
OpenMP Device Offloading to FPGAs using the
Nymble Infrastructure

Jens Huthmann1, Lukas Sommer2, Artur Podobas3, Andreas Koch2, and
Kentaro Sano1

1 Riken Center for Computational Science, Japan
{jens.huthmann, kentaro.sano}@riken.jp

2 Embedded Systems and Applications Group, TU Darmstadt, Germany
{sommer, koch}@esa.tu-darmstadt.de

3 Royal Institute of Technology, KTH, Stockholm Sweden
artur@podobas.net

Abstract. Next to GPUs, FPGAs are an attractive target for OpenMP
device offloading, as they allow to implement highly efficient, application-
specific accelerators. However, prior approaches to support OpenMP de-
vice offloading for FPGAs have been limited by the interfaces provided
by the FPGA vendors’ HLS tool interfaces or their integration with the
OpenMP runtime, e.g., for data mapping.
This work presents an approach to OpenMP device offloading for FPGAs
based on the LLVM compiler infrastructure and the Nymble HLS com-
piler. The automatic compilation flow uses LLVM IR for HLS-specific op-
timizations and transformation and for the interaction with the Nymble
HLS compiler. Parallel OpenMP constructs are automatically mapped to
hardware threads executing simultaneously in the generated FPGA ac-
celerator and the accelerator is integrated into libomptarget to support
data-mapping.
In a case study, we demonstrate the use of the compilation flow and
evaluate its performance.

Keywords: FPGA, OpenMP, Device offloading, Heterogeneous, LLVM,
HLS

1 Introduction

As the end of transistor scaling [30] draws near, researchers are actively pursu-
ing and evaluating alternative emerging architectures and computing paradigms,
with which they hope to continue performance scaling we have grown used to rely
on. Among the more salient of these emerging architectures are reconfigurable
systems, whose silicon plasticity/reconfigurability provides a partial remedy for
the end of Moore’s law [22]– we do not need more transistors, we just need to
repurpose the existing transistor to better fit the requirements of our applica-
tions.

Today, Field-Programmable Gate Arrays (FPGAs) are among the more pop-
ular and mature reconfigurable systems available. While early FPGAs had lim-
ited computing capabilities, and were primarily used for circuit simulation and

2 J. Huthmann et al.

digital signal processing, modern FPGAs – on the other hand – feature tens
of TeraFLOP/s of raw single-precision performance, and are capable of rivaling
both general-purpose and graphics processing units (GPUs) in power efficiency
and/or raw execution performance. Furthermore, with the increased maturity
of High-Level Synthesis [12] tools, using FPGAs is no longer monopolized by
hardware architectures, and instead, anyone with knowledge of C/C++/Java
programming can map applications onto these exciting new architectures. To-
day, several research groups have already mapped important High-Performance
Computing (HPC) applications onto FPGAs, with benefits illustrated over ex-
isting approaches [33, 16, 35, 34, 26]. These efforts have led to several research
laboratories setting up large FPGA-based testbeds to investigate the role of
these reconfigurable devices in a post Exa-scale era, such as the Noctua cluster
at Paderborn University or the Cygnus cluster at University of Tsukuba.

In this paper, we present the Nymble OpenMP HLS infrastructure, which is a
self-contained compilation tool-kit for running (a subset of) OpenMP constructs
on FPGAs, and also visualize them using the Paraver [23] visualization tool. Un-
like existing OpenMP HLS approaches, which use source-to-source compilation
and rely on commercial black box compilers for hardware generation, Nymble is
transparent and fully transforms OpenMP code down to Register Transfer Level
(RTL) Verilog code without external dependencies. This, in turn, enables users
to get a better insight into what hardware is actually generated, while at the
same time providing an open platform for FPGA-based OpenMP research.

Our contributions in this paper are:

– A description over the Nymble infrastructure, including details on the front-
end compilation and the hardware generation & architecture, including which
OpenMP constructs Nymble supports and how they are implemented,

– A use-case showing how Nymble transforms well-known OpenMP code into
hardware, including empirical performance evaluation, and

– A discussion on the future of OpenMP for FPGAs, including challenges and
directions

2 Motivation

Today, FPGAs are being considered to complement (and compete with) the
general-purpose processor and GPUs that currently reside in modern HPC infras-
tructure. Several research laboratories are already setting up large FPGA-based
testbeds to investigate the role of these reconfigurable devices in a post-Exa-
scale era, such as for example the Noctua cluster at Paderborn University or the
Cygnus cluster at the University of Tsukuba.

Meanwhile, using these accelerators in a user-friendly way (that is, with-
out resorting to writing RTL code), is often limited to using vendor-specific
toolchains, such as for example Intel’s OpenCL SDK for FPGA [8] or Xilinx SD-
SoC/SDAccel [32]. While these toolchains are often high-performing, they are
also very tied to a specific execution model. Furthermore, adding or researching
into alternative programming models using these vendor solutions (such as for

OpenMP Device Offloading to FPGAs using the Nymble Infrastructure 3

example OpenMP) is challenging, because tools are closed source, and even if
some aspects can be changed (such as the Board Support Package, BSP), these
changes become non-trivial.

There are methods to extend functionality, such as using source-to-source
methods to transcompile OpenMP [10], but these methods have no way of even
remotely controlling or dictating how the underlying hardware is generated.
Finally, vendor tools and road-maps are not always necessarily aligned with
what we as users or researchers need, meaning that it is imperative to look at
alternative approaches, in particular for guiding and doing research on OpenMP
execution on future FPGAs. The Nymble OpenMP infrastructure aspires to be
one such alternative for OpenMP researchers and users.

3 The Nymble OpenMP Infrastructure

The goal of this work is to develop a compilation flow that maps OpenMP target
regions to FPGA-based accelerators without requiring manual intervention by
the user. The compilation flow is based on the LLVM compiler infrastructure
[18] and its implementation of OpenMP. In contrast to many prior approaches
that use source-to-source transformations on AST-level to extract target regions
for HLS (see Section 6 for detailed discussion), the compilation flow in this
work uses LLVM IR to interact with the HLS tool. This approach facilitates
code transformations that can be used to transform and optimize target regions,
described in more detail in Section 3.1.

As the commercially available HLS-tools only provide source-level interfaces
and no official interface on IR-level, the state-of-the-art academic HLS compiler
Nymble [15] is used for the actual High-Level Synthesis of the target regions. Be-
sides providing an IR-level interface, Nymblle also supports true multi-threading
in the generated accelerators [14], described in more detail in Section 3.2.

3.1 Compilation Flow

Fig. 1 presents an overview of our compilation flow. For OpenMP device of-
floading, LLVM’s Clang frontend uses separate compilation passes for host- and
device code. For this work, the host compilation remains completely unchanged
and therefore supports any host code and OpenMP host constructs that Clang
supports.

The device compilation flow (shown on the right-hand side of Fig. 1) does
not only support the basic target directive to denote target regions and the
full range of data-mapping constructs (map-clause, target data-directive, array-
sections, etc.), but also provides two kinds of parallelism: The teams or parallel
construct can be used inside a target region to express parallelism, Section 3.2
explains how this parallelism is realized in hardware. Note that in our current
prototype, only one of these constructs can be used at a time and nested par-
allelism is not supported. For the teams construct, the distribute construct is
also supported to specify worksharing for a loop nest.

4 J. Huthmann et al.

Target regionsHost code

OpenMP Input
Code

Host binary

Host Compilation LLVM IR

Clang Frontend

LLVM IRLLVM IR

Kernel Extraction

LLVM IR

HLS-specific
Optimization

Binary Stub

API Call Insertion

Verilog

Nymblle HLS

Quartus

Clang Offload
Bundler

Binary
Executable

FPGA Bitstream

Fig. 1. Overview of the compilation flow.

Similar to many approaches investigated in the survey by Mayer et al. [21]
(see Section 6 for detailed discussion), a binary stub for execution on the host
machine is generated as one of the products of the device compilation flow. In this
work, the binary stub is not only used to initiate the FPGA execution, but also
to handle parallelism. Parallel constructs will spawn multiple software threads
in the binary stub, these threads then interact with one hardware thread each in
the FPGA-accelerator in an 1:1-relationship. This approach allows to re-use the
standard mechanisms from LLVM’s OpenMP runtime libomp to manage thread
spawning and worksharing. Therefore, after generating LLVM IR in the Clang
frontend, the Kernel Extraction splits the outlined target function into the stub
to remain on the host and the actual target region kernel function for High-Level
Synthesis.

The API Call Insertion then inserts calls to a thin wrapper library around In-
tel’s Open Programmable Acceleration Engine4 into the stub function to transfer
function arguments and initiate hardware execution. Note that, in contrast to ap-
proaches such as [17], data-management is not handled via generated API calls,
but rather through a plugin for LLVM’s libomptarget, enabling the whole range
of data-mapping clauses/constructs, including array sections and uni-directional
transfers (to/from clause). The stub is then compiled for the host machine
(x86-64 in our case) and included in the binary executable using the Clang

4 https://opae.github.io/

OpenMP Device Offloading to FPGAs using the Nymble Infrastructure 5

Offload-Bundler [1]. At runtime, the stub is loaded by libomptarget and initi-
ates the execution on the FPGA accelerator.

The extracted HLS kernel undergoes a number of transformations and op-
timizations before actual High-Level Synthesis (HLS-specific Optimizations in
Fig. 1). The transformations are mainly concerned with transforming OpenMP
language constructs into constructs suitable for High-Level Synthesis. Currently,
the prototype supports the OpenMP API runtime functions omp get thread num,
omp get num threads, omp get team num and omp get num teams, which, in ad-
dition to teams distribute, can be used to assign individual workloads to the
different threads. Besides that, the synchronization constructs omp critical

and omp barrier are also supported inside target regions and mapped to effi-
cient implementations using hardware semaphores.

Static allocation of thread-private memory inside the target region (alloca
in LLVM IR) is also supported by the compilation flow and HLS backend and
automatically mapped to low-latency accessible local memory (SRAM) on the
FPGA device. Vector datatypes are also allowed in the target regions, but arith-
metic operations on vectors are realized as individual operations on each vec-
tor element, as vector operations do not provide significant benefits in FPGA
hardware. Therefore, to allow for more fine-grained scheduling during HLS, we
automatically partition vector-wide thread-private memories into individual lo-
cal memories for each element while preserving array semantics as one of the
optimization steps.

The transformed LLVM IR is then passed to the Nymble HLS backend, which
performs the typical HLS steps of allocation, binding and scheduling. For this
purpose, the LLVM IR is transformed into a control dataflow graph (CDFG)
representation, as described in [15]. More details on the mapping of different
constructs to hardware will be presented in the next section.

The final product of the Nymble HLS backend is an HDL (Verilog) description
of the accelerator, which is passed to Intel’s Quartus software for synthesis and
place-and-route, eventually yielding an FPGA bitstream.

3.2 Hardware Architecture

The overall hardware architecture of the generated FPGA accelerator is depicted
in Fig. 2. The Avalon slave interface of the compute unit (CU) that is connected
to the host is used as entry point for the hardware execution. The memory
mapped register file can be used to pass kernel arguments and other information
(e.g., thread ID) from the software thread to the corresponding hardware thread.

For larger data, the accelerator supports two different kinds of memory:

– Small, on-chip (SRAM) local memories (LMEM) are directly connected to
the compute unit. These memories can be used as thread-private memory.

– External memory (DRAM) located on the FPGA-board can be used to hold
large amounts of data and also for data-exchange with the host RAM using
the OpenMP data-mapping constructs via the libomptarget-plugin. This
memory is connected to the CU via an Avalon bus, with a dedicated Avalon
master port per hardware thread.

6 J. Huthmann et al.

Host

Avalon Slave Interface

Datapath & Controller

Avalon
Master 1

Avalon
Master 2

Avalon
Master N

Preloader

Local Memory 1

Local Memory 2

Local Memory N

Avalon Bus

External Memory Hardware Semaphore

C
om

pu
te

 U
ni

t

R
ec

on
fig

ur
ab

le
 L

og
ic

Fig. 2. Hardware architecture of the reconfigurable accelerator.

As the data-width of the external memory interface is usually higher than the
size of single data-item of primitive type (e.g., float), vector data-types can be
used in the OpenMP input code to improve the memory access efficiency. Where
possible, vector-wide memory accesses are automatically mapped to Avalon burst
accesses.

Another mechanism to further improve the memory access efficiency is the
use of the Preloader. By using calls to the custom function omp target preload

in the OpenMP input code to transfer data between global memory and thread-
private local memory, the required data can be transferred efficiently in a single
burst transfer. A more detailed discussion of the Preloader can be found in
Section 4.1.

The Avalon bus system is also used to integrate the memory-mapped Hard-
ware Semaphore that is used to realize the omp critical and omp barrier

synchronization constructs.

The execution inside the Datapath is based on the Nymble-MT execution
model presented in prior work by Huthmann et al. [14]. The unique feature of
this execution model is the fact that it supports the simultaneous execution of
multiple hardware threads in a single compute-unit, whereas most other FPGA-
based approaches achieve thread-level parallelism through spatial replication of
the compute-unit (e.g., [6], cf. Section 6 for discussion).

To allow for simultaneous execution of multiple hardware threads, the op-
erations found in the data-flow graph of the kernel are organized into so-called
stages according to their static HLS schedule. The different stages can operated

OpenMP Device Offloading to FPGAs using the Nymble Infrastructure 7

independently by the controller, allowing multiple threads to be active in dif-
ferent stages simultaneously. The stage-based execution model in addition also
support loop pipelining.

The threads can operate completely independently of each other in this
model, also allowing threads to start and finish at different points in time. Hard-
ware threads are launched by their software counterpart (as stated in the previ-
ous section, we use a 1:1-relationship between software- and hardware threads)
through the entry point in the Avalon slave interface. Parallelism in the OpenMP
execution model (threads/teams) is automatically mapped to these simultane-
ously operating threads by the compilation flow presented here.

A major challenge in the stage-based execution model is the integration of
operations for which the latency (in clock cycles) cannot be determined stati-
cally, e.g., accesses to external memory, which we call variable-latency operations
(VLO). These operations are scheduled assuming their minimum latency. In case
a VLO exceeds the assumed latency at execution time, the execution of the en-
countering thread is suspended until the VLO completes. To make sure that a
single thread encountering a longer-than-expected latency does not block other
threads, stages containing a VLO allow for thread re-ordering, i.e., threads can
overtake each other in these stages.

3.3 Performance Visualization

Just as with any other device or target platform, the optimization of applica-
tion code is an important step to achieve performance on FPGAs and is often
an iterative process. To assist developers in this process, the compilation flow
developed in this work provides mechanisms to automatically include various
performance counters directly in the generated hardware. While the full details
of the hardware implementation are out of scope for this work, the performance
counters were designed to be as non-invasive as possible, i.e., to not have an im-
pact on the performance of the investigated accelerator design, e.g. by increasing
the initiation interval of pipelined loops.

The performance counters allow to capture important metrics such as mem-
ory bandwidth, arithmetic operations per time-interval (e.g. GFLOPs) or hard-
ware thread idle times and facilitate the analysis and optimization of the target
regions offloaded to the FPGA. After the execution on the FPGA completes, the
collected performance data is exported in the Paraver trace format for use with
the popular HPC performance visualization tool Paraver [23]. The integration
with a state-of-the-art HPC visualization tool makes the performance analysis
of the FPGA target regions more accessible for HPC domain experts.

4 Evaluation

To demonstrate the compilation flow from OpenMP with target offloading to
FPGA-based accelerators, we use a well-understood benchmark as case study.
The selected application allows to test the different features of the compilation

8 J. Huthmann et al.

flow and architecture template by covering the supported OpenMP constructs
as mentioned in the previous section, including synchronization.

For the application, a single compute unit is implemented inside the FPGA,
supporting the simultaneous execution of up to four threads. The implementation
of the compilation flow is based on LLVM release 9.0 and Quartus Prime version
18.1.2 is used for synthesizing the generated Verilog code to an FPGA bitstream.

The targeted FPGA is an Intel FPGA PAC D5005 card. The card is coupled
via PCIe to the host processor, a quad-core Xeon Gold 5122 CPU which executes
the host-portion of the applications and is also used for CPU benchmarking.
Note that the performance figures always include data-transfers between host-
and FPGA external memory via PCIe, initiated through libomptarget, i.e., the
numbers reported here are end-to-end performance of the FPGA offloading.

4.1 Case Study: GEMM

As an example application, we use the general matrix multiplication (GEMM).
The FPGA accelerator is compiled from a blocked version of GEMM and the
different hardware threads compute distinct submatrices of the overall result ma-
trix. Inside the computation of each thread, the computation is partially unrolled
to exploit the potential of spatial parallelism provided by FPGAs. To reduce the
number of expensive accesses to global, external memory, local memory is used
to buffer inputs and intermediate results. To further improve the efficiency of
memory access to the input matrices A and B, the threads preload blocks of
the input matrices into the local memory using the preloader that is part of
the compute unit. For users of the compilation flow, the preloading capability is
available through a simple C++ template function called omp target preload

(cf. Listing 1.1), which simply gets passed the relevant pointers to external and
local memory and the number and type of the elements to load.

1 template <typename T, int ELEMENTS>
2 void omp target pre load (s i z e t o f f s e t , s i z e t s t r i d e ,
3 s i z e t num trans fers , void∗ g loba lSrc , void∗ l o c a l D s t) { . . . }

Listing 1.1. Definition of the omp target preload-function

The preloader will then collect the access to multiple elements in a single
Avalon (burst) request, significantly improving the memory access efficiency. To
further leverage the spatial parallelism, double buffering is implemented for the
local memory and the preloading for the next block happens in parallel to the
computation of the current block. All these optimizations have been implemented
using standard OpenMP or, in case of unrolling (pragma unroll), compiler an-
notations and C++ constructs. The omp target preload-function was designed
to be very generic and corresponds to a pattern often found in accelerator pro-
gramming (e.g., GPU programming), the preloading of relevant input data from
global memory to local memory. An usage example of the preload-function can
be found in Listing 1.2.

OpenMP Device Offloading to FPGAs using the Nymble Infrastructure 9

1 void gemm(f loat ∗ A , . . .) {
2 [. . .]
3 VECTOR A loca l [BUFFERING] [BLOCK SIZE] ;
4 omp target pre load<f loat , BLOCK SIZE>((i ∗DIM)+k , DIM,

↪→ BLOCK SIZE, (void ∗) A, (void ∗)
↪→ &A loca l [b u f f e r%BUFFERING ∗ BLOCK SIZE]) ;

5 [. . .]
6 }

Listing 1.2. Usage example of the omp target preload-function (excerpt).

Fig. 3 shows the performance of the FPGA accelerator with different numbers
of hardware threads executing simultaneously in the single compute unit for
matrices of dimensions 8192 × 8192. While the performance of the accelerator
almost doubles when going from a single to two threads, the increase slows down
for three and four threads, respectively. In these cases, the threads do not only
compete for compute resources in the multithreaded accelerator, but also for
memory bandwidth to the external memory. The comparison with the BLAS
implementation from the ATLAS library [31] on the Xeon CPU shows that the
accelerator with a single thread outperforms a single thread on the CPU, but is
not able to keep up with an execution with four threads on the CPU, partially
also due to the data-transfers between host and FPGA.

In terms of hardware resource usage, the accelerator takes up 14% of logic
resources, 16% of BRAM and 18% DSPs at a frequency of 183 MHz. Despite
the relative low resource usage, it does not make sense to further increase the
number of threads due to the negative impact on operating frequency. Instead,
the remaining resources could be utitlized to duplicate the accelerator and com-
pute on multiple compute units in parallel in future versions of the proposed
architecture.

Fig. 3. Arithmetic performance of the blocked GEMM computation in GFLOP/s with
different numbers of hardware threads simultaneously active in the compute unit.

10 J. Huthmann et al.

In order to validate the support for OpenMP synchronization constructs via
a lock implemented in the bus-attached hardware semaphore, an alternative
version of GEMM, where each thread computes parts of the result for each
element of the result matrix. The computed partial result is then added to the
overall result inside a critical region. Even though the hardware semaphore
allows for efficient locking, this version of GEMM, due to the very frequent
access to global memory, delivers less performance than the optimized version
using local memories described above.

5 Discussion

In this paper, we have demonstrated the Nymble infrastructure and shown that
we can support a significant subset of OpenMP target offloading on FPGAs with-
out much loss of generality, and that many of the properties (load-imbalance,
scalability, etc.) materialize even in hardware. However, there are ample oppor-
tunities and future work for OpenMP on FPGAs, some of which we discuss
herein.

OpenMP tasking, introduced in v3.0 (and dependent tasks in v4.0), is a con-
struct that we would like to support in the Nymble subsystem. In theory, all
necessary ingredients to support tasking is already provided by Nymble, and
scheduling could be in a very software manner. However, such a solution would
likely bloat the generated hardware, and a more customized approach is prefer-
able (such as Nexus [9]), but a trade-off between consumed FPGA resources and
the added performance must be performed. Alternatively, we could outsource
task-management to a soft-core (e.g., a RISC-V [2]) that only orchestrates and
resolves dependencies. More importantly, the FPGA allows for customizing com-
munication between threads (and thus tasks), leading to interesting opportuni-
ties, particularly for dependent tasks.

One exciting future direction is concerning the synchronization and atomic-
ity of operations. Today, Nymble uses a customized mutex hardware core (that
is memory mapped) to support atomicity and synchronization. While this is a
correct and functional way of supporting them, there are likely better ways that
leverage the customization that FPGAs give us. For example, since we are work-
ing with an FPGA, we could, in theory, place the functionality of atom updates
inside the external memory controller (DDR4 in our case). Similarly, rather than
going through shared memory for synchronization, we could have a system-wide
token bus that synchronizes all the threads (by sending and forwarding a syn-
chronization token).

Another opportunity, unique for the FPGA, is concerning the recent memory
allocations added in OpenMP. Because the memory hierarchy can be fully cus-
tomized, we foresee that there are many future opportunities for tuning these for
a particular performance criteria (e.g., execution time or power-consumption).
For example, we could mark part of the FPGA that would be dedicated to
the memory hierarchy as a partially reconfigurable region, and then dynami-
cally adapt and optimize the actual hardware in real-time, such as for example

OpenMP Device Offloading to FPGAs using the Nymble Infrastructure 11

changing cache sizes or replacement policies, scratchpad memories, coherency
(or coherency-less) islands of memory, and so on and forth, in order to facilitate
high-performance, low-latency producer/consumer patterns in (for example) the
OpenMP 4.0 dependent tasks.

The representation of floating-point numbers has recently become a hot topic,
with multiple authors proposing (and evaluating) new representations such as
Posit [13] and Elias encoding [20]. Today, OpenMP does not contain support for
setting a particular region to use a specific representation, but in the future, it
might. FPGAs can execute arithmetic operations on these exciting new repre-
sentations at high speed [27]. If selecting number representation will be part of
future OpenMP standard, then FPGAs will be the platform that can exploit it
to the fullest.

Finally, scaling OpenMP onto multiple FPGAs is an open question. On hand,
we could rely on OpenMP’s accelerator directives, and treat each device a dis-
crete system with little to no access to other systems. However, on FPGAs, we
can do more, and create/include special hardware to (for example) support a
shared-memory view across multiple FPGAs, or use tasks as containers that
encapsulate produced/consumed data, that are exchanged among FPGAs.

In short, our understanding of OpenMP on FPGAs is just starting, and there
are ample opportunities and future directions where this work affect OpenMP
in the future.

6 Related Work

As OpenMP-based programming is very attractive for integrating FPGAs into
HPC systems and toolflows, a number of previous works has presented ap-
proaches for mapping OpenMP to FPGAs. A good overview of these approaches
can be found in the survey by Mayer et al. [21].

Early approaches tried to map OpenMP tasks [4, 24, 25, 11] or worksharing
constructs [7, 6, 19], such as parallel for to FPGA accelerators. As these
approaches date back to the time before the OpenMP target constructs were
standardized, no OpenMP constructs for specifying data mapping and device-
specific execution were available for these approaches.

More recent approaches combine the OpenMP device constructs with com-
mercially available HLS tools. Many of these works take an approach where
target regions are extracted from the input program on AST-level [28, 3], mak-
ing OpenMP-specific optimizations before HLS difficult. The approach presented
by Ceissler et al. [5] even requires the accelerator cores to be implemented in a
hardware-description language and uses OpenMP only for the integration into
the overall application. Only the work by Knaust et al. [17] uses IR (namely
LLVM-IR) to interact with the HLS tool through an undocumented interface.
However, as the data-transfers via the OpenCL API are statically generated dur-
ing compile-time, their approach does not support array sections or mapping of
data in only one direction (to or from), a limitation not found on our approach.

12 J. Huthmann et al.

All of the tools mentioned above try to achieve a speedup over sequential exe-
cution through spatial parallelism (e.g., a dedicated accelerator core per thread)
and classical HLS optimization techniques such as loop pipelining, but none of
them supports actual hardware multi-threading inside the accelerator core. In
contrast, in [29], OpenMP worksharing loops were mapped to multi-threaded
accelerator cores. However, their threading model is much more limited than the
one used in this work, as in their model, only a single thread can be active at a
time and threads would only be switched when the active thread was suspended
due to memory access latency.

As one of the key challenges for an effective mapping of OpenMP constructs
to FPGA hardware, Mayer et al. [21] identified the code analysis and optimiza-
tion across the border between compiler frontend and low-level HLS tool. With
our fully integrated compilation flow from input program to Verilog, we are able
to propagate information across this border and exploit knowledge of the under-
lying FPGA execution model for high-level, FPGA-specific transformations on
IR-level in the compiler frontend.

7 Conclusion

This work presented a compilation flow for targeting FPGAs with OpenMP
device offloading, in combination with a complete integration in libomptarget

for complete data management support. The presented compile flow supports a
significant subset of OpenMP for device offloading, including parallel constructs
(e.g., parallel, teams) that are mapped to actual hardware threads executing
simultaneously in the generated, multi-threaded accelerator, a unique feature of
the presented approach.

By optimizing across the border between compiler front-end and the HLS-
tool based on LLVM and the academic HLS-compiler Nymble, FPGA-specific
optimizations were integrated in the compile flow. This insight could also be
interesting for FPGA’s vendor and a motivation to further open up their HLS-
compiler IR interfaces for OpenMP-based compilation flows.

The case study showed that it is possible to target FPGAs from OpenMP
programs, using only standard programming language constructs and annota-
tions, without any HLS-specific extensions, and also showcased an integration of
a data preloading functionality that could also be of interest on other accelerator
architectures (e.g. GPUs). As described in Section 5, OpenMP is an interesting
option for integrating FPGAs into parallel and heterogeneous applications, with
a number of interesting research avenues.

References

1. Antão, S.F., Bataev, A., Jacob, A.C., Bercea, G.-T., Eichenberger, A.E., Rokos,
G., Martineau, M., Jin, T., Ozen, G., Sura, Z., Chen, T., Sung, H., Bertolli, C.,
and O’Brien, K.: Offloading Support for OpenMP in Clang and LLVM. In: Third
Workshop on the LLVM Compiler Infrastructure in HPC, LLVM-HPC@SC 2016,

OpenMP Device Offloading to FPGAs using the Nymble Infrastructure 13

Salt Lake City, UT, USA, November 14, 2016, pp. 1–11. IEEE Computer Society
(2016). doi: 10.1109/LLVM-HPC.2016.006. https://doi.org/10.1109/LLVM-
HPC.2016.006

2. Asanović, K., and Patterson, D.A.: Instruction Sets Should Be Free: The Case
For RISC-V. Tech. rep. UCB/EECS-2014-146, EECS Department, University of
California, Berkeley (2014)

3. Bosch, J., Tan, X., Filgueras, A., Vidal, M., Mateu, M., Jiménez-González, D.,
Álvarez, C., Martorell, X., Ayguadé, E., and Labarta, J.: Application Acceleration
on FPGAs with OmpSs@FPGA. In: International Conference on Field-Programmable
Technology, FPT 2018, Naha, Okinawa, Japan, December 10-14, 2018, pp. 70–77.
IEEE (2018). doi: 10.1109/FPT.2018.00021. https://doi.org/10.1109/FPT.
2018.00021

4. Cabrera, D., Martorell, X., Gaydadjiev, G., Ayguadé, E., and Jiménez-González,
D.: OpenMP extensions for FPGA accelerators. In: Najjar, W.A., and Schulte,
M.J. (eds.) Proceedings of the 2009 International Conference on Embedded Com-
puter Systems: Architectures, Modeling and Simulation (IC-SAMOS 2009), Samos,
Greece, July 20-23, 2009, pp. 17–24. IEEE (2009). doi: 10.1109/ICSAMOS.2009.
5289237. https://doi.org/10.1109/ICSAMOS.2009.5289237

5. Ceissler, C., Nepomuceno, R., Pereira, M.M., and Araujo, G.: Automatic Offloading
of Cluster Accelerators. In: 26th IEEE Annual International Symposium on Field-
Programmable Custom Computing Machines, FCCM 2018, Boulder, CO, USA,
April 29 - May 1, 2018, p. 224. IEEE Computer Society (2018). doi: 10.1109/
FCCM.2018.00058. https://doi.org/10.1109/FCCM.2018.00058

6. Choi, J., Brown, S.D., and Anderson, J.H.: From software threads to parallel
hardware in high-level synthesis for FPGAs. In: 2013 International Conference on
Field-Programmable Technology, FPT 2013, Kyoto, Japan, December 9-11, 2013,
pp. 270–277. IEEE (2013). doi: 10.1109/FPT.2013.6718365. https://doi.org/
10.1109/FPT.2013.6718365

7. Cilardo, A., Gallo, L., Mazzeo, A., and Mazzocca, N.: Efficient and scalable OpenMP-
based system-level design. In: Macii, E. (ed.) Design, Automation and Test in
Europe, DATE 13, Grenoble, France, March 18-22, 2013, pp. 988–991. EDA Con-
sortium San Jose, CA, USA / ACM DL (2013). doi: 10.7873/DATE.2013.206.
https://doi.org/10.7873/DATE.2013.206

8. Czajkowski, T.S., Aydonat, U., Denisenko, D., Freeman, J., Kinsner, M., Neto, D.,
Wong, J., Yiannacouras, P., and Singh, D.P.: From OpenCL to high-performance
hardware on FPGAs. In: 22nd international conference on field programmable logic
and applications (FPL), pp. 531–534 (2012)

9. Dallou, T., Engelhardt, N., Elhossini, A., and Juurlink, B.: Nexus#: A distributed
hardware task manager for task-based programming models. In: 2015 IEEE Inter-
national Parallel and Distributed Processing Symposium, pp. 1129–1138 (2015)

10. Filgueras, A., Gil, E., Jimenez-Gonzalez, D., Alvarez, C., Martorell, X., Langer,
J., Noguera, J., and Vissers, K.: OmpSs@ Zynq all-programmable SoC ecosys-
tem. In: Proceedings of the 2014 ACM/SIGDA international symposium on Field-
programmable gate arrays, pp. 137–146 (2014)

11. Filgueras, A., Gil, E., Jiménez-González, D., Álvarez, C., Martorell, X., Langer, J.,
Noguera, J., and Vissers, K.A.: OmpSs@Zynq all-programmable SoC ecosystem.
In: Betz, V., and Constantinides, G.A. (eds.) The 2014 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, FPGA ’14, Monterey, CA, USA -
February 26 - 28, 2014, pp. 137–146. ACM (2014). doi: 10.1145/2554688.2554777.
https://doi.org/10.1145/2554688.2554777

14 J. Huthmann et al.

12. Gajski, D.D., Dutt, N.D., Wu, A.C., and Lin, S.Y.: High—Level Synthesis: Intro-
duction to Chip and System Design. Springer Science & Business Media (2012)

13. Gustafson, J.L., and Yonemoto, I.T.: Beating floating point at its own game: Posit
arithmetic. Supercomputing Frontiers and Innovations 4(2), 71–86 (2017)

14. Huthmann, J., and Koch, A.: Optimized high-level synthesis of SMT multi-threaded
hardware accelerators. In: 2015 International Conference on Field Programmable
Technology, FPT 2015, Queenstown, New Zealand, December 7-9, 2015, pp. 176–
183. IEEE (2015). doi: 10.1109/FPT.2015.7393145. https://doi.org/10.1109/
FPT.2015.7393145

15. Huthmann, J., Liebig, B., Oppermann, J., and Koch, A.: Hardware/software co-
compilation with the Nymble system. In: 2013 8th International Workshop on
Reconfigurable and Communication-Centric Systems-on-Chip (ReCoSoC), Darm-
stadt, Germany, July 10-12, 2013, pp. 1–8. IEEE (2013). doi: 10.1109/ReCoSoC.
2013.6581538. https://doi.org/10.1109/ReCoSoC.2013.6581538

16. Huthmann, J., Shin, A., Podobas, A., Sano, K., and Takizawa, H.: Scaling Perfor-
mance for N-Body Stream Computation with a Ring of FPGAs. In: Proceedings
of the 10th International Symposium on Highly-Efficient Accelerators and Recon-
figurable Technologies, pp. 1–6 (2019)

17. Knaust, M., Mayer, F., and Steinke, T.: OpenMP to FPGA Offloading Prototype
Using OpenCL SDK. In: IEEE International Parallel and Distributed Processing
Symposium Workshops, IPDPSW 2019, Rio de Janeiro, Brazil, May 20-24, 2019,
pp. 387–390. IEEE (2019). doi: 10.1109/IPDPSW.2019.00072. https://doi.org/
10.1109/IPDPSW.2019.00072

18. Lattner, C., and Adve, V.S.: LLVM: A Compilation Framework for Lifelong Pro-
gram Analysis & Transformation. In: 2nd IEEE / ACM International Symposium
on Code Generation and Optimization (CGO 2004), 20-24 March 2004, San Jose,
CA, USA, pp. 75–88. IEEE Computer Society (2004). doi: 10.1109/CGO.2004.
1281665. https://doi.org/10.1109/CGO.2004.1281665

19. Leow, Y.Y., Ng, C.Y., and Wong, W.-F.: Generating hardware from OpenMP
programs. In: Constantinides, G.A., Mak, W.-K., Sirisuk, P., and Wiangtong, T.
(eds.) 2006 IEEE International Conference on Field Programmable Technology,
FPT 2006, Bangkok, Thailand, December 13-15, 2006, pp. 73–80. IEEE (2006).
doi: 10.1109/FPT.2006.270297. https://doi.org/10.1109/FPT.2006.270297

20. Lindstrom, P.: Universal Coding of the Reals using Bisection. In: Proceedings of
the Conference for Next Generation Arithmetic 2019, pp. 1–10 (2019)

21. Mayer, F., Knaust, M., and Philippsen, M.: OpenMP on FPGAs - A Survey. In:
Fan, X., Supinski, B.R. de, Sinnen, O., and Giacaman, N. (eds.) OpenMP: Con-
quering the Full Hardware Spectrum - 15th International Workshop on OpenMP,
IWOMP 2019, Auckland, New Zealand, September 11-13, 2019, Proceedings. LNCS,
vol. 11718, pp. 94–108. Springer, Heidelberg (2019). doi: 10.1007/978-3-030-
28596-8_7. https://doi.org/10.1007/978-3-030-28596-8%5C_7

22. Moore, G.E.: Cramming more components onto integrated circuits. Electronics
Magazine 38(8) (1965)

23. Pillet, V., Labarta, J., Cortes, T., and Girona, S.: Paraver: A tool to visualize
and analyze parallel code. In: Proceedings of WoTUG-18: transputer and occam
developments, pp. 17–31 (1995)

24. Podobas, A.: Accelerating Parallel Computations with OpenMP-Driven System-
on-Chip Generation for FPGAs. In: IEEE 8th International Symposium on Embed-
ded Multicore/Manycore SoCs, MCSoC 2014, Aizu-Wakamatsu, Japan, September

OpenMP Device Offloading to FPGAs using the Nymble Infrastructure 15

23-25, 2014, pp. 149–156. IEEE Computer Society (2014). doi: 10.1109/MCSoC.
2014.30. https://doi.org/10.1109/MCSoC.2014.30

25. Podobas, A., and Brorsson, M.: Empowering OpenMP with automatically gener-
ated hardware. In: Najjar, W.A., and Gerstlauer, A. (eds.) International Con-
ference on Embedded Computer Systems: Architectures, Modeling and Simula-
tion, SAMOS 2016, Agios Konstantinos, Samos Island, Greece, July 17-21, 2016,
pp. 245–252. IEEE (2016). doi: 10.1109/SAMOS.2016.7818354. https://doi.
org/10.1109/SAMOS.2016.7818354

26. Podobas, A., and Matsuoka, S.: Designing and Accelerating Spiking Neural Net-
works using OpenCL for FPGAs. In: 2017 International Conference on Field Pro-
grammable Technology (ICFPT), pp. 255–258 (2017)

27. Podobas, A., and Matsuoka, S.: Hardware implementation of POSITs and their
application in FPGAs. In: 2018 IEEE International Parallel and Distributed Pro-
cessing Symposium Workshops (IPDPSW), pp. 138–145 (2018)

28. Sommer, L., Korinth, J., and Koch, A.: OpenMP device offloading to FPGA accel-
erators. In: 28th IEEE International Conference on Application-specific Systems,
Architectures and Processors, ASAP 2017, Seattle, WA, USA, July 10-12, 2017,
pp. 201–205. IEEE Computer Society (2017). doi: 10.1109/ASAP.2017.7995280.
https://doi.org/10.1109/ASAP.2017.7995280

29. Sommer, L., Oppermann, J., Hofmann, J., and Koch, A.: Synthesis of interleaved
multithreaded accelerators from OpenMP loops. In: International Conference on
ReConFigurable Computing and FPGAs, ReConFig 2017, Cancun, Mexico, De-
cember 4-6, 2017, pp. 1–7. IEEE (2017). doi: 10.1109/RECONFIG.2017.8279823.
https://doi.org/10.1109/RECONFIG.2017.8279823

30. Waldrop, M.M.: The chips are down for Moore’s law. Nature News 530(7589), 144
(2016)

31. Whaley, R.C., and Petitet, A.: Minimizing development and maintenance costs in
supporting persistently optimized BLAS. Software: Practice and Experience 35(2),
101–121 (2005)

32. Wirbel, L.: Xilinx SDAccel: a unified development environment for tomorrow’s
data center. The Linley Group Inc (2014)

33. Yang, C., Geng, T., Wang, T., Lin, C., Sheng, J., Sachdeva, V., Sherman, W., and
Herbordt, M.: Molecular Dynamics Range-Limited Force Evaluation Optimized
for FPGAs. In: 2019 IEEE 30th International Conference on Application-specific
Systems, Architectures and Processors (ASAP), pp. 263–271 (2019)

34. Zohouri, H.R., Maruyama, N., Smith, A., Matsuda, M., and Matsuoka, S.: Evalu-
ating and optimizing OpenCL kernels for High Performance Computing with FP-
GAs. In: SC’16: Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, pp. 409–420 (2016)

35. Zohouri, H.R., Podobas, A., and Matsuoka, S.: High-performance high-order stencil
computation on FPGAs using opencl. In: 2018 IEEE International Parallel and
Distributed Processing Symposium Workshops (IPDPSW), pp. 123–130 (2018)

