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Abstract—Due to the ever-increasing computational demand of
automotive applications, and in particular autonomous driving
functionalities, the automotive industry and supply vendors are
starting to adopt parallel and heterogeneous embedded platforms
for their products.

However, C and C++, the currently dominating programming
languages in this industry, do not provide sufficient mechanisms
to target such platforms. Established parallel programming
models such as OpenMP and OpenCL on the other hand are
tailored towards HPC systems.

In this case study, we investigate the applicability of estab-
lished parallel programming models to automotive workloads
on heterogeneous platforms. We pursue a practical approach by
re-enacting a typical development process for typical embedded
platforms and representative benchmarks.

Index Terms—embedded, automotive, parallel programming,
heterogeneous, OpenMP, OpenCL, CUDA

I. INTRODUCTION

In recent years, the computational demands of automotive
applications have been steeply increasing, in particular with
the introduction of advanced driver-assistance (ADAS) and, at
least partially, autonomous driving (AD) functionalities.

As these functionalities require the processing of complex,
compute-intensive algorithms with high performance, the auto-
motive industry faces challenges similar to those encountered
by the high-performance computing (HPC) community about
a decade ago. The computational power provided by single-
core embedded processors is not sufficient anymore to meet
latency and/or throughput requirements.

In reaction to these challenges, the automotive industry is
starting to turn towards parallel and heterogeneous platforms
[1], e.g., combining multi-core CPUs and GPUs. These multi-
core processors as well as accelerators typically require pro-
gramming language mechanisms to express parallelism and
leverage their computational power. However, C and C++,
the currently dominating programming languages in the au-
tomotive field [2], do not provide sufficient mechanisms. As a
consequence, the automotive industry needs to adopt parallel
and heterogeneous programming models.

While there is a number of well-established standards for
parallel and heterogeneous programming in the HPC commu-
nity, the embedded target platforms in the automotive industry
differ significantly from the HPC systems these programming
models were tailored towards. The thermal and power bud-
get, the computational power and the coupling between host

CPU and accelerator of embedded, heterogeneous platforms
deployed in automotive vehicles differs significantly from HPC
systems.

So although the HPC programming models can serve as
a solid base, they are not usable “out-of-the-box”, and will
require adaption for use in automotive usage scenarios.

The aim of this case study is to investigate programming
models established in the HPC field with regard to their
applicability in embedded automotive applications. The intent
of this case study is to provide insights into how well estab-
lished programming models are suited for use in automotive
applications, and how they could be improved and extended
for automotive use and target platforms.

Note that we do not focus on the raw performance only,
but also consider other important aspects for a practical usage
of this parallel programming models in industry, such as
programmer productivity and maintainability.

To this end, we have developed a practical approach de-
scribed in Section III. In our evaluation, we present a detailed
analysis of important figures, e.g., programmer productivity
and effort to reach certain levels of speedup over a serial
implementation.

II. RELATED WORK

Prior studies that investigated the usability and maintain-
ability of parallel programming models, such as [3] or [4],
focused on HPC applications and algorithms, whereas our
case study is focused on automotive, embedded applications.
Most of these studies were also conducted as classroom
studies, with novice programmers as developers. In this work,
we explicitly do not consider the time required to learn a
parallel programming model, and have experienced developers
implement the kernels.

In other work, such as [5] or [6], the authors developed static
and dynamic analyses to predict the performance of parallel
implementations of algorithms on different embedded and also
heterogeneous platforms. While they consider the underlying
parallel characteristics of the algorithms and how well they
map to the platforms, we investigate how well the parallelism
in an algorithm can be expressed with the different parallel
programming models, and how much programming effort is
required to do so.



III. APPROACH/METHODOLOGY

The central aim of this case study is to investigate the use
of existing (often HPC-centric) programming models for the
implementation of automotive computation tasks on parallel,
heterogeneous platforms, and to identify potential areas for im-
provement of the existing standards or tool implementations.

To this end, and in contrast to previous investigations (e.g.,
[2]), we take a practical and quantitive approach, based on
real implementations of representative computational prob-
lems. The basic idea of our approach is to re-enact the
typical development process of migrating an existing, serial
implementation of an algorithm to a parallel, heterogeneous
platform. With the continued integration of such platforms into
automotive vehicles, many OEMs and component suppliers
will be confronted with this task.

Through this re-enactment, we can investigate all relevant
usability aspects of the programming models in detail, as well
as the ecosystem of supporting tools.

In the following sections we will describe the individual
steps of our approach in more detail.

A. Identification of relevant programming models

In a first step, we need to identify the candidate program-
ming models, which we will use for implementation in our
case study.

For parallel programming and the integration of dedicated
acceleration, a number of programming models and standards
already exist, mostly originating from the high-performance
computing domain. As C and C++ are the dominant pro-
gramming languages in the automotive domain at this point,
having almost 50% share [2], we will focus on programming
models that are based upon at least one of these languages.
Beyond that, we further tighten that focus to well-established
programming languages with an active community, to make
sure sufficient training resources and experts are available.

After reviewing the parallel programming models currently
enjoying the most prominence, we selected OpenMP [7],
OpenCL [8] and CUDA [9] as candidate models. The three
models cover a broad spectrum, ranging from the rather high-
level abstractions of OpenMP to the very explicit paralleliza-
tion and offloading of OpenCL.

B. Benchmark Selection

The beginning of the re-enacted migration process of an
existing application to a parallel, heterogeneous platform usu-
ally is the serial implementation of an algorithm. As the
central aim of this project is to investigate the applicability
of the programming models to automotive software, we chose
to use algorithms from the automotive domain and their
corresponding serial implementations as starting points for our
implementation.

After review, we selected the open-source DAPHNE bench-
mark suite [10] as the source for the serial implementa-
tions. The DAPHNE suite contains three automotive kernels,
called points2image, euclidean clustering and ndt mapping,
that were extracted from the Autoware autonomous driving

framework [11]. In addition, the benchmark also provides
datasets with input- and reference data captured during an
actual drive, that we can use to ensure the correctness of our
parallel implementations.

C. Selection and Bring-Up of Evaluation Platforms

For testing and performance evaluation of the benchmark
implementations, suitable evaluation platforms are required.
In the selection process of these platforms, our central aim
was to cover a broad range of current embedded, parallel
and heterogeneous platforms. After a review of available
technologies as step three of our approach, three different
platforms were acquired:

• Nvidia Jetson TX2
• Nvidia Jetson AGX Xavier
• Renesas R-Car V3M

All three selected platforms combine a multi-core CPU with
a GPU (called image recognition engine in case of the V3M)
and are designed for automotive usage scenarios. As such,
they exhibit the particular characteristics regarding computa-
tional power and energy budget typically found on automotive
platforms.

D. Benchmark implementation and porting.

The fourth step of our approach is the actual implementation
process of the benchmarks that lies at the heart of our practical,
quantitative approach.

In contrast to many other surveys (e.g., [3]), we explicitly
do not consider the time required to learn a parallel pro-
gramming model here. In our implementation case study, the
developers performing the implementations are already experts
with multi-year experience with the respective programming
models. This is similar to a real-world scenario, where com-
panies are likely to hire developers that are familiar with
programming models and have prior experience in their use.

During the implementation, the original serial code is par-
allelized using the means provided by the respective program-
ming model. Additionally, the compute-intensive parts of the
application are offloaded onto the parallel accelerators, i.e., the
GPU, if the programming model allows to do so.

This implementation flow replicates the typical process of
migrating an existing, serial code base to a new parallel,
heterogeneous platform. Beyond that, many of our insights
should also be applicable to the development process of
new software from scratch, i.e., without a pre-existing serial
implementation.

Once an application has been parallelized, it should be
deployable to multiple different heterogeneous compute plat-
forms, therefore portability plays a major role for the appli-
cability of a programming model for the automotive domain.

To assess the portability of the selected programming mod-
els and the resulting development effort, we also re-enact
the typical process of porting an application to a different
platform. To this end, the resulting parallel implementation
of a benchmark targeting an initial platform is also evaluated
and optimized at least on a second one.



While our practical approach allows us to investigate the
programming models in a real-world scenario, it does have a
number of limitations that might make it less suitable for other
purposes.

• The kernels were selected to study the parallelization
effort for different parallel paradigms/platforms. They
represent some automotive workloads, but not all auto-
motive workloads.

• With Autoware’s roots in fundamental academic research,
their implementation is not necessarily performance opti-
mized. Similarly, the highly modular ROS-based structure
does carry a performance overhead, as it is very difficult
(or not even possible at all) to optimize data transfers
between host and accelerator memories across ROS node
boundaries.

IV. EVALUATION

The raw performance of the parallel implementations is
not the key aspect of the programming models we want
to investigate in this case study. But even so, achievable
performance plays a crucial role when judging a parallel
programming model, and can therefore not be completely
neglected in this case study.

However, for the business decision on which programming
model to use for the implementation on heterogeneous plat-
forms, the following three non-functional aspects of program-
ming models need to be considered as well:

• Programmer Productivity
• Maintainability
• Portability

All three aspects of programming models listed above are
“soft” characteristics, i.e. they cannot be measured directly.
Rather, one needs to quantitatively assess them indirectly
through a combination of multiple metrics. To this end, we
have assembled a set of measurements and metrics described
in the following. After the definition of our metrics, we will
investigate each of the listed aspects in Sections IV-A to IV-C.

a) Programmer Productivity: The productivity a devel-
oper achieves using a given programming model gives insights
into the ease-of-use of the model.

We use a simultaneous tracking of working hours vs.
achieved performance to determine which programming model
yields the required performance with the least development
effort. For many applications, a performance lower than the
maximum achievable performance on a given platform is
absolutely sufficient, e.g., to meet real-time requirements. In
such a case, a programming model that achieves the required
performance faster than the other models, even though this
model may not be able to deliver the best peak performance,
is preferable.

In our case study, the developers measure performance
roughly every sixty minutes, resulting in graphs similar to the
ones shown in Fig. 1.

b) Maintainability: Application software in the automo-
tive field typically has a relatively long lifetime, potentially ex-
tending to over more than a decade. Thus, good maintainability
is indispensable. The effort required for the maintenance of a
piece of code is dominated by the time that a developer, who
is not the original author of the code, needs to become familiar
with the code base in order to make the desired changes.

The maintenance effort is influenced by the code volume
and the complexity of the code. To assess the impact of parallel
programming models on the code volume, we measure the
number of changed lines compared to the original serial ver-
sion of the code. In contrast to prior work [3], we also consider
in-place changes, because many parallel programming models
also require to restructure the original code of the application.

Assessing the complexity added to the code base due to the
use of a parallel programming model is more complicated.
Classical software complexity metrics such as the ones
proposed by McCabe [12] or Halstead [13] are tailored
towards control-flow heavy business software, and are
not suitable for this purpose. We therefore developed a
new metric, the Complexity Count. The reasoning behind
the complexity count, is that complexity introduced by
parallel programming models stems from the inclusion
of new keywords, new datatypes, runtime function calls
and compiler directives defined by the programming
model into the code of an application. To calculate the
complexity count, we simply count the number of these
additional programming model constructs in the code
base, and also the number of parameters passed to these
constructs, e.g., to runtime functions. For example, the use of
cudaMallocManaged(&a, vector_size * sizeof(float));

in the code would yield a complexity count of three.
c) Portability: Once a code base has been parallelized

and partially offloaded to dedicated accelerators, it should ide-
ally be usable for multiple different heterogeneous platforms.
The characteristics of a programming model (e.g., high-level
abstractions, compiler directives, etc.) can directly influence
the portability. It is thus important to assess the porting effort
required for each of the selected models.

Besides making the existing code compile, and compute
correctly on the new platform, porting typically involves a
process of incremental improvements to optimize performance
on a new platform. The duration of this process indirectly
provides information about the portability characteristic of
a programming model. We use a simultaneous tracking of
working hours spent on porting an existing implementation
vs. the performance on the new platform, similar to the one
we employed to measure the programmer productivity.

A. Programmer Productivity

While the three programming techniques employed in the
study have different effort vs. performance curves in Fig. 1, a
trend is clear across the benchmark kernels.

a) OpenMP Implementation: Across all three bench-
marks investigated in our implementation case study, OpenMP
typically requires the least effort to parallelize an application.



(a) Benchmark points2image. (b) Benchmark euclidean clustering. (c) Benchmark ndt mapping.

Fig. 1: Result of simultaneous tracking of working hours vs. speedup over serial baseline to assess programmer productivity.

For example, the parallelization of the points2image bench-
mark in Fig. 1a takes only a single hour of development effort.
In general, OpenMP, mainly based on compiler directives,
benefits from the fact that it typically requires less invasive
restructuring for parallelization than other programming mod-
els. This also implies that the performance of the application
can be assessed throughout the development cycle, which can
also be a big plus for development productivity.

b) CUDA Implementation: CUDA typically also allows
for fast parallelization. Once a parallelization approach is
determined, it can often be realized in just a few hours for
kernels with the complexity of our benchmarks (e.g. Fig. 1b
and Fig. 1c). Performance-wise, OpenMP and CUDA are
mostly comparable, the lower number of threads available on
the CPU (note that we focus on the CPU-based features of
OpenMP here!) and the overhead of offloading computation
and data to the more powerful GPU often cancel each other
out.

c) OpenCL Implementation: For the majority of the
benchmarks, OpenCL requires much up-front work to restruc-
ture and partition the application, resulting in a phase where
performance cannot be assessed to determine the prospects of
success for the chosen parallelization strategy. In Fig. 1a and
Fig. 1b, this is indicated by the late start of the green curve
for OpenCL. The relatively complex host code for OpenCL,
and the invasive changes to the serial implementation, also
cause OpenCL to often require the most effort for parallel and
heterogeneous implementation.

B. Maintainability

The ranking with regard to the required development effort
also correlates with the results that we get from our metrics
for maintainability. The evaluation of the total number of
line changes (added or deleted) in relation to the LoC of the
original, serial implementation is given in Fig. 2.

Because OpenMP allows to reuse the serial implementation
almost without changes in most cases, and only requires to
add the description of parallel semantics through compiler
directives, the number of changes is relatively small (3%-
17%).

In contrast, CUDA requires kernel functionality to be ex-
tracted to dedicated device functions and the inclusion of addi-
tional API calls into the host code, resulting in a significantly
higher number of changes (24% to 80%).

For OpenCL, the extraction of device code to separate files
and the inclusion of even more boilerplate code into the host

Fig. 2: Number of changed lines relative to serial baseline.
Numbers in parentheses give LoC of serial implementation.

leads to sweeping changes in the code base, ranging from 99%
to 263%.

To assess the additional complexity introduced by the use
of parallel programming models into an application’s code, we
use the Complexity Count. The counts for all benchmarks and
models are given in Table I.

Benchmark CUDA OpenCL OpenMP

points2image 70 329 12
euclidean clustering 17 120 15
ndt mapping 64 113 28

TABLE I: Complexity count.

Because the OpenMP compiler directives add parallel se-
mantics in a descriptive/prescriptive manner and operate on
a high level of abstraction, the complexity added by new
keywords and directives is very low.

For CUDA, the added complexity has two main sources:
New data-types and keywords are added on top of the C++
programming language, mainly to partition the application
between host and device. Additionally, a number of API
functions has to be called in order to transfer data and
execution to the device. Nevertheless, the complexity added
is still moderate.

In OpenCL, the sources of complexity are similar to CUDA,
namely new data-types and keywords for the device section
and API calls in the host code. However, OpenCL requires
much more host code than CUDA, resulting in significantly
higher complexity counts.

For OpenCL, there is also a considerable difference between
the use of the traditional C-API and the C++ wrapper API:
While the points2image benchmark was implemented with the



C-API, the other two benchmarks use the C++ wrapper API
for the host code. Using the latter, some steps of the host-side
setup process are abstracted, resulting in a notably smaller
complexity count.

C. Portability

Similar to the discussion of development effort vs. perfor-
mance, we can also see a trend of using the three different
programming methods in terms of their portability.

The high-level of abstraction supported by OpenMP also
benefits portability. Moving an existing, parallel OpenMP
implementation to another platform typically boils down to
a simple re-compilation on the new platform, taking less than
20 minutes to complete for each of our benchmarks.

For CUDA, the situation is similar. When moving from one
platform to another, the code usually does not need to be
changed, thanks to the standardization of the CUDA language
by Nvidia for all its devices, and only a small number of
parameters needs to be tuned.

With OpenCL, things are different. Basic features, such
as support for double-precision floating-point arithmetic are
only optional features, and different vendors typically support
different versions of the OpenCL specification. To these they
might add extensions that only work on platforms manufac-
tured by this vendor.

For two of our three benchmarks, this required manual
changes that often took hours. For example, adapting the
points2image benchmark for the Renesas V3M platform re-
quired code changes to use only single precision floating point
computations, instead of the double precision of the original
code. This required almost 12 hours of development time.

V. CONCLUSION

In this study, we have taken a very practical approach
to evaluate the applicability of today’s parallel programming
models in the automotive domain. We considered both the
nature of typical automotive compute kernels, which are often
very short compared to HPC kernels, and the constraints of
actual embedded hardware platforms.

Based on our insights, we cannot declare a single “winning”
programming model here. However, our experiences should
serve as a first indicator for the applicability of different
programming models, and show a way forward to future
development and research.

The high-level abstractions defined by the OpenMP stan-
dard allowed for a very good programmer productivity. For
the actual parallelization, OpenMP relies on the compiler,
which yielded competitive performance for our benchmarks.
However, we were yet not able to use the device offloading
features recently added to the standard due to insufficient com-
piler support on the target platforms. Future research should
investigate the possibility to extend the compiler support for
OpenMP to such target platforms and workloads in more depth
(e.g., use OpenMP to target FPGAs [14], [15]).

CUDA strikes a balance between high-level abstractions and
explicit parallelization. In combination, this allows reasonable

programmer productivity and good performance. However,
beyond the official, proprietary compilers and runtimes from
Nvidia, no competitive open implementations for CUDA exist.
Thus, the use of CUDA carries the risk of vendor lock-in.
Alternatives for moving CUDA outside the Nvidia ecosystem
(e.g., AMD HIP/ROCm [16]) are only slowly appearing and
need further evaluation in future research.

In contrast to CUDA, implementations with OpenCL re-
quire much more host code, and far more invasive restruc-
turing of the application. The partitioning into multiple files
for host and device code causes a large up-front effort for
implementation, before parallelization and optimization can
even be started.

With SYCL as a spiritual successor to OpenCL, the
Khronos Group provides a modern, open standard designed to
overcome these limitations of OpenCL. As soons as SYCL be-
comes available on more embedded platforms, future research
should investigate the use of SYCL for the implementation of
automotive workloads on the corresponding target platforms.

More details on the evaluation and an investigation of
FPGAs as accelerators is available in the technical report [17].
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