Comparison of Arithmetic Number Formats for
Inference in Sum-Product Networks on FPGAs

Lukas Sommer*, Lukas Weber*, Martin Kumm?', Andreas Koch*
*Embedded Systems and Applications Group, TU Darmstadt, Germany
TFaculty of Applied Computer Science, Fulda University of Applied Sciences, Germany
*{sommer, weber, koch} @esa.tu-darmstadt.de, Tmartin.kumm @cs.hs-fulda.de

Abstract—Probabilistic Graphical Models (PGM) have recently
received increasing attention for various machine learning tasks
and approaches for their acceleration on FPGAs have been
presented.

In this work, we investigate three different arithmetic formats,
namely customized floating-point, Posit and logarithmic number
systems with regard to their suitability for the inference in PGMs,
specifically so-called Sum-Product Networks (SPN). Based on
results from an automatic design-space exploration developed
in this work, we implement hardware arithmetic operators for
each format, optimized for SPN inference.

Our evaluation shows that the choice of the most area-efficient
solution depends on the relation between the numbers of adders
to multipliers in the network. Up to 57% and 68% of Slice
and DSP reductions, respectively, could be obtained compared
to previous work. With regard to performance, all formats
achieve similar results and outperform CPU and GPU-based
implementations of SPN inference by factors up to 12x and 4.6x,
respectively.

I. INTRODUCTION

Next to GPUs and custom ASICs, such as Google’s TPU,
FPGAs have established themselves as a succesful implemen-
tation platform for the acceleration of machine learning (ML)
tasks, in particular for inference. Besides numerous works
on the acceleration of the inference in neural networks, for
example convolutional neural networks (CNN) for computer
vision applications, new approaches to accelerate inference in
probabilistic models on FPGAs have recently been presented.

One such approach for the inference in so-called Sum-
Product Networks (SPN) was developed in [1], [2], [3].
Compared to neural networks, Sum-Product Networks, which
belong to the class of tractable Probabilistic Graphical Models
(PGM), can better deal with missing input features and,
as SPNs compute exact probability values, are also able to
express uncertainty over their outputs.

However, this ability also poses new challenges to the
implementation of such networks on FPGAs. In [1], [2],
the authors used a double-precision floating-point format to
preserve accuracy. Such an arithmetic format is expensive to
implement on FPGAs. Therefore, in this work, we seek to
optimize the hardware arithmetic operators to reduce resource
usage, while preserving sufficient accuracy. To this end, we
will investigate three different arithmetic formats, namely “tra-
ditional” but customized floating point, logarithmic number
system (LNS) and Posit, with regard to their suitability for
FPGA-based accelerators for SPN inference.

We exploit an automatic and efficient design-space ex-
ploration (DSE) flow, based on software-only emulation of
the arithmetic formats for SPN inference, to determine the
minimal bit-widths required to preserve accuracy with each of
the formats prior to hardware generation.

Based on the findings from our DSE, we then implement
hardware arithmetic operators for each of the three investigated
arithmetic formats, optimized for the inference in Sum-Product
Networks on FPGAs. The optimized arithmetic operators are
used to generate fully pipelined datapaths, which are integrated
into a SoC-design providing the host-CPU software interface.
In our extensive evaluation, we investigate which arithmetic
format is most suited for SPN inference on FPGAs and
compare the performance of the generated datapaths with CPU
and GPU-based implementations of SPN inference.

II. SPN BACKGROUND

Sum-Product Networks [4] belong to the class of proba-
bilistic models, which can be used for a range of different
machine learning tasks. As they are also able to take the
statistical nature of the data into account, and deal well with
uncertainty and missing features, this class of models has
received increasing attention recently.

After a probabilistic model has been trained from data,
different machine learning problems, such as classification and
regression, can be solved by using probabilistic queries on
the trained model. An example for such a query would be to
determine which news-article a user is most likely interested
in, based on information on whether or not he or she has
looked at other articles before.

In comparison with other probabilistic models and other
ML-techniques, such as deep neural networks, SPNs exhibit a
number of interesting characteristics, that makes them attrac-
tive for use in a range of different applications. For example,
SPNs have already been used succesfully for sequence labeling
[5], i.e., classifying the characters in a handwritten sequence,
or in path planning algorithms for mobile robots [6].

One very important property of SPNs for their practical
usage is the efficiency of the inference: While in general,
inference for unrestricted PGMs is intractable, the inference
in SPNs is guaranteed to be linear w.r.t. the number of nodes
[4], [7]. This tractable inference is key to efficiently answering
probabilistic queries in practical applications.

Fig. 1. Example of a valid SPN representing the joint probability
P(x1,x2, 3, 4).

Another interesting property of SPNs is their expressive-
ness: From mixture models, which can easily be represented
by a shallow Sum-Product Network with a single sum-node,
SPNs inherit the universal approximation property [8]. This
means that Sum-Product Networks can represent any predic-
tion function, similar to deep neural networks.

One of the most interesting properties about Sum-Product
Networks, that also makes SPNs stand out from other ML-
techniques such as deep neural networks, is the precision of the
inference process. Whereas neural networks generally compute
approximate values, Sum-Product Networks are instances of
Arithmetic Circuits [9] and therefore facilitate the computation
of exact probability values. Beyond more precise answers
to queries, this also offers the advantage that the inference
process can be combined with anomaly detection by compar-
ing the respective probabilities from different SPNs, and also
better account for the statistical nature of the data.

In this work, we focus on the inference process in a pre-
trained SPN. In this case, the learning has taken place offline
on a traditional CPU-based machine.

A. Model Representation

A Sum-Product Network captures the joint probability
P(X,Y,Z) over a set of variables {X,Y, Z} in the form of
a rooted, directed acyclic graph (DAG). An example for a
valid SPN over the variables {z1, z2, 23,24} can be found in
Fig. 1. The graph representation of SPNs is composed from
three different kinds of nodes, with some additional restrictions
to guarantee the validity of the SPN:

« Leaf nodes represent univariate distributions over a single
variable. In this work, based on the approach proposed
by Molina et al. [10], we represent these univariate
distributions by histograms for an efficient mapping to
the FPGA.

o Factorizations over independent distributions are repre-
sented by product nodes in the graph. The child nodes
of a product node are defined over different scopes, i.e.,
each sub-tree uses a distinct set of variables.

o Mixtures over distributions defined over the same set of
variables are represented by sum-nodes, where each child
node is additionally associated with a weight. The child

nodes of a sum node are defined over the same scope,
i.e., the same set of variables appears in each subtree.

B. Inference

The inference process depends on the kind of probabilistic
query that should be answered. Common to all kinds of
inference is the bottom-up evaluation of the SPN graph,
eventually yielding a probability value at the root of the graph.

The most basic kind of inference in an SPN is the joint
computation, yielding the joint probability for given input
values, i.e., full evidence. In the first step, the leaf nodes are
queried with the value of the associated input variable, yielding
a probability value. In this work, the univariate distributions at
leaf nodes associated with an input variable are modeled using
histograms, which are simply indexed with the input value.
The resulting probability values are then propagated upwards
through the tree. At product nodes, the child node values are
multiplied with each other. When a sum node is reached, the
child node values are first multiplied with the corresponding
weight and then summed up.

Marginalization [8] of variables is another possible kind of
query that can be answered by inference. To this end, the
leaf nodes associated with the marginalized input variables
are replaced by the probability 1. The remaining leaf nodes
are just queried with the associated input values from the
partial evidence. The rest of the inference process is identical
to the joint computation. Through the combination of joint
computation and marginalization, it is also possible to compute
conditional probabilities using the following equation, where
the numerator of the fraction corresponds to the joint computa-
tion and the denominator can be computed by marginalization
of V: P(V[X) = BGEL.

In this work, we focus on joint computation, but the datapath
architecture can easily be extended to support other kinds of
inference, such as marginalization.

In prior work, accelerators for the inference in other Prob-
abilistic Graphical Models such as Bayesian Networks (BN)
[11] or Markov Random Fields (MRF) [12] were developed.
However, as discussed in the previous section, the inference in
these kinds of PGMs differs significantly from Sum-Product
Networks and the techniques used in these works cannot be
applied to SPNs without further ado.

To the best of our knowledge, the only approach to accel-
erate SPN inference on FPGAs was presented in [1], [2]. In
this work, we seek to extend the automatic toolflow from this
work with three different arithmetic formats.

IIT. ARITHMETIC NUMBER FORMATS
A. Fixed Point

Fixed-point arithmetic can be implemented very efficiently
in FPGAs. Yet, we do not consider fixed-point further in
this work, because with SPNs, very small numbers can still
represent significant results. In [10], the authors reported on
relevant log-likelihoods as small as —144 and a first analysis
of the dynamic range of the results of our benchmark networks
showed that the smallest numbers are as small as 1.85-10788,

As each number can also be as large as one, at least 292 bits
would be necessary to encode this number. A binary multiplier
of corresponding size would require over 200 DSP-slices and
is thus not a viable option.

The fact that such small numbers can still be significant for
the outcome of the SPN and the result of the ML-task is also
the reason why we use comparisons in log-space to compute
the deviation from reference results in the rest of this work.

B. Floating Point

As motivated above, for applications requiring a large
dynamic range, the word length w of fixed-point numbers may
get excessively large. Floating point (FP) numbers provide a
much wider dynamic range, at the cost of a reduced precision,
for the same number of bits. An FP number X according to the
IEEE 754 standard is represented as X = (—1)®x1.fx2¢7 ¢,
where s is the sign bit (0 for positive, 1 for negative), f is the
fraction and e is the exponent field. The exponent field e is
a w, bit unsigned integer that represents the signed exponent
e — eg, where eq is called the bias defined as ey = 2%~ — 1.
As the FP format is normalized such that the leading bit of
the significant is equal to ‘1’, only the fractional bits of the
mantissa are stored in w,,, bits.

C. Posit

The Posit arithmetic format is a comparably young format,
introduced in 2017 as an implementation of type-3 unum
(universal number) arithmetic [13]. The Posit format is char-
acterized by two parameters, the total number of bits in the
format w and the number of bits used to represent the exponent
Wes.-

As shown in Fig. 2, the Posit number representation is
composed of four parts.

Negative numbers are encoded as 2’s complement where
the most significant bit (s) indicates the sign of the number.

The next component, the so-called regime, distinguishes
Posit from traditional floating point formats. The regime is
represented using a variable run-length (or thermometer) en-
coding, i.e., a sequence of bits with identical value terminated
by a bit of the opposite value, where the length of the sequence
represents the encoded value. As an example, the sequence
0001 encodes the value —3, whereas the sequence 110 encodes
the value 2.

The third component, the exponent, is encoded as a binary
number using a fixed size of we bits. In contrast to IEEE754
floating point, the exponent only encodes positive numbers and
no bias is used.

The last component is the mantissa, which is stored just as
in IEEE754 floating point, with an implicit leading 1 omitted.
The mantissa occupies the remaining wy, bits, that are left
after the run-length encoding of the regime and the fixed-size
exponent.

Because the length of the regime is only limited by w — 1,
the mantissa and also the exponent may not be present at all.

Given the sign bit s, a regime value r, the exponent e and the
mantissa f, the number represented in Posit can be computed

w bits
[s] Regime Exponent Mantissa
wy bits, Wes bits Remaining wn, bits

variable run-length encoding

Fig. 2. Posit binary format.

as follows: (—1)° x useed” x 2¢ x 1.f, where useed = 22",
As an example, with w = 7 and wes = 2, the bit-sequence
0.01.11.10 encodes the decimal value (—1)° x (22°)~1 x
23 x 1.105 = 0.75.

Multiple previous works have developed Posit arithmetic
hardware operators for FPGAs. While [14] and [15] found that
Posit incurred a significant area overhead over traditional float-
ing point, the operators developed in [16] required resources
comparable to FP implementations and for the particular
application investigated in this work, floating point could be
replaced with a smaller bit-width and more area-efficient Posit
format. As only the operators from [14] are available open-
source, we build on this library for the implementation of the
Posit hardware operators in this work. We extend the operators
to meet our requirements as described in Section V-C.

D. Logarithmic Number System

Originally, Logarithmic Number Systems (LNS) were devel-
oped as an alternative to floating point numbers. The general
idea behind LNS is that instead of storing a real number as a
combination of an integer exponent and a fixed-point number,
only the logarithm log,(A) = E4 is stored as a fixed-point
exponent. In general purpose applications, LNS-numbers are
then encoded as follows: A = —194 x 2F4 and a flag is used
for zero values [17], [18].

Due to the logarithmic nature of the encoding, all calcula-
tions are performed in a logarithmic scale. Thus, logarithmic
properties apply and log,(a x b) = log,(a) + log,(b), greatly
simplifying multiplicative calculations.

In contrast to this, additive arithmetic operations become
more complex. Assuming that x > y holds, addition and
subtraction are given by log,(z + y) = logy(x) + logy(1 £+
2(1°g2(y)’1°g2(””))). The second part of the equation is usually
implemented through a helper function h, and the allowed in-
terpolation error determines how this function is implemented
in hardware. In this work, we adapt the approach from [3],
which was optimized for SPNs and uses a quadratic spline
interpolation for h.

IV. DESIGN-SPACE EXPLORATION USING SOFTWARE
EMULATION

A fair comparison of the three arithmetic formats considered
requires that the individual parameters of the different formats
(e.g. overall bitwidth) are optimized as much as possible.

To this end, prior work such as [19] has often used
theoretical worst-case analyses based on error-models for
fixed- and floating-point arithmetic operators. However, these
analyses tend to overestimate the error that occurs during

Configuration of NIPS80-FP

IS
S

1E0 i

w

o
o
=]

1E-2

w
=3
o
=)

-1E-4

N)
a

N
=3

- 1E-6

Maximum error

w
o

-
G
Total number of bits (w)
IS
S

-1E-8

-
o

N

o

Number of mantissa bits (w_m)

-1E-10
11 2 4

e

7 8 9 10
Number of exponent bits (w_e)

(a) Floating point.

Configuration of NIPS80-Posit

8
Number of exponent bits (w_es)

(b) Posit.

Configuration of NIPS80-LNS with 9 integer bits
- 1E0

1E0
-1E-2

-1E-4

-1E-6

Maximum error
Maximum error

-1E-8

-1E-10 - .
16 18 20 22 24 26 28 30 32 34 36
Number of fraction bits (w_F)

(c) LNS with wy = 9.

Fig. 3. Development of the maximum error depending on the configuration of the arithmetic formats. Best viewed in color.

actual computation. Besides that, error analysis models for
Posit and LNS are not readily available and many of the
application-specific optimizations to the hardware operator
implementations described in Section V cannot easily be
modelled in such error models.

Therefore, we take a different approach: Using a C++-based
software emulation of the individual SPN and the different
arithmetic formats, the design-space is traversed to determine
the best viable configuration for each arithmetic format on a
per-benchmark basis. We use the available benchmark data
to run the software emulation with each configuration and
only accept a configuration, if it maintains a given error-
threshold. As the representativeness of the training data is
key to the ML training itself, the design-space exploration
will yield configurations that work for all relevant input
combinations. This approach is also common when quantizing
neural networks [20].

A. Implementation

Using a graph-based intermediate representation and an
abstract syntax tree (AST) infrastructure, we generate C++
code emulating the behavior of each of the different arithmetic
formats in hardware as closely as possible.

The design-space of possible configurations is then auto-
matically traversed. For each configuration, we generate and
compile the C++ code and run the SPN inference on a CPU.
If the maximum error does not exceed the configurable error
threshold, we accept the configuration.

The performance of the DSE can be improved significantly
by investigating multiple configurations in parallel and addi-
tionally parallelizing the CPU-based execution using OpenMP.
This way, we could reduce the time required to determine the
correct floating-point configuration for the largest benchmark
instance NIPS80 from 656 seconds to only 138 seconds.

B. Accuracy Results

For the following accuracy evaluation, an error threshold of
1x107% was used. Note that we compute the error in log-space
to determine the error independently from the magnitude of the
values. For each of the arithmetic formats, different parameters
can be chosen: For floating point, the number of bits in the
mantissa (wp,) and the exponent (w.) can be configured. The

TABLE I
CONFIGURATION OF THE THREE ARITHMETIC FORMATS FOR EACH OF THE
BENCHMARKS MAINTAINING AN ERROR OF 1 x 1076,

FP Posit LNS
Benchmark We Wm w Wes | wy wg h-Error
Accidents 8 26 | 36 4 7 32 21.5
Audio 9 28 36 4 8 30 20.5
MSNBC 200 8 26 | 32 4 7 31 19.5
MSNBC 300 8 24 | 32 4 7 31 20.5
Netflix 9 26 | 36 4 8 30 20.5
NLTCS 7 26 | 32 3 6 30 19.5
Plants 8 28 36 5 7 31 20.5
NIPS5 7 24 | 30 3 5 26 18.5
NIPS10 7 24 | 32 3 6 27 20.0
NIPS20 8 24 | 34 3 7 29 19.5
NIPS30 8 26 34 4 7 29 19.5
NIPS40 9 26 | 34 4 7 30 19.5
NIPS50 9 26 | 34 5 8 30 19.5
NIPS60 9 26 | 36 5 8 30 19.5
NIPS70 9 26 | 36 5 8 30 20.5
NIPS80 10 26 | 36 5 9 31 19.5

Posit format is parameterized by the total number of bits
(w) and the number of bits used for the exponent (wes).
The LNS format can be configured by three parameters: The
number of integer (w;) and fraction (wg) bits in the fixed-
point format of the exponent and the maximum error allowed
for the interpolation (Error) of the helper function h used in
LNS-addition.

The configurations identified through our design-space ex-
ploration for each benchmark can be found in Table 1. The
plots in Fig. 3 show how the maximum error develops across
different configurations for each arithmetic format in the
NIPS80 benchmark, the largest instance in our benchmark set.

For floating point, a minimum number of exponent bits (w,)
is required to be able to represent small but significant values
in the first place. Beyond that, a certain number of mantissa
bits (wy,) is required to represent numbers sufficiently accurate
so the error will not accumulate beyond the error threshold.

With Posit, a minimum number of bits for the exponent
(wes) and the total size of the format (w) is required. However,
if the size of the exponent is increased beyond that minimum
number, the total number of bits also has to be increased,
otherwise the number of bits remaining for the mantissa (max.

w — wWes — 3) is no longer sufficient. So for Posit, the sweet
spot is reached when wes is just large enough to encode all
relevant exponents.

The direct comparison of floating-point and Posit shows,
that the total bitwidth of the formats is typically relatively
close. This result aligns with the findings in [21]. The prob-
abilistic values computed inside the SPN tree are very small,
and lie outside of the golden range identified in [21]. In that
range, relatively small Posit formats can be used to replace
significantly larger floating-point formats.

The LNS format will only produce correct results, if the
number of integer bits (wy) is sufficiently large to represent
all relevant exponents, therefore the plot in Fig. 3 shows the
development of the error depending on the fraction bits (wg) of
the exponent and the interpolation error of the addition helper
function A for w; = 9. The number of fraction bits must be
sufficiently large to represent numbers with a certain accuracy
and, at the same time, the allowed interpolation error of h must
be sufficiently small so the LNS addition does not introduce
excessive error.

V. IMPLEMENTATION OF HARDWARE ARITHMETIC
OPERATORS

Based on the findings from the automatic DSE presented in
the previous section, specialized hardware arithmetic operators
for SPN inference were developed. This section details the
implementation for each arithmetic format. An overview of
the resource requirements of the individual operators can be
found in Table II. The operators were designed as drop-in
replacement for the operators in [2] to enable reuse of the
automatic toolflow in this work.

A. Floating Point

The floating point implementations used in this work are
based on the FloPoCo tool [22] which was extended for
the specifics of SPN. All of our extensions have been made
publicly available in the FloPoCo git repository [23]. Note that
subnormal numbers are not supported in FloPoCo as they are
very costly to implement and the loss in dynamic range can
be easily compensated by adding one additional mantissa bit.

1) Floating Point Adder: Addition in FP is a much more
time and resource consuming operation compared to FP mul-
tiplication. The basic algorithm to perform a floating point
addition requires the following computation steps: 1) comput-
ing the exponent difference, 2) alignment of the operands, 3)
mantissa addition, 4) alignment and rounding of the result,
and, 5) handling of special values. All these computations lie
on the critical path where the large bit shifters required for
the two alignment steps are among the most demanding. Also,
faithful rounding does not help much for addition. However,
a well-known technique to reduce the delay is the dual-path
(DP) architecture [24]. The observation here is that two cases
exist that can be treated separately: 1) when subtracting two
numbers with similar magnitude, only a small operand shift is
necessary while a full result shifter is required; 2) in all other
cases, the operand shift has to be large while a small shift for

My My

CLOSE PATH FAR PATH

e 0+ |

[Lzc+R-shitt] | Re-shitt |

Mg

Fig. 4. FP Adder dual path mantissa processing

TABLE II
COMPARISON OF THE PER-OPERATOR RESOURCE REQUIREMENTS AND
PIPELINE DEPTH, USING CONFIGURATIONS FOR NIPS80 (CF. TABLE I).

Format Op. ‘ Slice DSP BRAM pipeline depth
Fp Adder 106 0 0 5
Mult. 86 2 0 5
Posit Adder | 374 0 0 7
Mult. 340 4 0 12
Adder | 757 20 1.5 64
NS mui | 36 0 0 3

the result is sufficient. In the DP adder, the computations for
both cases are computed in parallel, and the correct result is
selected at the end. Fig. 4 shows the data path for processing
the mantissa, omitting the control signals for brevity. The first
case is called the close-path (shown on the left in blue) and
the second case the far-path (shown on the right in green).
While for the operand alignment only a 1-bit right shift (R1-
Shift) is necessary in the close-path, a full right shifter (R-
Shift) is necessary in the far-path. In contrast, the result of
the close-path requires a leading zero counter (LZC) and full
right shifter, while the the far-path only requires a 2-bit shift
(R2-Shift) for normalization and rounding.

To implement SPNs, we can make use of the dual-path idea
by exploiting the fact that all values in SPNs are restricted to
be positive and only additions occur. Hence, the close-path
in a dual-path architecture will never be active in an SPN.
To this end, we extended the dual-path implementation of the
FPAdd operator in FloPoCo with an option to optimize the
adder only for positive numbers, which omits all components
from the close-path as well as the output multiplexer.

To gauge the effects of this optimization, we performed a
synthesis experiment on the single operators (using the same
setup later described in Section VI-B). The results are given
in Table III, showing the logic resources, the pipeline depth
(PD) as well as the max. clock frequency. As there are two
options for the FP adder in FloPoCo, a single path and a dual
path, we synthesized both. As expected, the dual path has one
pipeline stage less compared to the single path, but at the
expense of a larger chip area. Remarkably, our optimization
for only positive operands (listed as “only pos. args.”) leads to
a slice reduction of 23.2% and 42.4% compared to the single

TABLE III
DIRECT COMPARISON OF THE FP ADDER BEFORE AND AFTER THEIR
OPTIMIZATION USING THE CONFIGURATIONS FOR NIPS80 (CF. TABLE I).

Operator \ Slice DSP PD Freq. [MHz]
FP Adder Single Path 138 0 8 384
FP Adder Dual Path 184 0 7 274
FP Adder (only pos. args.) 106 0 5 389

and dual path options, respectively, while reducing the pipeline
depth by 3 and 2 cycles at the same time.

2) Floating Point Multiplier: The computation of an FP
multiplication is much simpler compared to addition: 1) the
mantissas are multiplied, 2) the exponents are added, and,
finally 3) the result is normalized and rounded. This nor-
malization requires only a small shift by one bit position
and can usually be merged with the output MUX that is
necessary for the special values. Besides this, the rounding
mode has the most influence on the used resources. In contrast
to correct rounding, faithful rounding requires only about half
the number of bits plus some guard bits of the mantissa
multiplication result [25]. Hence, a truncated integer multiplier
can be used for the mantissa which requires less chip area.
Therefore, the FP multipliers in this work use faithful rounding
based on the work in [25].

B. Logarithmic Number System

For the implementation of the LNS hardware operators, we
employ the implementation of Weber et al., presented in [3].
They developed pipelined and parameterized LNS adders and
multipliers targeted towards SPNs.

As discussed earlier, multiplication in the logarithmic space
can be implemented as a simple binary addition, and conse-
quently consumes less than half (36 vs. 86, cf. Table II) of the
slices compared to the floating-point multiplier, and no DSPs.

On the other hand, the much more complex calculation for
addition in logarithmic space, for which a quadratic spline
interpolation was used in [3], results in a larger chip area
for the logarithmic adder, which consumes 757 slices and 20
DSPs, compared to 106 slices and no DSPs for FP.

C. Posit

For the implementation of the Posit hardware operators, we
build upon PACoGen [14], an open-source project providing
Posit basic arithmetic operators. These implementations are
generally only realized as combinatorial circuits.

To ensure a fair comparison between the arithmetic for-
mats regarding operating frequency, we introduced pipelining
into the existing, parameterized implementation. The resulting
multiplication operator requires almost five times the logic
resources (340 vs. 86 slices), and, even though we adopted the
optimal DSP allocation scheme from [26], twice the number
of DSPs (4 vs. 2), as the floating-point multiplier. In case
of the addition, the additional decoding logic for the regime
and the higher internal precision cause the Posit adder to use
significantly more resources than its floating-point counterpart
(374 vs. 106 slices, cf. Table II).

80% - r
mmm Slice === Freq

-40
~[1111 || || || -

-0
ST
-40% -

-60% -

60% -

40% -

20% -

Resource usage change [%]
Frequency increase [MHz]

o S S O 20 &S o0 0 0
S S SF &
S T OF L LLELLeLE
ST gEFITSFSFEESESSS
< S S
S S

Fig. 5. Improved resource and maximum frequency for floating-point arith-
metic in comparison with prior work [2].

VI. EVALUATION
A. Benchmarks

In order to be able to compare the performance and FPGA
resource usage directly to [2], we use the same set of bench-
marks. The set contains two kinds of benchmarks: Count-based
examples, which are taken from the NeurIPS corpus [27] and
capture information about the frequency of words in texts,
and examples with binary input variables, which were pre-
processed by [28] and [29] and capture statistical data, such
as usage statistics of services. More detailed information on
the individual benchmarks can be found in [2].

B. FPGA Implementation Results

We first compare the resource usage of the three different
arithmetic formats for the benchmark set, using the config-
urations from Table I. Xilinx Vivado 2019.1 and TaPaSCo
2019.10 (pre-release) are used to generate bitstreams for a
Xilinx Virtex 7 FPGA device (xc7vx690), all numbers given
here are taken from the post-place&route reports. We use the
automatic design-space exploration feature of TaPaSCo [30] to
determine the best possible frequency. All bitstreams are tested
in actual hardware on a Xilinx VC709 development board,
verifying that the configurations determined by our DSE (cf.
Section IV) maintain the given error bound of 1 x 1076,

The FPGA implementation results are given in Table IV.
For brevity, numbers are given relative to the entire FPGA, the
absolute number of resources available are 108,300 (Slices),
1,470 (BRAM) and 3,600 (DSP), respectively.

Through our automatic design-space exploration to deter-
mine the minimum viable configuration and the optimization
to the floating point operators described in Section V-A,
the resource usage compared to the results reported in [2],
decreases by up to 57% in logic slices (avg. 38.5%) and up to
68% in DSP (avg. 62.9%). Additionally, the clock frequency
increases by up to 75 MHz (avg. 46.6 MHz). The decrease in
resource consumption is also depicted in Fig. 5.

The comparison between customized floating-point (CFP)
and Posit shows that the latter requires significantly more
logic (avg. +53%) and, except for benchmarks Audio and
Plants, which contain a low number of adders in comparison

TABLE IV
FPGA IMPLEMENTATION RESULTS FOR ALL BENCHMARKS, USING THE CONFIGURATIONS FROM TABLE I. BEST VALUES BOLD.

Slices [%] DSP [%] BRAM [%] Frequency [MHz] Pipeline Depth
Benchmark M/A CFP Posit LNS CFP Posit LNS CFP Posit LNS | CFP Posit LNS | CFP Posit LNS
Accidents 8 40.19 70.81 41.31 | 12.06 24.11 15 3.71 371 7.52 | 245 200 222 73 161 169
Audio 229 | 3822 77.02 38.63 | 30.56 30.56 6.33 | 3.71 371 575 | 250 200 210 73 161 169
MSNBC 200 55 | 3582 535 41.69 917 1833 15.83 | 3.71 371 6.77 | 250 215 245 143 299 577
MSNBC 300 6 30.61 43.59 38.35 567 11.33 897 | 3.71 3.71 6.77 240 225 255 89 213 431
Netflix 21 39.3 67.98 37.33 | 12.83 25.67 581 | 3.71 371 575 | 235 215 220 68 149 166
NLTCS 56 | 36.64 51.38 40.51 8.44 16.89 13.5 3.71 371 6.46 | 255 220 270 98 206 342
Plants 18.3 | 40.14 74.78 41.17 | 28.44 28.44 7.39 | 3.71 3.71 6.09 | 230 205 250 128 278 385
NIPS5 10 2511 26.59 26.17 0.56 1.11 044 | 3.74 371 3.84 | 245 240 240 24 58 60
NIPS10 8.3 | 27.44 30.71 28.09 1.39 2.78 133 | 374 371 4.18 | 255 240 255 42 96 182
NIPS20 8 28.93 37.88 31.28 3.11 6.22 3.5 381 401 4.69 | 245 200 270 46 108 203
NIPS30 8.7 | 32.85 44.87 3543 4.83 9.67 5 374 401 493 | 240 220 250 63 132 209
NIPS40 7.6 | 3448 50.35 39.42 6.78 13.56 7.56 | 391 4.08 595 | 255 215 265 63 132 224
NIPS50 89 | 36.86 5499 4242 7.94 15.89 844 | 398 415 6.09 | 250 215 245 68 144 227
NIPS60 12 38 59.91 40.34 8.67 17.33 686 | 432 446 6.19 | 240 215 235 63 132 224
NIPS70 129 | 41.75 67.86 43.12 | 10 20 739 | 405 435 697 | 225 203 210 73 156 230
NIPS80 83 | 4483 82.84 4752 | 1472 2944 2044 | 398 463 7.72 | 255 195 230 83 211 306

to the number of multipliers, also twice the number of DSPs.
The BRAM utilization is almost identical, the frequency is
typically lower for Posit (avg. 30 MHz less) and the pipelines
are notably deeper. Overall, one can conclude that Posit is
less suitable for SPN inference than floating-point, probably
because the numbers involved in SPN inference lie outside
of the golden range (cf. Section 1V-B), where Posit could
make up for the additional decoding logic by using much
narrower bitwidths. However, the Posit-based arithmetic still
outperforms the double-precision arithmetic used in [2] by up
to 22.6% in slices (avg. 9.5%) and 36% in DSP (avg. 34.2%).

When compared with floating-point, LNS requires slightly
more slices (avg. +7.57%) and significantly (avg. +56%) more
BRAM, which, however, is not a critical resource in our case.
The frequencies are comparable, with winners in both formats.
The pipelines are much deeper, mainly due to the long latency
(64 cycles) of the LNS adder. The DSP usage comparison
between floating-point and LNS is highly dependent on the
multiplier/adder-ratio (given as M/A in Table IV) of the ex-
amples. Only if there are roughly nine times more multipliers
than adders, LNS outperforms floating-point with regard to the
DSP usage (NIPS10 is an outlier, probably due to the very
low DSP usage in both formats). Overall, it seems that LNS
is only suitable for such SPNs with a much higher number of
multipliers than adders. Yet, the LNS-based arithmetic is able
to outperform the FloPoCo double-arithmetic results from [2]
by up to 57.5% in slices (avg. 33.7%) and 86% in DSP (avg.
66%), in particular for examples with only a few adders.

To further validate our results, we also tested relaxed error
conditions, namely 1 x 10~% and 1 x 1072, for benchmarks
Accidents and Audio, which were chosen because of their
very different adder/multiplier-ratio. We have to omit detailed
results for brevity here, but overall, the relation between LNS-
and floating-point format found in the evaluation for 1 x 10~6
persists for relaxed error conditions: LNS is only able to save
resources in comparison to floating-point, if the SPN contains
very few adders compared to the number of multipliers.

C. Power Evaluation

Next to the required chip area, we are also interested in the
impact of the arithmetic format onto power consumption.

In order to investigate the power consumption of the
different arithmetic formats, we consider only the datapath
itself, leaving out the memory infrastructure and TaPaSCo
platform infrastructure. We again run synthesis and P&R for
the Xilinx VC709 board using Vivado 2019.1. Afterwards, we
use Mentor Questasim 2019.2 to run a post-implementation
timing simulation to capture signal activity information from
a run with actual inference input data. Using this activity
information, we then use the Vivado 2019.1 power analysis
for an estimate of the power consumption of the datapath.

As the post-implementation timing simulation can take
several days for larger circuits, we again limit our investigation
to the two benchmark instances Accidents and Audio, that we
selected for the reasons described in the previous section.
In addition to the three arithmetic formats investigated in
this work, we also conduct the measurement for the double-
precision FloPoCo-format from prior work [2].

TABLE V
POWER CONSUMPTION OF THE DATAPATH.

Power Consumption [Watt]
Benchmark 2]

CFP Posit LNS
Accidents 12.493 3.069 5267 3.721
Audio 18.427 5.518 8.358 2.818

The results from the power analysis (Table V) align with
our findings for the chip area in the previous sections: In the
benchmark instance Accidents, where the customized floating-
point was the most area-efficient format, it also requires the
least power, followed by LNS. For the benchmark instance
Audio, where LNS was the most area-efficient format due to
the low number of adders in the SPN, LNS also requires the
least power. Just as before, Posit is not able to keep up with
the two other formats with regard to power usage.

398.3

= = =
~ 1) N 7]
a o ¥)

Throughput [samples/us]

v
)

pccident S 200 RS 300 et WIS v\a“‘5

PSS

= CPU

s GPU

— (2]

mm= FPGA-CFP
mm= FPGA-Posit
mm= FPGA-LNS

e Wes2® Wes30 Wpsa0 ess0 Wpse® s eS80

Fig. 6. Throughput of the CPU, GPU and FPGA-implementations in samples/us. Each group represents an example SPN. The single outlier is the CPU

throughput for example NIPS5 which amounts to 398.8 samples/ps.

Compared to the double-precision format from prior work,
the SPN-optimized arithmetic formats developed in this work
are able to save significant amounts of power.

D. Performance Evaluation

In this section, we evaluate the performance of three arith-
metic formats implemented on the FPGA and compare it to a
CPU and GPU-based implementation of SPN inference.

1) CPU & GPU Baseline: Based on the compiler infra-
structure that we created for the design-space exploration (cf.
Section 1V), we additionally built a custom compilation flow
mapping an SPN description to optimized C++ and CUDA-
code, both using double-precision floating-point arithmetic. In
both cases, we compiled using —03 and -ffast-math to en-
able aggressive compiler optimizations. Our C++ compilation
flow on an AMD Ryzen 1600X performs on par with the CPU-
baseline from [2], and our CUDA compilation flow is able to
outperform the original Tensorflow-based GPU-mapping from
[2] by a factor of up to 90x on a Nvidia 1080Ti GPU.

2) Performance Comparison: For the comparison, we run
the inference on the VC709 development board, coupled with
an AMD Ryzen 1600X. Our measurements of the throughput
in Fig. 6 also include the time required to transfer the data
between host and FPGA.

For the three smallest count-based samples (NIPS5-20),
the CPU provides the best throughput. For these small net-
works the overhead for data-transfer to the accelerator (GPU
or FPGA) clearly dominates the execution time. With our
optimized CUDA compilation flow, the GPU provides better
throughput than the CPU for the remaining benchmarks, in
particular for the binary examples.

Despite the large differences in the pipeline-depth (cf.
Table IV), the performance for the three arithmetic formats
implemented on the FPGA varies only slightly. Overall, all
three versions deliver very similar performance (with an
overall difference of less than 2%). Compared to the previous
FPGA implementation in [2], the new formats provide better
throughput (geo.-mean. 2.1x speedup). This is partly due to the
higher operator frequencies, but also caused by improvements
to the underlying TaPaSCo framework.

All three formats significantly outperform the CPU. Except
for the three benchmarks mentioned earlier, the speedup
reaches as high as factor 12x (geo.-mean 2.5x). The three
FPGA versions also provide significantly higher throughput
than the GPU-based implementation, here, the speedups reach
up to 4.6x (geo.-mean. 2.1x).

Again, note that our measurements include the PCle data-
transfer to the FPGA memory. On shared-memory systems
such as Zynq MPSoC, the speedup over the CPU and the
GPU would reach up to 37x and 14x, respectively.

VII. CONCLUSION & OUTLOOK

In this work, we have investigated three different arithmetic
formats with regard to their suitability for Sum-Product Net-
work Inference on FPGAs. We have developed an automatic
design-space exploration framework, which allows us to effi-
ciently identify the minimum bitwidth required for each of the
formats to maintain a given error margin. Based on the findings
from the DSE, hardware arithmetic operators, optimized for
SPN inference, for each of the formats were implemented.

Our evaluation shows that customized floating-point is the
most resource-efficient format for SPN inference, and is only
outperformed by a logarithmic number system format for
SPNs with very few adders compared to the number of multi-
pliers. All three investigated arithmetic formats deliver almost
identical performance and significantly outperform CPU and
GPU-based implementations of SPN inference, by factors up
to 12x and 4.6x, respectively.

In future work, we will investigate how the hardware
arithmetic operators can be optimized further, e.g., by using
fused operators.

ACKNOWLEDGEMENTS

The authors would like to thank Xilinx Inc. for supporting
their work by donations of hard- and software. Calculations
for this research were conducted on the Lichtenberg high
performance computer of TU Darmstadt.

Finally, the authors would like to thank Kristian Kersting
and Alejandro Molina, for much appreciated discussions of the
subject and insights into the matter of Sum-Product Networks.

Lukas Sommer and Lukas Weber contributed equally to this
work.

[1]

[2]

[3]

[5]
[6]

[7]
[8]
[9]

[10]

(1]

[12]

[13]
[14]

[15]

REFERENCES

L. Sommer, J. Oppermann, A. Molina, C. Binnig, K. Kersting, and
A. Koch, “Automatic Synthesis of FPGA-based Accelerators for the
Sum-Product Network Inference Problem,” in ICML 2018 Workshop on
Tractable Probabilistic Models (TPM), 2018.

L. Sommer, J. Oppermann, A. Molina, C. Binnig, K. Kersting, and
A. Koch, “Automatic Mapping of the Sum-Product Network Inference
Problem to FPGA-Based Accelerators,” in 36th Intl. Conf. on Computer
Design (ICCD), Oct 2018, pp. 350-357.

L. Weber, L. Sommer, J. Oppermann, A. Molina, K. Kersting, and
A. Koch, “Resource-Efficient Logarithmic Number Scale Arithmetic
for SPN Inference on FPGAs,” in International Conference on Field-
Programmable Technology (FPT), 2019.

H. Poon and P. Domingos, “Sum-Product Networks: a New Deep
Architecture,” Proc. of UAI, 2011.

M. Ratajczak, S. Tschiatschek, and F. Pernkopf, “Sum-Product Networks
for Sequence Labeling,” CoRR, vol. abs/1807.02324, 2018.

A. Pronobis, F. Riccio, and R. P. Rao, “Deep spatial affordance hi-
erarchy: Spatial knowledge representation for planning in large-scale
environments,” in ICAPS 2017 Workshop on Planning and Robotics,
2017.

J. Bekker, J. Davis, A. Choi, A. Darwiche, and G. Van den Broeck,
“Tractable Learning for Complex Probability Queries,” in NIPS, 2015.
R. Peharz, S. Tschiatschek, F. Pernkopf, and P. Domingos, “On Theoret-
ical Properties of Sum-Product Networks,” in Proc. of AISTATS, 2015.
H. Zhao, M. Melibari, and P. Poupart, “On the Relationship between
Sum-Product Networks and Bayesian Networks,” in Proc. of ICML,
2015.

A. Molina, A. Vergari, N. D. Mauro, F. Esposito, S. Natarajan, and
K. Kersting, “Mixed Sum-Product Networks: A Deep Architecture for
Hybrid Domains,” in Proceedings of the AAAI Conference on Artificial
Intelligence (AAAI), 2018.

J. Alves, J. Ferreira, J. Lobo, and J. Dias, “Brief survey on computational
solutions for Bayesian inference,” in Unconventional comp. for Bayesian
inference, 2015.

J. Choi and R. A. Rutenbar, “Video-rate stereo matching using markov
random field TRW-S inference on a hybrid CPU+FPGA computing
platform,” IEEE Trans. Circuits Syst. Video Techn., 2016.

J. L. Gustafson and I. T. Yonemoto, “Beating Floating Point at its Own
Game: Posit Arithmetic,” vol. 4, Apr. 2017.

M. K. Jaiswal and H. K. H. So, “PACoGen: A Hardware Posit Arithmetic
Core Generator,” IEEE Access, vol. 7, pp. 74586-74 601, 2019.

A. Podobas and S. Matsuoka, “Hardware Implementation of POSITs and
Their Application in FPGAs,” in 2018 IEEE International Parallel and
Distributed Processing Symposium Workshops (IPDPSW), May 2018.

[16]

(17]

[18]

[19]

[20]

(21]

[22]

[23]
[24]

[25]

[26]

(27]

(28]

[29]

(30]

R. Chaurasiya, J. Gustafson, R. Shrestha, J. Neudorfer, S. Nambiar,
K. Niyogi, F. Merchant, and R. Leupers, “Parameterized Posit Arithmetic
Hardware Generator,” in 2018 IEEE 36th International Conference on
Computer Design (ICCD), Oct. 2018.

M. Haselman, M. Beauchamp, A. Wood, S. Hauck, K. Underwood,
and K. S. Hemmert, “A comparison of floating point and logarithmic
number systems for FPGAs,” in 13th Annual IEEE Symposium on Field-
Programmable Custom Computing Machines (FCCM’05), Apr. 2005,
pp. 181-190.

J. Detrey and F. de Dinechin, “A VHDL library of LNS operators,” in
The Thrity-Seventh Asilomar Conference on Signals, Systems Comput-
ers, 2003, Nov 2003.

N. Shah, L. I. G. Olascoaga, W. Meert, and M. Verhelst, “ProbLP: A
Framework for Low-precision Probabilistic Inference,” in 56th Annual
Design Automation Conference, ser. DAC *19. New York, NY, USA:
ACM, 2019.

S. Han, H. Mao, and W. J. Dally, “Deep Compression: Compressing
Neep Neural Networks with Pruning, Trained Quantization and Huffman
coding,” 2015.

F. de Dinechin, L. Forget, J.-M. Muller, and Y. Uguen, “Posits: The
Good, the Bad and the Ugly,” in Proceedings of the Conference for
Next Generation Arithmetic 2019, ser. CoONGA’19. New York, NY,
USA: ACM, 2019, pp. 6:1-6:10.

F. de Dinechin and B. Pasca, “Designing Custom Arithmetic Data Paths
with FloPoCo,” IEEE Design & Test of Computers, vol. 28, no. 4, pp.
18-27, 2011.

F. de Dinechin. FloPoCo Project Website.
http://flopoco.gforge.inria.fr

P. M. Farmwald, “On the design of high performance digital arithmetic
units,” Ph.D. dissertation, Stanford University, 1981.

S. Banescu, F. de Dinechin, B. Pasca, and R. Tudoran, “Multipliers
for Floating-Point Double Precision and Beyond on FPGAs,” SIGARCH
Computer Architecture News, vol. 38, no. 4, pp. 73-79, Sep. 2010.

M. Kumm, J. Kappauf, M. Istoan, and P. Zipf, “Resource Optimal
Design of Large Multipliers for FPGAs,” in 2017 24th Symp. on
Computer Arithmetic, July 2017.

D. Dua and C. Graff, “UCI machine learning repository,” 2017.
[Online]. Available: http://archive.ics.uci.edu/ml

D. Lowd and J. Davis, “Learning Markov network structure with
decision trees,” in Data Mining (ICDM), 2010 IEEE 10th International
Conf., 2010.

J. Van Haaren and J. Davis, “Markov Network Structure Learning: A
Randomized Feature Generation Approach.” in AAAI, 2012, pp. 1148-
1154.

J. Korinth, J. Hofmann, C. Heinz, and A. Koch, “The TaPaSCo Open-
Source Toolflow for the Automated Composition of Task-Based Parallel
Reconfigurable Computing Systems,” in Applied Reconfig. Comp., 2019.

[Online]. Available:

