
Parallelizing Irregular Computations for Molecular
Docking

Leonardo Solis-Vasquez∗, Diogo Santos-Martins†, Andreas F. Tillack†,
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Abstract—AUTODOCK is a molecular docking software widely
used in computational drug design. Its time-consuming execu-
tions have motivated the development of AUTODOCK-GPU, an
OpenCL-accelerated version that can run on GPUs and CPUs.
This work discusses the development of AUTODOCK-GPU from a
programming perspective, detailing how our design addresses the
irregularity of AUTODOCK while pushing towards higher perfor-
mance. Details on required data transformations, re-structuring
of complex functionality, as well as the performance impact of
different configurations are also discussed. While AUTODOCK-
GPU reaches speedup factors of 341x on a Titan V GPU and
51x on a 48-core Xeon Platinum 8175M CPU, experiments
show that performance gains are highly dependent on the
molecular complexity under analysis. Finally, we summarize our
preliminary experiences when porting AUTODOCK onto FPGAs.

Index Terms—Variable execution performance, divergent con-
trol structures, OpenCL, molecular docking, AutoDock

I. INTRODUCTION

Molecular docking is a computational method widely used
in drug discovery. It aims to predict the interaction between
a small molecule (ligand) and a macromolecular target (re-
ceptor) [1]. A receptor can model a protein or nucleic acid.
Ligands that inhibit the harmful effects of a given receptor
are considered good drug candidates, and thus, selected for
subsequent wet lab experiments. Typically, libraries containing
thousands of ligands are analyzed. This procedure called
virtual screening uses molecular docking as the computational
engine, and aims to identify ligands that are suitable candi-
dates.

One of the most widely-used molecular docking tools
is AUTODOCK [2], whose runtimes can reach several
hours/days when utilized for virtual screening. Despite the
fact that AUTODOCK is undoubtedly useful (e.g., Fight-
AIDS@Home [3]), one of its major drawbacks over the years
have been its long execution runtimes. This is mainly due to
its inability to leverage its embarrassing internal parallelism,
even on widespread-available platforms such as multi-core
CPUs. In recent years, we have been developing an accelerated
version that, when executed on a many-core GPU, is at
least 50x faster than the original AUTODOCK. This version

called AUTODOCK-GPU has been initially implemented in
OpenCL [4], and very recently, has been successfully ported
to CUDA in order to run on the Summit supercomputer with
the aim to contribute against the SARS-CoV-2 virus [5].

AUTODOCK employs a Lamarckian Genetic Algorithm to
predict energetically-strong poses of ligand-receptor systems.
In algorithmic terms, AUTODOCK is characterized by nested
loops with variable upper bounds and divergent control per-
forming a molecular search, as well as by time-intensive score
evaluations typically invoked 106 times within these iterations.

Our previous work on AUTODOCK-GPU [6] evaluated
overall compute performance and prediction quality. In this
work, however, we present our experiences when parallelizing
AUTODOCK using OpenCL, by providing a development
rather than a domain-oriented perspective, like we did in
prior work. Specifically, in this paper, we discuss the OpenCL
development and challenges of dealing with the intrinsic
AUTODOCK irregularity while seeking higher performance.
Additionally, we analyze the impact on runtime from rele-
vant factors, which comprise the chosen OpenCL work-group
size, the molecular complexity of different ligand inputs, as
well as the employed local-search methods. Evaluations were
performed both on high-end GPUs and CPUs. Finally, we
extend our discussion to sharing technical details when porting
onto other accelerators, specifically FPGAs. This provides
additional insights on how the application irregularity can be
tackled differently based on the target architecture.

II. AUTODOCK MOLECULAR DOCKING

Molecular docking is an optimization problem where dif-
ferent poses of the ligand, i.e., its spatial geometrical arrange-
ments, are systematically explored in order to find those that
bind strongly to a given region on the receptor. AUTODOCK
encodes such poses using a set of variables, whose size
depends on the structure of molecules under analysis. Each
pose is quantified with a score, which is calculated by a scoring
function. A single execution of AUTODOCK (Algorithm 1),
i.e., a docking job, consists of the iterative execution of
independent runs, where each run performs an hybridized
Lamarckian Genetic Algorithm.



A. Encoding

Ligand poses are represented using a combination of vari-
ables that describe: first, overall motion as a rigid body;
and second, internal body flexibility. As a rigid body, the
ligand can experience two types of motions: translation and
rotation. Translation can be encoded with variables describing
displacement in x, y, and z directions. Rotation as a rigid
body can be described with φ, θ, and α axis-angle coordinates.
The internal body flexibility models the rotation allowed
for specific atomic bonds, which results in rotating ligand
fragments around bond axes. If the ligand is configured with
Nrot rotatable bonds, each of these bonds can be represented
with a ψ variable. The full set of degrees of freedom of the
ligand pose (also called genes, Ngenes = Nrot + 6) constitutes
the pose encoding Ω = {x, y, z, φ, θ, α, ψ1, ψ2, . . . , ψNrot}
to be optimized based on the strongest associated score.

B. Lamarckian Genetic Algorithm

This is the systematic method employed for generating
poses, and thus, for exploring the landscape described by the
scoring function. A Lamarckian Genetic Algorithm (LGA)
hybridizes the principles of biological evolution by coupling a
genetic algorithm (GA) used as a global search, with a local
search (LS) method that refines the poses produced by the GA.

Each pose is treated as a member of a population, i.e., an
individual, which is represented by its genotype, i.e., set of
genes. New individuals are generated through rules of genetic
evolution (i.e., via crossover, mutation, and selection) from
ancentors (i.e., individuals from a previous generation). The
subset of poses whose scores were improved by LS iterations
are re-introduced into the genetic population. A single LGA
run terminates when a pre-defined max. number of score
evaluations (default: NMAX

score-evals = 2 500 000) or generations
(default: NMAX

gens = 27 000) is reached, whichever comes first.

Algorithm 1: Lamarckian Genetic Algorithm (LGA)
Function AutoDock

/* Coarse-Level Parallelism */
for each LGA-run do

while (Nscore-evals < NMAX
score-evals) and (Ngens < NMAX

gens ) do
/* Medium-Level Parallelism */
GA (population)
/* Medium-Level Parallelism */
for individual in random-subset (population) do

LS (get-genotype (individual))

C. Scoring Function

The molecular interactions are quantified with the semi-
empirical free-energy force field (kcal/mol) in Equation 1.
As detailed in [7], while all these terms are characterized by
dimensionless coefficients (Wvdw, Whb, Wel, Wds, Wrot) as well
as by look-up tables (A, B, C, D, S, V , E, q), the score is
mainly determined by the interatomic distance rij (between
atoms i and j) that changes during the docking process.
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D. Local Search method

AUTODOCK uses the Solis-Wets method [8] as LS to
generate a new-genotype1 by adding small random delta

changes to each gene of an initial genotype. Then, if the score
is not minimized by new-genotype1, changes are subtracted
instead of being added, and another comparison using instead
the score of new-genotype2 is performed. At each itera-
tion, the change size (step) is either increased or decreased
depending on whether the number of consecutive successful
or failed attempts is greater than four, respectively. Similar to
LGA, the LS termination is runtime-defined, specifically when
either the number of iterations or the change size reach their
max. (default: NMAX

LS-iters = 300) or min. (default: stepMIN = 0.01)
limits, respectively.

Algorithm 2: Solis-Wets (SW) local search
/* Fine-Level Parallelism */
Function SW (genotype)

while (NLS-iters < NMAX
LS-iters) and (step > stepMIN) do

delta = create-delta (step)
// new-genotype1
for each gene in Ngenes do

new-gene1 = gene + delta

if SF (new-genotype1) < SF (genotype) then
genotype = new-genotype1
success++; fail = 0

else
// new-genotype2
for each gene in Ngenes do

new-gene2 = gene - delta

if SF (new-genotype2) < SF (genotype) then
genotype = new-genotype2
success++; fail = 0

else
success = 0; fail++

step = update-step (success, fail)

E. Relevant remarks

AUTODOCK explores ligand poses by performing indepen-
dent LGA runs, each up to a max. user-defined count of score
evaluations (Nscore-evals) and genetic generations (Ngens). The
Solis-Wets LS has termination criteria (based on NLS-iters and
step) that can be set by the user through program arguments,
too. The fact that AUTODOCK comprises a self-adaptive search
implies that the number of score evaluations on every LS call
is variable, and depends on how the search evolves during
execution. The heuristics in the GA (crossover, mutation, and
selection), as well as the runtime adaptability of the LS, make



AUTODOCK capable of exploring different ligand poses on
every docking job, but also make it a very irregular application.
This irregularity is exacerbated when molecules with different
number of atoms and bonds are analyzed, which is often the
case in virtual screening.

AUTODOCK has been originally developed as a single-
threaded application. Its computational intensity increases
mainly with larger values of the aforementioned program ar-
guments and more complex molecular structures. The program
bottleneck is the scoring function [9], [10], whose accumulated
evaluations across all LGA runs take up to ∼90% of the
total execution time. Algorithms 1 and 2 have three levels of
parallelism: coarse (entire LGA runs), medium (individuals),
and fine (genes, scoring) that we leverage in order to speedup
overall AUTODOCK executions.

III. OPENCL PARALLELIZATION

OpenCL provides a platform- and vendor-agnostic parallel
framework, which allows the usage of the same source code
to target accelerators with different underlying hardware ar-
chitectures. This section describes our experience designing
AUTODOCK-GPU focusing on the programming aspects.

A. Design considerations for host code

1) Re-structuring the original program into a parallel-
friendly version: the main obstacle encountered when paral-
lelizing AUTODOCK was the fact that it was developed with a
focus almost exclusively on the docking functionality. While
this is convenient for software prototyping, this generally
leads to code without clear separation between control- or
computation-dominated regions, the later ones being suitable
for acceleration. Although it has been long well-understood
that scoring computations are the main performance bottle-
neck, acceleration attempts based only on score computations
did not yield significant speedups. Moreover, their scope
was limited to the GA, i.e., completely excluding LS from
parallelization [11], [12].

The original AUTODOCK is mainly coded as a large switch
statement, where the program progressively reads a docking
configuration file and executes certain tasks. Depending on
the order of the configuration options, the execution often
intertwines I/O and compute tasks. In contrast, for an efficient
parallelization, we have significantly re-structured the original
code so I/O (configuration readout, result write) and actual
docking computations have been separated in different code
regions, and their execution takes place in different program
stages. The resulting code clearly exposes GA, and specially
LS, as the most runtime-consuming program regions. We
thus chose these two functions, comprising several score
evaluations, for acceleration in AUTODOCK-GPU.

2) Transforming tree structures into arrays for parallel on-
device processing: AUTODOCK constructs a tree-like structure
containing ligand atoms affected by a given rotatable bond.
In order to determine a given pose, the program recursively
rotates every tree node. As recursion is not a suitable coding
pattern for hardware accelerators, the tree is transformed into

an array comprising a list of rotations. Every array element is
a 32-bit int that basically encodes the ID of the atom to be
rotated, and the type of rotation.

Similarly, as not all ligand atoms actually contribute to the
score, an array with each of its elements carrying the IDs
of contributor atoms i and j is constructed in order to avoid
traversing the tree when computing the score. These are the
so-called intramolecular contributors (Section III-C1).

B. OpenCL programming models

OpenCL supports the two parallel programming models de-
scribed as follows. Data parallelization is achieved when each
processor within a multi-processor system performs identical
tasks on different pieces of distributed data. Computationally-
intensive parts of the program are executed on device as
kernels. Kernels are processed by multiple work-items, which
can be thought as processing threads. Work-items are grouped
into work-groups, which are independent from each each other,
and each being executed on a device compute unit (CU). Task
parallelization is instead achieved by distributing different
tasks across multiple processors. In OpenCL, a task can be
implemented with a kernel running a single work-item.

Massively data-parallel accelerators like GPUs are
widespread, and thus, the data parallelism aspects of OpenCL
have been of primary interest over the years [13]. However,
as other hardware accelerators like FPGAs handle parallelism
differently (i.e., leveraging pipelining instead of SIMD),
task-parallelization is receiving increasing attention. Our
work here focuses on a data-parallelization of AUTODOCK
due to the higher performance achieved on GPUs and CPUs.
In Section V, we describe the usage of task-parallelization in
order to improve the performance on FPGAs.

C. Data parallelization on accelerator devices

1) Re-designing the scoring function: based on the group
of atoms involved, AUTODOCK expresses their score as the
sum of two independent interactions: intermolecular (receptor
atoms - ligand atoms) and intramolecular (ligand atoms - lig-
and atoms). For speeding up calculations, AUTODOCK inter-
polates from tabulated values, instead of evaluating Equation 1
analytically. Basically, the code pre-calculates both types of
interactions, and generates look-up tables to be accessed
during docking. Thus, the receptor is instead represented by
grid maps for every atom type of the ligand. Grid values
are processed using trilinear interpolation. The intramolecular
scores are modeled as arrays carrying interaction values that
vary according to the interatomic distance.

AUTODOCK-GPU follows the same approach, but only for
the intermolecular interactions. For the intramolecular compo-
nent, we opted to instead perform the analytical calculation,
since the number of ligand-ligand atomic pairs is much lower
than that involved in receptor-ligand interactions. Doing so
provides more accurate calculations, and leverages the massive
compute power available on modern accelerators.

Algorithm 3 shows the SF code structure in AUTODOCK-
GPU. The pose-calculation accesses the rotation list from



Section III-A2 and outputs the resulting atomic positions.
The intermolecular component loops through all Natom ligand
atoms. The x, y, z coordinates of a given ligand atom
are used for accessing a given receptor grid. This implies
random memory accesses that cannot be optimized since
addresses depend on unpredictable coordinate values. The
intramolecular component accesses the atomic contributor-list
from Section III-A2. For every pair of atoms involved in a
given loop iteration, their coordinates are retrieved and their
corresponding spatial distance is calculated. This also involves
random memory accesses to look-up tables (Section II-C),
which depend on the types of atoms being involved.

Algorithm 3: Scoring Function (SF)
/* Fine-Level Parallelism */
Function SF (genotype)

for each rot-item in Npose-rot do
PoseCalculation

for each lig-atom in Natom do
InterInteraction

for each intra-pair in Nintra-contrib do
IntraInteraction

2) Mapping operations into OpenCL elements: based on
our prior work [9], the parallelization consists of mapping the
main AUTODOCK operations (i.e., GA, LS, SF) onto OpenCL
processing elements (i.e., kernels, work-groups, work-items) to
achieve a suitable level of parallelism (i.e., coarse, medium,
fine).

A docking job is composed of R independent LGA runs,
where each run (RunID: 0, 1, 2, . . . , R-1) processes a pop-
ulation of P individuals (IndID: 0, 1, 2, . . . , P -1) through
a GA, followed by an LS refinement (Section II-D). These
GA and LS functions involve score computations over several
individuals, and thus, are implemented as the OpenCL kernels
Krnl GA and Krnl LS (Fig. 1).

LOCAL SEARCH

LAMARCKIAN GENETIC ALGORITHM

DOCKING JOB

Krnl GA Krnl LS

GA
generation Scoring LS

generation Scoring

Fig. 1. Functions GA and LS are mapped onto kernels that execute nested
loops controlling LGA runs and their inner processing of individuals.

In AUTODOCK, LGA runs and their inner processing of
individuals (by either GA or LS) are controlled by nested
loops. In AUTODOCK-GPU, such loops are merged into a
single one to increase parallelism. Therefore, R × P indi-
viduals from multiple LGA runs are processed in parallel,
each by an OpenCL work-group, thus achieving coarse- and

medium-level parallelization (Fig. 2). The functional correct-
ness is ensured by keeping track of the RunID associated
to each IndID, which is mapped to a work-group (WGID)
as follows: WGID = RunID × P + IndID. More-
over, processing an individual involves fine-grained tasks car-
ried out by OpenCL work-items, thus achieving fine-grained
parallelization. Such {GA/LS generation, pose calculation,
intermolecular- and intramolecular-interaction} tasks have
different computational intensities that depend on {Ngenes,
Npose-rot, Natom, Nintra-contrib}, respectively. Furthermore, in
order to ensure correct score calculations and genotype up-
dates, OpenCL work-items have to be synchronized at certain
program points. For this purpose, the OpenCL barrier()

function is appropriately called.

Run 0
LGA

Run <ID>
... LGA ...

Run R-1
LGA

0
Ind

1
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GA or LS generation

Pose calculation

Intermolecular interaction
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Fig. 2. A population processed by an LGA run (RunID) is decomposed into
their individuals, and each individual (IndID) is mapped onto a work-group
(WGID). Fine-grained tasks are processed by work-items (wi0 . . .wiL−1).

3) Integrating alternative Local Search methods: the pose
refinement provided by LS can be further leveraged by uti-
lizing more effective search methods. AUTODOCK-GPU has
been developed considering the easy incorporation of alterna-
tives to Solis-Wets. Our previous work [6] provides a math-
ematical background on the newly-incorporated ADADELTA
method, and evaluates the enhancement of predicted poses.
Here, we focus instead in its related implementation aspects.

Algorithm 4 shows the core of ADADELTA: the gradient
of the scoring function. Since scores are calculated as the
sum of intermolecular and intramolecular interactions (Sec-
tion III-C1), the gradients are hence composed of analogous
parts calculated using numerical and analytical derivatives,
respectively. Algorithm 5 shows how ADADELTA performs
NMAX

LS-iters iterations, and uses the gradient for generating a
new-genotype. Similarly, ADADELTA carries out irregular
computations involved within score and gradient calculations.
It is important to highlight that the LS methods considered are
mutually exclusive, i.e., Krnl LS performs either Solis-Wets



or ADADELTA, in a given docking job.

Algorithm 4: Gradient Calculation (GC)
/* Fine-Level Parallelism */
Function GC (genotype)

/* Gradients in atomic space */
for each rot-item in Npose-rot do

PoseCalculation

for each lig-atom in Natom do
InterGradient

for each intra-pair in Nintra-contrib do
IntraGradient

/* Conversion into genetic space */
Gtrans // Translational gradients
Grigidrot // Rigid-body rotation gradients
Grotbond // Rotatable-bond gradients

Algorithm 5: ADADELTA (AD) local search
/* Fine-Level Parallelism */
Function AD (genotype)

gradient = GC (genotype)
while (NLS-iters < NMAX

LS-iters) do
new-genotype = update-rule (genotype, gradient)
if SF (new-genotype) < SF (genotype) then

genotype = new-genotype

gradient = GC (genotype)

4) Further improvements based on similar loop structures:
both SF and GC calculate poses identically, and share the same
loop-structure for their intermolecular and intramolecular com-
ponents. In order to leverage data locality in the ADADELTA
implementation, SF and GC calculations are grouped together
as much as possible. Basically, a single pose calculation is used
for both scores and gradients, whereas structure-equivalent SF
and GC calculations are fused into single intermolecular and
intramolecular loops. This code re-factoring results in faster
ADADELTA executions (∼18%) compared an initial design
where SF and GC calculations were called separately.

D. OpenCL-specific aspects

In previous experiments [6], we found that in most cases
higher speedups are achieved on GPUs rather than on CPUs.
Since an docking program is typically employed at screening
compound libraries of thousands of candidate ligands, a do-
main scientist would prefer to utilize (if available) the fastest
device type in the first place. Based on this typical scenario,
our application development was entirely performed targeting
the AMD Vega 64 (Table I). Since optimizations applied on
this GPU would not be beneficial on other devices (e.g.,
CPUs, or those with a different architecture), and because tool
support for optimization analysis of OpenCL programs might
not be available for other targets (e.g., profiling for Nvidia
GPUs), we opted for a platform-agnostic development, so that
AUTODOCK-GPU is functionally portable, and not dependent
on vendor-specific optimizations nor extensions.

1) Arithmetic precision: floating-point (FP) calculations in
AUTODOCK are performed in double precision (64 bits).
According to [9], [10], [14], using a reasonably-lower pre-
cision does not deteriorate the quality of pose predictions.
Hence, OpenCL native_* built-in functions, as well as single
precision (32 bits) operands were employed.

2) Memory layout: the chosen layout can significantly
impact performance [15], [16]. In general, struct-of-arrays
(SoA) helps adjacent work-items to access adjacent mem-
ory (achieving coalescing on GPUs), whereas array-of-structs
(AoS) helps individual work-items to access adjacent memory
(leveraging cache hierarchies on CPUs). Although a runtime-
selectable layout as used in [15] would be the optimum, we
opted to use SoA because: First, the initial target device was
a GPU. Second, the significant code changes required for AoS
are beyond the scope of evaluating a single-source code.

3) Vectorization: SIMD architectures are exposed differ-
ently to an OpenCL than to a C developer [16]. Developing
a single-source code that maximizes the SIMD efficiency on
several devices is difficult due to the runtime peculiarities
introduced by each vendor. For instance:

• AMD: for CPUs, the explicit usage of vector types (e.g.,
float4) enables the generation of SSE/AVX code. While
it is often beneficial for both CPUs and GPUs, using
vectorization for GPUs can negatively affect performance
as it requires more vector registers for storage [17].

• Nvidia: there is no performance benefit from using vector
types since the CUDA architecture is scalar [18].

• Intel: their runtime carries out implicit vectorization,
which consists of packing several work-items and exe-
cuting them with SIMD instructions. Vector operations
already in the code are scalarized and re-vectorized [19].

Based on that, we opted to use vector types only for easier
development in critical code sections, e.g., for some of the data
conversion required for gradients. That calculation is coded in
a simpler manner by calling built-in vector functions (e.g.,
cross, dot, fast_length), instead of writing a verbose
scalar counterpart.

4) Work distribution: the global work size (NDRsize), i.e.,
the total number of work-items for each kernel, was configured
as a function of: the number of LGA runs (R), population size
(P ), LS rate (lsrate), and work-group size (WGsize), namely:

NDRKrnl GA
size = {R× P ×WGsize, 1, 1} (2)

NDRKrnl LS
size = {R× P × lsrate×WGsize, 1, 1} (3)

For all experiments, the first two parameters were set as
R = 100 and P = 150. lsrate indicates the percentage of
a population that undergoes LS, which was set to the max.
possible, i.e., lsrate = 100%. For instance, setting WGGPU

size = 64
and WGCPU

size = 16 would result in NDRGPU
size = {960000, 1, 1}

and NDRCPU
size = {240000, 1, 1}. Section IV-B presents the

performance impact of different WGsize values.

IV. EVALUATION

Here we present the impact of relevant factors on overall
performance, such as the OpenCL work-group size, molecular



complexity, and employed LS method.

A. Experimental setup

1) Program configuration: besides the number of LGA runs
and population size (already set as R = 100 and P = 150 in
Section III-D), other relevant AUTODOCK-GPU parameters
are NMAX

score-evals and NMAX
gens . The latter was set to a considerably

larger value (NMAX
gens = 99 999) than the default one (27 000)

in order to ensure that the program is terminated only when it
reaches NMAX

score-evals = 2 048 000. Other parameters were left as
default [20], unless otherwise specified (e.g., lsrate = 100%).

2) Dataset: a set of 20 ligand-receptor inputs was selected.
We included eleven entries from [21] (IDs: 1u4d, 1xoz, 1yv3,
1owe, 1oyt, 1ywr, 1t46, 2bm2, 1mzc, 1r55, 1kzk), four
from [22] (IDs: 3s8o, 1hfs, 1jyq, 2d1o), and five from [23]
(IDs: 5wlo, 5kao, 3drf, 4er4, 3er5). Our set covers a range
of up to 31 rotatable bonds, considering that AUTODOCK
supports NMAX

rot = 32.
3) Hardware: for the baseline test, i.e., the measure-

ment of the execution time of the original single-threaded
AUTODOCK4.2.6 (implementing only Solis-Wets), we used
an Intel Xeon Platinum 8124M @3.0 GHz CPU core. For
parallel executions, accelerators based on commercial devices
were selected (Table I). An AMD Vega 64 GPU was used as
the main development platform. The more powerful Titan V
GPU, and selected CPUs from Amazon Web Services (AWS)
were used as porting-target devices. Regarding CPUs, high-
performance instances were used: c5.18xlarge (virtualized)
and m5.metal (bare-metal).

TABLE I
SETUP IN TERMS OF INSTANCE TYPE, PEAK MEMORY BANDWIDTH AND
SINGLE-PRECISION FP PERFORMANCE, AND OPENCL COMPUTE UNITS.

Device Instance type GB/s GFLOP/s # CU
AMD Radeon RX Vega 64 On-premise GPU 483 12 660 64

Nvidia Volta Titan V On-premise GPU 651 14 900 80
Intel Xeon Platinum AWS 36-core CPU

8124M @3.0 GHz c5.18xlarge 260 3456 36
Intel Xeon Platinum AWS 96-core CPU
8175M @2.5 GHz m5.metal 260 7680 96

B. Impact of OpenCL work-group size

We analyzed the speedups achieved on all selected acceler-
ators when using different OpenCL work-group size (WGsize)
configurations, e.g., {16, 32, 64, 128, 256} work-items. Fig. 3
shows the cases of 1u4d, 3s8o, and 3er5.

For CPUs, as found in our previous work [9], a WGsize
of 16 work-items clearly leads to higher speedups on both
c5.18xlarge and m5.metal instances.

For GPUs, in contrast to [9], where a WGsize of 64
work-items was the fastest configuration for the only tested
lsrate = 6% on an AMD R9 290X GPU, Fig. 3 shows that
higher speedups can be obtained also with either smaller (32)
or larger (128) values of WGsize, regardless of the chosen
device. According to the vendor’s guidelines [17], [18], a
suitable WGsize is an integer multiple of either an AMD
wavefront size (64), or a Nvidia warp size (32). For next
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Fig. 3. Speedups of AUTODOCK-GPU vs. AUTODOCK for different work-
group sizes (R = 100 LGA runs, lsrate = 100%). Vertical scales are different.

experiments, we set WGsize = 64, i.e., the min. integer multiple
for any GPU from these two vendors. While the optimum
WGsize value will depend on the dataset used, by using
WGsize = 64 on GPUs, we aim to minimize the inter work-
group communication overhead, which might slow down the
program for larger WGsize values.

C. Impact of molecular complexity

Fig. 4 provides an overall comparison of the speedups
achieved on all selected devices for our entire dataset.
For both Solis-Wets and ADADELTA executions, the re-
ported speedups were obtained with respect to the baseline
AUTODOCK running the Solis-Wets method. Although cal-
culating ADADELTA speedups with respect to a Solis-Wets
baseline is somewhat arguable, they still show meaningful
performance gains from the parallelization of a more complex
search method.

In general, on any given device, it can be observed
that ADADELTA speedups are significantly lower than
their corresponding Solis-Wets ones. The reason is the
more computationally-demanding genotype generation in
ADADELTA, specifically due to the gradient calculation (Sec-
tion III-C3) compared to the simpler random generation in
Solis-Wets (Section II-D).

For a given LS method, speedup factors show a behavior
affected by the input complexity, i.e., Nrot and Natom values.
Running Solis-Wets, the respective speedups using {1u4d,
3s8o, 3er5} as inputs when running on:
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Fig. 4. Speedups of AUTODOCK-GPU vs. AUTODOCK achieved for the
entire dataset (R = 100 LGA runs, lsrate = 100%).

• GPUs, tend to increase with larger inputs: e.g., {128x,
143x, 149x} on Vega 64, and {120x, 273x, 341x} on
Titan V.

• CPUs, tend to decrease with larger inputs: e.g., {42x,
15x, 14x} on c5.18xlarge, and {51x, 19x, 18x} on
m5.metal.

Running ADADELTA on any device results in decreasing
speedups as the inputs become more complex. This can be
attributed to the irregularity of the gradient calculation:

• First, the loop bounds. Npose-rot (dependent on Nrot), Natom
and Nintra-contrib (dependent on Natom) are larger for more-
complex inputs, and in turn, result in longer and input-
dependent processing times.

• Second, its limited parallelism. This procedure is per-
formed in a gene-type manner, and thus, also in-
volves three independent fine-grained tasks (Gtrans,
Grigidrot, Grotbond in Algorithm 4) that can be
distributed across the work-items (of a work-group) in
different ways. A simple way would be to run these tasks
simultaneously, each by a different work-item. Another
way would be to parallelize these tasks with as many
work-items as possible, running only one task at a time.

We opted to use a combination of both ways: While Gtrans
and Grigidrot each present a loop with an upper bound of
Natom, they must also perform sequences of data-dependent
operations, which are not suitable for parallelism. Thus, each
of these two tasks was executed by a single work-item.
The operations within Grotbond are also data-dependent, but
are repeated for each rotatable bond. Hence, Grotbond is
processed by Nrot work-items.

Finally, in most cases, GPUs achieve higher efficiencies than

CPUs when using the same LS method. A notable exception
to this behavior occurs when using ADADELTA with larger
inputs {3drf, 4er4, 3er5} (right side in Fig. 4), where
the achieved speedup is {11x, 8x, 8x} on the Vega 64, and
{11x, 10x, 11x} on the m5.metal, respectively. The typically
faster executions of GPUs can be attributed to the more
suitable mapping of OpenCL elements onto their hardware.
On CPUs, however, each work-group is executed by a single
CPU core, and thus, the group’s work-items are executed
serially [15], [24]. The purpose of such serialization is to avoid
the excessive synchronization penalties incurred if work-items
within a work-group were executed in parallel, since work-
items on CPUs are mapped to OS threads, instead of using
the lighter-weight hardware threads available on GPUs.

V. PORTING ONTO OTHER ACCELERATORS

This section summarizes our experiences when porting
AUTODOCK to FPGAs. The focus is on device rather than host
code, whose design (Section III-A) remains mostly unchanged.

Porting the proposed data-parallel design onto FPGAs was
a more involved process. In our previous work [9], code
refactoring (e.g., replacing struct kernel arguments with
built-in types, to avoid compiler errors) and a number of com-
piler updates were required to achieve a functionally-correct
implementation on a Xilinx Virtex 7 FPGA. Unfortunately, this
was three-orders of magnitude slower than the serial baseline.
Moreover, porting the same design onto an AWS f1.2xlarge

instance [25] resulted in executions hanging indefinitely. As
this behavior was not manifested during emulation, incre-
mentally enabling code helped to determine that the update
of the __local atomic coordinates in PoseCalculation

(Section II-C) was causing the problem.
Although the root causes of latter problems are not yet

understood, even if they were resolved, we would expect very
slow executions on f1.2xlarge. In general, performance
gains in a data-parallel design are expected to result from
the simultaneous execution of work-groups over the available
CUs. Applying this approach on FPGAs implies replicating (as
often as possible) those CUs to achieve higher parallelism.
However, this replication is limited in practice, due to the
constrained area of the programmable logic, as well as the
typically lower memory bandwidth on FPGA-based accelera-
tors (in tens of GB/s for DDR technology) compared to GPUs.

For a more comprehensive evaluation, our task-parallel
design for FPGAs [14] is discussed here. Although it cannot
keep up with GPUs and CPUs, it is ∼3x faster than the serial
baseline when running the Solis-Wets LS on an Intel Arria 10
FPGA. Instead of replicating CUs, task parallelism on FPGAs
relies on deeper pipelining and custom memory hierarchies.
Our fastest configuration (also the largest in terms of required
resources) contains 27 kernels (each processing a single work-
item) connected with OpenCL blocking/non-blocking pipes.
In terms of overall functionality, this is comparable to other
implementations running Solis-Wets only (Section VI). The
FPGA implementation does not include the more advanced



ADADELTA algorithm, as its incorporation would require sig-
nificant architectural changes that would exceed the capacity
of the target FPGA. We found that the fastest configuration,
which includes nine replicas of the Solis-Wets LS kernel,
barely fits on the Arria 10 FPGA. Adding ADADELTA would
require additional hardware area that could only be freed-up
by reducing the number of LS kernel instances. This would
slow down AUTODOCK on the FPGA even further.

Finally, the functional portability on FPGAs is currently de-
pendent on the specific language constructs actually supported
by OpenCL-to-FPGA tools. For instance, it was not possible
to port the task-parallel design onto f1.2xlarge instances,
since non-blocking pipes were not supported [26]. Despite
the significant improvements in OpenCL-to-FPGA tools over
the years, the lower development productivity compared to
GPUs/CPUs can be attributed mainly to the far longer build
times relative to software. E.g., building an FPGA binary
required around eight hours of tool runtime for AUTODOCK.

VI. RELATED WORK

Regarding AUTODOCK acceleration, Pechan et al. [27]
published a survey reporting CUDA-based approaches that
exclude [11] and include [10] the Solis-Wets LS. In addition,
that survey describes a Verilog design for FPGAs that was
competitive with GPUs [10], when both include the Solis-Wets
LS. Moreover, Mendonça et al. [12] proposed a hybrid CPU-
GPU design utilizing OpenMP and CUDA, but without the
Solis-Wets LS. Among the aforementioned studies, only those
by Pechan et al. [10] include a LS method (only Solis-Wets),
and thus, are the only ones truly comparable to ours. However,
as their experiments were performed on older devices, their
reported speedups are not directly comparable.

VII. CONCLUSIONS

We described the challenges at parallelizing the irregular
AUTODOCK code using OpenCL, and discussed the design
considerations in both host and device code. To cope with
the irregularity of AUTODOCK, large-scale code re-structuring
was required. For instance, by transforming the tree-like data
structures into arrays, it was possible it distribute atomic-
rotations and score calculations into multiple OpenCL work-
items. Our approach does not focus only on the major perfor-
mance bottleneck (score function), but also on simultaneously
processing multiple ligand poses with OpenCL work-groups.

The performance of AUTODOCK-GPU was evaluated for
both the Solis-Wets and the ADADELTA local-search meth-
ods, as well as for different work-group sizes. Using 64 work-
items on a Titan V GPU, and 16 work-items on a Xeon Plat-
inum 8175M CPU, AUTODOCK-GPU achieves max. speedup
factors of 341x and 51x, respectively. Moreover, our results
show that the AUTODOCK-GPU performance does depend
on the characteristics of the specific compounds analyzed.

Finally, preliminary experiments on FPGAs show that the
performance portability was not achievable. This suggests
that hardware-awareness is still required for efficiently par-
allelizing irregular codes such as AUTODOCK for different

compute platforms, even when using abstractions such as
OpenCL. We hope that our experience will be useful when
porting other irregular applications to different target hardware
architectures.
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A. Artifact Appendix
A.1 Abstract
This artifact appendix provides instructions on how to re-
trieve, compile, and evaluate the developed AUTODOCK-
GPU code. This includes instructions on how to obtain the
input datasets, as well as scripts to regenerate the execution
runtimes, which were used for the speedup factors reported
in this paper. This will allow the evaluation of our results
on any of the accelerator devices described in the paper,
like Vega 64 GPU, Titan V GPU, AWS c5.18xlarge and
m5.metal CPU instances. Moreover, this will allow evalu-
ation of AUTODOCK-GPU on any other GPU/CPU-based
accelerators supporting OpenCL.

A.2 Artifact check-list (meta-information)
• Algorithm: OpenCL-based parallelization of AUTODOCK.
• Program: AUTODOCK-GPU (all sources can be downloaded

from GitHub), version 1.2 (commit eed190f), size ∼50 MB.
• Compilation: g++ 6 or above.
• Binary: Source code and scripts included to generate binaries.
• Data set: Molecular structures prepared for both AUTODOCK

and AUTODOCK-GPU (all input files can be downloaded from
Zenodo), ready to use, size ∼1.4 GB.
• Run-time environment: AUTODOCK-GPU requires any

Linux distribution supporting OpenCL. We recommend Ubuntu
18.04 for verifying results on AWS CPU instances. OpenCL
drivers provided by AMD, Nvidia, and Intel are required. No
need of root access.
• Hardware: We recommend AWS c5.18xlarge and m5.metal

instances featuring Intel Xeon Platinum CPUs, as well as AMD
Vega 64 and Nvidia Titan V GPUs.
• Execution: Sole user. AUTODOCK-GPU benchmarks on all

chosen four accelerators take ∼7 hours. AUTODOCK bench-
mark (baseline) takes ∼16 hours.
• Metrics: Execution runtimes in seconds.
• Output: Console indicating execution runtime of a given ex-

periment. Additional: docking log files (.dlg) indicating execu-
tion runtime and resulting molecular poses.
• Experiments: Bash scripts (provided). Maximum allowable

variation of execution runtimes: 10%.
• How much disk space required (approximately)?: Maxi-

mum: 20 GB.
• How much time is needed to prepare workflow (approxi-

mately)?: Two hours.
• How much time is needed to complete experiments (approx-

imately)?: 24 hours.
• Publicly available?: Yes
• Code licenses (if publicly available)?: GNU Lesser General

Public License.
• Data licenses (if publicly available)?: Creative Commons

Attribution 4.0 International.
• Archived (provide DOI)?: Yes. DOI: 10.5281/zenodo.

4073350

A.3 Description
A.3.1 How to access
All material is publicly available:

• AUTODOCK-GPU source code and scripts are available on
GitHub: https://github.com/ccsb-scripps/AutoDock-GPU
• AUTODOCK (serial baseline) source code and related utili-

ties are available on its own website: http://autodock.

scripps.edu/downloads

• Data sets are available on Zenodo: https://doi.org/10.

5281/zenodo.4031961

• Artifacts (scripts, additional configuration files and output ex-
amples) are available on Zenodo: https://doi.org/10.

5281/zenodo.4073350

A.3.2 Hardware dependencies
In order to obtain comparable results, we recommend the following
hardware:

• For CPUs, AWS c5.18xlarge (36 physical cores) and m5.metal
(48 physical cores) instances featuring Intel Xeon Platinum
8124M and 8175M CPUs, respectively. As suggested by AWS
for HPC workloads, hyper-threading should be disabled (if pos-
sible).
• For GPUs, AMD Vega 64 and Nvidia Titan V GPUs.

However, AUTODOCK-GPU should run on any OpenCL-
capable GPU/CPU-based accelerator.

A.3.3 Software dependencies
OpenCL drivers are required for both CPUs and GPUs. Installation
instructions are provided by respective GPU/CPU vendors.

• For CPUs, we recommend Intel OpenCL 2.0 (Build 0) with
driver Intel OpenCL 18.1.0.0920.
• For GPUs, we have tested using OpenCL 1.2 AMD driver

version 1.1, and OpenCL 1.2 CUDA driver 440.82.

Our binary files are for Linux distributions. Ubuntu 18.04 has
worked without any problems. Other Linux (and even Unix) distri-
butions should work as well, but have not been extensively tested.

A.4 Installation
A.4.1 AUTODOCK-GPU
• Cloning repository:

1 $ git clone https :// github.com/ccsb -

↪→ scripps/AutoDock -GPU.git

• Making sure version 1.2 (commit eed190fd) is being used:

1 $ cd AutoDock -GPU/

2 $ git checkout eed190fd

• Compiling (a single binary):

1 $ make DEVICE=<TYPE > NUMWI=<NWI >

where: <TYPE> specifies the accelerator chosen (GPU or CPU),
and <NWI> is the number of work-items in a work-group
(WGsize). By default, binaries are placed under the bin/ folder.
For instance, CPU binaries running the WGsize values used in
the paper can be all compiled like this:
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1 $ for i in 16 32 64 128 256;do make

↪→ DEVICE=CPU NUMWI=$i;done

• Relocating binaries into the main AUTODOCK-GPU folder:

1 $ pwd

2 /home/user/AutoDock -GPU

3 $ cp bin/* .

Note ”.” at the end of the cp command. This step is done just
for compatibility with scripts provided.

A.4.2 AUTODOCK

Installation instructions are available under http://autodock.

scripps.edu/downloads. Similarly, place the AUTODOCK bi-
nary (autodock4) under the main AUTODOCK-GPU folder.

A.5 Experiment workflow
As a reference for next steps, consider the following structure for
the AUTODOCK-GPU folder:

1 $ pwd

2 /home/user/AutoDock -GPU

3 $ tree -L 1

4 bin/

5 data/

6 results/

7 results_autodock426/

8 dpf_autodock426/

9 autodock426.sh

10 ia3_exp_numwi_gpus_titanv.sh

11 autodock4

12 autodock_cpu_16wi

13 Makefile

14 ...

1. Make sure data sets from Zenodo are present. These input files
should be available under the data/ folder.

2. Make sure the folders results/ and results autodock426/

exist. These folders will store the .dlg files produced by AUTODOCK

and AUTODOCK-GPU programs, respectively. If such folders
are not present, simply create them using the mkdir command.

3. To obtain serial baseline runtimes from AUTODOCK, run:

1 $ ./ autodock426.sh

4. To obtain runtimes for analyzing the impact of OpenCL work-
group sizes (see Section IV-B of paper), run:
For GPUs:

1 $ ./ ia3_exp_numwi_gpus_vega64.sh

2 $ ./ ia3_exp_numwi_gpus_titanv.sh

For CPUs:

1 $ ./ ia3_exp_numwi_cpus_c518x.sh

2 $ ./ ia3_exp_numwi_cpus_m5.sh

5. To obtain runtimes for analyzing the impact of molecular com-
plexity (see Section IV-C of paper), do the following. First, se-
lect the 64 work-items version for GPUs, and the 16 work-items
version for CPUs. Second, run:
For GPUs:

1 $ ./ ia3_exp_perf_gpus_vega64.sh

2 $ ./ ia3_exp_perf_gpus_titanv.sh

For CPUs:

1 $ ./ ia3_exp_perf_cpus_c518x.sh

2 $ ./ ia3_exp_perf_cpus_m5.sh

For low-variance results, specially for CPUs, we suggest to
perform the experiments on a system with no other compute- or
memory-intensive running simultaneously.

A.6 Evaluation and expected result
Results of every execution will be stored under the following fold-
ers: results/ for AUTODOCK-GPU, and results autodock426/

for AUTODOCK. These folders will contain the predicted molecu-
lar poses by each program execution (i.e., docking job), including
the overall execution runtime. These execution runtimes will be
used for calculating the speedup factors given in the corresponding
figures in the paper (Fig 3 and Fig. 4). A simply way to display
these runtimes is to run:

1 $ grep "Program run time" ./ results /*

2 $ grep "Real=" ./ results_autodock426 /*

Output examples (.dlg) are provided under the folder dlg examples/

within the artifacts repository.

A.7 Experiment customization
For experiments using AUTODOCK-GPU, scripts are fully cus-
tomizable and allow changing the docking configuration directly
on the commands within the respective scripts. For instance, the
following configuration:

• CPU target with WGsize = 32 (work-items)

• Ligand-receptor: 1u4d

• # LGA runs: R = 1000

• Population size: P = 50

• NMAX
score-evals = 20 000

• NMAX
gens = 2 700

• LS method: ADADELTA with lsrate = 6%

• Name of the output docking log file (.dlg): ”output-log”

can be run using this custom command:

1 ./bin/autodock_cpu_32wi -lfile data/1u4d/

↪→ rand -0. pdbqt -ffile data/1u4d/

↪→ protein.maps.fld -nrun 1000 -psize

↪→ 50 -nev 20000 -ngen 2700 -lsmet ad

↪→ -lsrat 6.00 -resnam output -log

For experiments using AUTODOCK, the configuration of a
docking job has to be done by editing directly the docking param-
eter file (.dpf, see examples under the dpf autodock426/ folder
within the artifacts repository). Configuration options are intuitive
and their IDs are similar to those of AUTODOCK-GPU.

A.8 Methodology
The artifact appendix for this paper was submitted according to the
guidelines at https://ctuning.org/ae/submission-20200102.
html
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