execute a

Table 2: Flash Latencies and Bandwidth (BW) of the
COSMOS+ OpenSSD for different levels of parallelism.

Pages Parallelism Duration per Page [µs]
1 1 Ch. 1 LUN 300.00
4 2 Ch. 2 LUN 113.50
8 2 Ch. 4 LUN 94.12

Access Pages Parallelism BW [ MB/s] IOPS
Random 1500 1 Ch. 1 LUN 52 3000

1500 2 Ch. 1 LUN 102 6000
1500 1 Ch. 8 LUN 108 6000
1500 2 Ch. 8 LUN 213 13000

Seq. 640 2 Ch. 8 LUN 217 13000

GET(key) command. We compare the results of our baseline
(Blk) against nKV with software NDP (NDP:SW), and nKV
with Parsers-PE support (NDP:SW+HW) – Figure 8.

nKV utilizes the native data placement and improves the
round-trip time by 1.4× due to native NVMe and mapping
the device into its userspace. This reduces the execution
time from 7.9 ms to 5.7 ms, as shown in Figure 8. Interest-
ingly, there is no benefit from hardware PEs since the gains
from concurrent executions are limited due to the sequential
nature of first reading and then processing Flash data.

6.3 Experiment 2: Data Transfer Reduction
While the relatively simple GET-operation does not benefit
from the hardware PEs, this changes for bigger and more
complex operations like the SCAN. In addition to the vastly
reduced latency, the use of NDP has additional effect on the
overall system. While all three implementations read simi-
lar amounts of data from flash (492.3 MB ± 0.2 MB due to
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Figure 8: GET execution times for Blk, NDP:SW and
NDP:SW+HW.

caching), the required DMA data transfers vary. For NDP-
operations, a single DMA transfer is required to push down
the additional parameters. We draw the following conclu-
sions. Firstly, efficient ResultSet handling reduces the transfer
overhead by employing large bulk DMA transfers. Secondly,
due to on-device filtering the amount of data to be transferred
also decreases depending on the predicate selectivity.
The execution time is reduced by more than 2x (from

6.95 s to 3.35 s) as shown in Figure 9.
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Figure 9: SCAN execution times for Blk, NDP:SW and
NDP:SW+HW.

6.4 Experiment 3: Native Computational
Storage

Native Computational Storage plays an essential role for nKV.
Especially with complex graph analysis operations like Be-
tweenness Centrality (BC) the concepts of native data place-
ment, flash parallelism and computation placement can be
leveraged to improve the performance. An execution on a
smaller graph, benefits the software implementation. For a

large number of edges, the complexity is high and multiple
HW Parsers can be utilized to improve performance. With
a total of 7 HW Parsers nKV achieves 2.7x speed-up for
2.037.755 edges (Figure 10).
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Figure 10: Betweenness centrality (BC) execution
times for Blk, NDP:SW and NDP:SW+HW.

6.5 Experiment 4: Execution Parallelism
In large graph processing the number of applied HW Parsers
is important to balance between FPGA utilization, memory
bandwidth limitations and performance. nKV allows config-
ure the number of HW Parsers individually for each NDP
operation. In Figure 11 BC is executed with 2.037.755 edges
using a different number of ref-PEs. Clearly, increasing the
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Figure 11: Betweenness centrality (BC) execution
times for for NDP:SW+HW using 3, 5 and 7 instances
of the ref-PE hardware parser.

number of PEs per operation, yields better speed-ups. Us-
ing seven PEs instead of three PEs results in a speed-up of
1.25x. While the data suggests that more parsers are better,
it is important to note that all instances compete for DRAM
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accesses. Thus, addingmore parsers will yield diminishing re-
turns due to memory contention and increased randomness
in the memory access patterns.

7 RELATEDWORK
The Near-Data Processing is deeply rooted in database ma-
chines [5] developed in the 1970s-80s or Active Disk/IDISK
[1, 16, 25] from the late 1990s. Besides dependence on pro-
prietary and costly hardware, the I/O bandwidth and par-
allelism are claimed to be the limiting factors. While not
surprising, given the characteristics of magnetic/mechanical
storage combined with Amdahl’s balanced systems law [10],
this conclusion needs to be revised. Storage devices built
with modern semi-conductor storage technologies (NVM,
Flash) are offering high raw bandwidths with high levels of
parallelism on-device.

With the advent of Flash technologies and reconfigurable
processing elements, Smart SSDs [8, 15, 26] were proposed.
An FPGA-based intelligent storage engine for databases is
introduced with IBEX [30]. Biscuit [11] is a timely proposal
for a general NDP framework. JAFAR [2, 31] is one of the
first systems to target NDP for DBMS (column-store) use,
whereas [14, 18] target joins besides scans. The use of NDP
in the realm of KV-Stores has been investigated in [7, 17].
Kanzi [12], Caribou [13] and BlueDBM [20] are RDMA-based
distributed KV-Stores investigating node-local operations.

Much of the prior work on persistent KV-Stores and NDP
focusses on bandwidth optimizations. NoFTL-KV [29] ad-
dresses the problem of write-amplification. The NDP exten-
sions demonstrated by nKV target the read-amplification,
latency improvements and computational storage.

8 CONCLUSION
In this paper we introduced nKV – a key-value store designed
for native computational storage and near-data processing.
nKV controls physical data placement directly and hence
the on-device I/O parallelism. Along the same lines, nKV
can place NDP operations on different compute elements
on device (ARM or novel FPGA PEs) and also configure
the hardware per operation accordingly, e.g. the number
of hardware parsers used. Both placement methods impact
the performance of NDP operations, GET is faster on the
ARM, while SCANs are faster with hardware support. nKV
is based on the principle of explicit cross-layer data formats,
hence hardware or software layout accessors and format
parsers are deployed an can be used for different operations.
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