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Abstract—The growing computational demands of automotive
applications require the use of powerful embedded, heteroge-
neous computing platforms in vehicles. OpenMP, and in par-
ticular its device offloading features, are a promising candidate
programming model for these platforms.

In this work, we show how typical automotive workloads can
be implemented and optimized with OpenMP device offloading.
To this end, we also adapt the LLVM OpenMP runtime to
embedded, heterogeneous platforms. Our evaluation shows that
OpenMP device offloading can deliver performance similar to
that of optimized CUDA implementations.

I. INTRODUCTION

As modern driver-assistance and autonomous driving func-
tionalities demand large amounts of computational power on-
board of vehicles, the automotive industry is starting to adopt
embedded, heterogeneous platforms, such as the Nvidia Drive
system, to supply the required computational power.

Programming these systems can be a challenging task and
requires a programming model suitable for the platform.
In their study, Sommer et al. [1] identified OpenMP as a
very interesting candidate, in particular due to its ease-of-
use and maintainability. With the device offloading features
introduced in version 4.0, and further refined in newer versions
of the OpenMP standard, OpenMP now also allows to target
heterogeneous systems, e.g., combining a multi-core CPU and
a GPU. However, in their study [1], Sommer et al. also found
the compiler support for OpenMP device offloading to still
be limited on embedded systems. Since the study has been
conducted, the OpenMP support in compilers has evolved,
e.g., with the LLVM compiler infrastructure now supporting
OpenMP device offloading on ARM-based systems.

In this work, we show how OpenMP offloading can be
used for automotive workloads on embedded heterogeneous
platforms by accelerating three automotive workloads from the
open-source DAPHNE benchmark suite [2] on an embedded
platform combining a multi-core CPU and a GPU. We also
modify the LLVM OpenMP runtime to facilitate management
of shared memory on embedded platforms.

II. IMPLEMENTATION

We wuse the three automotive benchmark kernels
points2image  (P2I), euclidean_clustering (EC) and
ndt_mapping (NDT) from the open-source DAPHNE

suite [2] to demonstrate how OpenMP device offloading can
be used to accelerate performance-critical parts of automotive
applications. All three kernels represent typical automotive

workloads and have been extracted from the open-source
Autoware framework for autonomous driving [3].

As OpenMP constructs for device offloading differ from
the parallel constructs for CPUs, a serial implementation in
pure C++ is used as starting point for the study. For better
comparability with the hand-written CUDA implementation
provided in the DAPHNE suite, the same performance-critical
sections of the program are offloaded to the GPU.

After adding the OpenMP offloading constructs to the
code (e.g., omp target teams distribute), it would
already be possible to run the kernels and offload the OpenMP
target regions to a GPU. However, this implementation does
not yet exploit one of the most important differences between
embedded heterogeneous platforms and heterogeneous systems
typically found in HPC domains: on embedded platforms, the
different components of the system often physically share the
same memory, as it is the case for our target system, the Nvidia
Jetson platform [4].

We therefore modify the LLVM OpenMP runtime to allow
for allocation of memory that can be accessed by both, the
host CPU and the GPU. Using the standard OpenMP function
omp_target_alloc, it is now possible to allocate memory
accessible by both components, and avoid expensive data-
copies. These data-copies made up for 88% of the execution
time for points2image and 49% for euclidean_clustering, so
allocating memory usable by both CPU and GPU signifi-
cantly reduces the kernel execution time. For the benchmark
ndt_mapping, execution was not even possible with application
data allocated twice (once in host memory, once in GPU
memory) because this wasteful allocation exceeded the system
memory.

It is also possible to further optimize the ndi_mapping
application performance: Profiling the kernel shows that one
of the target regions is 10x slower than its CUDA counterpart.
Further investigation of the region shows that the atomic
update (omp atomic update) is compiled to a somewhat
inefficient PTX code sequence, whereas the hand-written
CUDA version uses the CUDA builtin function atomicAdd.

But using OpenMP’s declare variant mechanism, a
specialized function for the atomic update can be defined.
This specialized function for the CUDA architecture will
automatically be selected by the compiler when offloading
to the CUDA architecture, whereas a generic version of the
function will be used for other architectures, keeping the
OpenMP-based implementation portable.
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Fig. 1: Accumulated runtime of benchmark kernel execution in seconds.

III. EVALUATION

We use an Nvidia Jetson AGX Xavier platform to compare
a total of five different implementations for the three different
kernels:

« Serial baseline implementation in pure C++ (Serial).

o CPU-only OpenMP-implementation (OMP CPU).

e OpenMP offloading implementation assuming separate
memory (OMP Offloading).

e OpenMP offloading implementation optimized for phys-
ically shared memory (OMP Phys. Shared Mem.).

o Hand-written CUDA implementation (CUDA).

Fig. 1 shows the accumulated runtime for each kernel (aver-
aged over three runs), the number of invocations corresponds
to the full data-set of the DAPHNE benchmark and is given in
parentheses. The bar for OMP Offloading for ndt_mapping is
missing due to the reasons explained in the previous section.

For the first two applications, the use of physically shared
memory (OMP Phys. Shared Mem.), as enabled by our
modified version of LLVM’s libomptarget, dramatically
improves the execution time compared to the version assuming
separate memory. In case of the points2image kernel, there
is still a significant gap between the OpenMP offloading
version with physically shared memory and the hand-written
CUDA implementation, but the OpenMP offloading neverthe-
less clearly outperforms the CPU-only OpenMP implementa-
tion. The OpenMP offloading implementation with physically
shared memory of euclidean_clustering even outperforms the
optimized CUDA implementation by a small margin, making
the OpenMP offloading the fastest implementation of this
benchmark kernel. For ndt_mapping, there is a small difference
in performance between OpenMP offloading with physically
shared memory and CUDA implementation, and both versions
are not able to keep up with the CPU-only implementation of
this kernel.

Table I further investigates the difference between OpenMP
offloading with physically shared memory and hand-written
CUDA implementations by looking at the execution time
per invocation of the different GPU regions as given by
nvprof. As the region execution time is almost equal for
points2image, the performance difference is most likely caused

Benchmark  Region ‘ Calls OMP PSM [us] CUDA [ps]
P21 Region 1 2,500 118 121
EC Region 1 1,726 541 1,728

Region 2 | 191,132 8.8 7.4
NDT Region 1 115 12,022 9,784
Region 2 115 35,008 33,829

TABLE I: Average runtime per kernel invocation in ps.

by the OpenMP runtime itself. For euclidean_clustering, the
execution time for the second region is almost identical, the
small advantage of OpenMP offloading over CUDA stems
from the difference in execution time of the first region. With
the OpenMP offloading version for ndt_mapping, both regions
are slightly slower than their CUDA pendants. However,
an investigation of the original implementation shows that
the implementation of the specialized atomic update using
OpenMP declare variant reduces the execution time
of Region 1 by a factor of more than 7x (from 87,890us to
12,022ps).

IV. CONCLUSION & OUTLOOK

In this work, we have demonstrated how OpenMP device
offloading can be used to accelerate automotive workloads
on embedded heterogeneous platforms, and how application
performance can further be improved by adapting the OpenMP
runtime to the special features of embedded systems and
by using advanced OpenMP mechanisms, such as platform-
specialized function variants.

The optimized OpenMP offloading implementations devel-
oped in this work are available in the public DAPHNE source
code repository on Github!. The modified version of the
LLVM infrastructure is also publicly available on Github?.

In the future, we plan to further improve the efficiency of the
OpenMP runtime on embedded platforms and investigate the
use of OpenMP offloading for other embedded and automotive
use-cases.

Thttps://github.com/esa-tu-darmstadt/daphne-benchmark
Zhttps://github.com/sommerlukas/llvm-offload-jetson
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