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Abstract—AUTODOCK is a molecular docking application that
consists of a genetic algorithm coupled with the Solis-Wets local-
search method. Despite its wide usage, its power consumption on
heterogeneous systems has not been evaluated extensively. In this
work, we evaluate the energy efficiency of an OpenCL-accelerated
version of AUTODOCK that, along with the traditional Solis-
Wets method, newly incorporates the ADADELTA gradient-based
local search. Executions on a Nvidia V100 GPU yielded energy
efficiency improvements of up to 297x (Solis-Wets) and 137x
(ADADELTA) with respect to the original AUTODOCK baseline.

Index Terms—Energy efficiency, power profiling, OpenCL,
molecular docking, AutoDock, gradients

I. INTRODUCTION

Energy efficiency is becoming increasingly important in the
design of computer systems. In fact, the development of future
systems (e.g., exascale) will be constrained by their power
consumption [1]. As indicated in [2], [3], the upcoming trend
is the replacement of architectures based on homogeneous
CPUs with heterogeneous accelerators. This emerging scenario
has motivated large investments in accelerator technologies by
cloud and data center companies (e.g., Amazon, Microsoft,
etc), as well as porting efforts of scientific applications to
heterogeneous High Performance Computing (HPC) [4], [5].

Molecular docking (MD) is a widely-used computational
method in HPC. Basically, it aims to predict the interaction
between a small molecule (ligand) and a macromolecular
target (receptor). One of the most popular MD tools is
AUTODOCK [6], [7]. The embarrasing parallelism from its
genetic-algorithm engine has made it suitable for different
acceleration approaches [8]–[10]. Concurrently to efforts to
speed-up MD processing times, several studies have been
aiming to improve the MD quality of results by using more
efficient search methods [7]. One of these are local-search
methods based on gradients that have enabled significant
enhancements over traditional ones [11], [12].

In a previous study [13], we incorporated the gradient-
based ADADELTA method [14] as local search into an
OpenCL-accelerated version of AUTODOCK. Besides achiev-
ing high speedups (max. 399x on GPUs) with respect
to the AUTODOCK baseline, our work demonstrated that

ADADELTA is able to find chemically stronger ligand-
receptor systems, and thus produces higher-quality MD results
than the legacy Solis-Wets method. In order to efficiently
deploy a parallel application on HPC systems, it is important
to understand – besides its performance gains – its power
draw, and to quantify the energy gains achieved by hardware
acceleration. This becomes even more important, when the
application is used at scale, such as the massive drug discovery
use-case MD is often used in practice.

To this end, this work extends our previous studies [9], [13]
by providing a detailed energy-consumption analysis of our
OpenCL-AUTODOCK implementation on different devices.
Concretely, this paper makes the following contributions:

1) Investigation of correlation between power consumption
and performance of OpenCL-AUTODOCK, comparing
the Solis-Wets and ADADELTA local-search methods.

2) Evaluation of the impact of the molecular complexity
on the energy efficiency and execution performance on
recent GPU- and CPU-based accelerator devices.

II. AUTODOCK MOLECULAR DOCKING

In AUTODOCK [15], ligand-receptor interactions are de-
scribed by the spatial arrangement or pose adopted by the
flexible ligand upon binding on a given region on the rigid
receptor. Such a pose is encoded with translational (x, y, z),
rigid-body rotation (φ, θ, α), and Nrot rotatable-bond (ψ1,
. . . , ψNrot ) variables. Each pose is quantified with a score,
which represents the binding energy1. MD simulations produce
solutions Ω (poses) aiming for optimized scores.

A. Lamarckian Genetic Algorithm

AUTODOCK performs a series of independent Lamarckian
Genetic Algorithm (LGA) runs (Algorithm 1), each combining
two methods: a genetic algorithm (GA), followed by a local
search (LS). The GA generates populations of solutions via
genetic operations (e.g., crossover, mutation, selection), while
LS performs a local optimization on a population subset.
Each solution is encoded as a genotype, which is composed

1Binding energy (kcal/mol) refers to the strength of the molecular interac-
tion, and should not be confused with the compute energy (J).



of Ngenes genes (i.e., x, y, z, φ, θ, α, ψ1, . . . , ψNrot ). The
LGA-run duration is determined by the current number of
score evaluations and generations, i.e., an LGA-run terminates
when any of its limits is reached, which are by default:
NMAX

score-evals = 2 500 000, and NMAX
gens = 27 000.

Algorithm 1: Lamarckian Genetic Algorithm (LGA)
Function AutoDock

/* High-Level Parallelism */
for each LGA-run do

while (Nscore-evals < NMAX
score-evals) and (Ngens < NMAX

gens ) do
/* Medium-Level Parallelism */
GA (population)
/* Medium-Level Parallelism */
for solution in random-subset (population) do

LS (get-genotype (solution))

The scoring function (SF) calculates the binding energy of
a given pose. Its computation (Algorithm 2) is composed of:

• A pose calculation, that inputs a solution (genotype)
and outputs a set of three-dimensional coordinates for all
ligand atoms, iterating over all Npose-rot rotation items.

• Inter (ligand-receptor) and intramolecular (ligand-ligand)
interactions that iterate over all Natom ligand atoms, and
all Nintra-contrib intramolecular contributors, respectively.

Algorithm 2: Scoring Function (SF)
/* Low-Level Parallelism */
Function SF (genotype)

for each rot-item in Npose-rot do
PoseCalculation

for each lig-atom in Natom do
InterInteraction

for each intra-pair in Nintra-contrib do
IntraInteraction

B. Local Search methods

After GA has processed the entire population of solutions,
LS optimizes a random population-subset (default: 6%). In
AUTODOCK, the LS method traditionally employed is that of
Solis-Wets (SW) [16], which generates new solutions either by
adding or subtracting small variations to the initial value. New
solutions are stored if their scores are lower (better) than those
of the initial solution. In contrast to Solis-Wets, the alternative
ADADELTA (AD) utilizes a more complex update-rule based
on gradients of the SF as well as a history of past gradient
and update vectors [14].

The gradient calculation (GC) in ADADELTA is derived
from SF, and as such, both functions share a similar code
structure. Basically, GC (Algorithm 3) starts computing the
pose exactly as in SF. Then, the gradients of inter- and
intramolecular components are calculated with respect to the
variables representing the three-dimensional coordinates of all
ligand atoms. At this point, the gradients are expressed in
the atomic space. However, in order to incorporate the GC

into ADADELTA local search, gradients must be expressed in
the genetic space. Therefore, additional conversion functions,
specific to each gene type (translational, rigid-body rotation,
and rotatable bonds) are required. Such conversion relies on
mathematical operations described in detail in [13].

Algorithm 3: Gradient Calculation (GC)
/* Low-Level Parallelism */
Function GC (genotype)

/* Gradients in atomic space */
for each rot-item in Npose-rot do

PoseCalculation

for each lig-atom in Natom do
InterGradient

for each intra-pair in Nintra-contrib do
IntraGradient

/* Conversion into genetic space */
Gtrans // Translational gradients
Grigidrot // Rigid-body rotation gradients
Grotbond // Rotatable-bond gradients

C. OpenCL parallelization
Our data-based parallelization assigns AUTODOCK func-

tions (GA, LS, solutions) to OpenCL processing elements (ker-
nels, work-groups, work-items). The assignment is determined
by the parallelism level present in AUTODOCK, i.e., high,
medium, low (Algorithms {1 to 3}). The GA and LS functions
are mapped onto Krnl GA and Krnl LS kernels. For keeping
most of the processing units on the accelerator busy, solutions
from different LGA runs are processed simultaneously. For
that purpose, each solution is mapped onto a work group,
while the fine-grained tasks required for either generating and
scoring solutions are executed by work items.

Furthermore, two main design aspects were considered:
Arithmetic precision: instead of using double-precision

floating-point (FP) as in the original AUTODOCK, single-
precision FP is employed in our OpenCL version. This is be-
cause lower precision FP calculations result in faster program
executions without deteriorating the MD quality [8], [9].

Work distribution: the total number of work-items exe-
cuted within each kernel (NDRsize) depends on: the number
of LGA runs (R), the population size (P ), LS rate (lsrate),
and work-group size (WGsize):

NDRKrnl GA
size = {R× P ×WGsize, 1, 1} (1)

NDRKrnl LS
size = {R× P × lsrate×WGsize, 1, 1} (2)

All experiments were executed with R = 100, P = 150,
lsrate = 100%. Similar to our previous study [9], the WGsizes
chosen here lead to faster executions in most cases, and depend
on the device type: WGGPU

size = 64, and WGGPU
size = 16.

III. EVALUATION

A. Experimental setup
1) Dataset: twenty molecular inputs were chosen from:

[17] (1u4d, 1xoz, 1yv3, 1owe, 1oyt, 1ywr, 1t46, 2bm2,
1mzc, 1r55, 1kzk), [18] (3s8o, 1hfs, 1jyq, 2d1o), and [19]
(5wlo, 5kao, 3drf, 4er4, 3er5).



2) Hardware and software: for the baseline test, i.e.,
the measurement of execution times and power draws of
the original AUTODOCK4.2.6 (single-threaded, implementing
only Solis-Wets as LS method), we used an Intel Xeon E5-
2666 CPU core. For parallel executions, accelerators based
on commercial GPUs/CPUs were selected (Table I). Initial
development was carried out targeting an AMD Vega 56 GPU,
whereas cloud-based platforms were used as porting targets.

TABLE I
CHARACTERISTICS OF SELECTED ACCELERATORS INCLUDING THERMAL

DESIGN POWER (TDP) AND OPENCL COMPUTE UNITS (CUS).

Device Instance GB/s TDP #
Name Type GFLOP/s (W) CU

AMD Radeon RX On-premise 410
Vega 56 GPU 10 566 210 56
Nvidia Tesla AWS 900
V100 GPU p3.2xlarge 15 700 300 80

Intel Xeon E5-2666 v3 AWS 136
@2.6 GHz 18-core CPU c4.8xlarge 1500 135 36

Host Compiler: g++ 5.4.0, flags: -O3
Device OpenCL flags: none

3) Power measurements: while external meters can provide
higher accuracy with complex measurement setups, internal
power sensors accessed through software-based meters are
convenient for monitoring power in-situ [20]. Therefore, for
the Vega 56, we used a proprietary AMD software tool, while
for the V100 and E5-2666, we employed publicly-available
utilities like Nvidia-SMI [21] and Turbostat [22], respectively.

B. Performance analysis

1) Execution profiling: Table II reports four profiling met-
rics of Krnl LS measured on the Vega 56.

Total time reports the fraction of the total execution time
that is spent overall in Krnl LS. For both Solis-Wets and
ADADELTA, this metric is at least 99%, which confirms the
fact that LS has the largest occupation in execution time.

# Calls represents the number of times Krnl LS is enqueued
for execution. Executions using Solis-Wets require more en-
queues than those of ADADELTA. Since the overall program
must reach the NMAX

score-evals limit regardless of the LS method
chosen, Krnl LS – running Solis-Wets – must be enqueued
more often than when it runs ADADELTA.

Avg. time is the mean elapsed time (ms) of a single Krnl LS
execution. In all cases analyzed, single executions of this ker-
nel running ADADELTA are longer than those of Solis-Wets,
which is attributed to its higher calculation complexity and
larger number of LS iterations performed. The overall program
duration can be calculated closely as # Calls × Avg. time.

Occupancy measures how efficiently GPU resources are
used during execution. It is calculated as the number of in-
flight GPU wavefronts. A wavefront is a block of work-items
that are executed together, whereas one or more wavefronts
conform a work-group. Values of 20% (Solis-Wets) and 10%
(ADADELTA) indicate a low utilization efficiency.

2) Preliminary power profiling: Fig. 1 depicts the power
consumption over time on the Vega 56. For all inputs, profiles

TABLE II
PROFILING METRICS OF LOCAL-SEARCH METHODS ON THE VEGA 56

(R = 100 LGA RUNS) USING INPUT ID: 3S8O .

Krnl LS Solis-Wets ADADELTA
Total time (%) 99 99

# Calls 120 46
Avg. time (ms) [per kernel enqueue] 225 5526

Occupancy (%) 20 10

for both Solis-Wets and ADADELTA are characterized by tran-
sitions between low and high power draws, ranging between
100 . . . 220 W. These frequent power swings correspond to
the switching between host-side and kernel (a sequence of
Krnl GA and Krnl LS) executions.
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Fig. 1. Power measurements of OpenCL-AUTODOCK on the Vega 56.

Since Solis-Wets has many more # Calls to LS, the fre-
quency of power transitions is also higher in Solis-Wets
when compared to ADADELTA. Table II corroborates this,
e.g., using 3s8o as input results in 120 (Solis-Wets) and 46
(ADADELTA) Krnl LS enqueues. In Fig. 1, it is even possible
to count the 46 power transitions for ADADELTA.

Moreover, power draws on the Vega 56 were mostly around
∼170 W (Solis-Wets), and ∼140 W (ADADELTA). Even
with ADADELTA performing more complex computations for
gradients, and thus taking longer to complete, its kernel occu-
pancy drops down to 10% due to the serialization required for
correct partial derivatives (Section II-B). The lower occupancy
of Krnl LS implies that some Vega 56 block units are not
utilized, and hence, are automatically turned off by the GPU
(confirmed by discussion with the GPU vendor). This would
explain the lower power draws of ADADELTA vs. Solis-Wets.

C. Power profiling on cloud devices

An initial sampling period Tsampling = 50 ms was chosen,
as that was the shortest interval supported by the Vega 56.
However, for the V100 and E5-2666, it is possible to use
even shorter Tsampling values. The purpose of this section is
to determine if such values provide any practical advantage.

1) V100 GPU: Fig. 2 depicts the V100 power profiles
obtained for different configurations of LGA runs (R) = {50,
10} and Tsampling = {20, 10} ms. Profiles from different inputs
are very similar, so only the case of 3s8o is plotted.
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Fig. 2. Power measurements of OpenCL-AUTODOCK on the V100 (Tsampling = {20, 10} ms, R = {50, 10} LGA runs).

For the V100, Tsampling does not affect the overall profile
shape. In fact, although not shown in Fig. 2, profiles obtained
with Tsampling = 50 ms are very similar to those depicted.
Observing more closely, it is possible to notice differences in
the total runtimes. For instance, ADADELTA profiles (R = 50)
for Tsampling = 20 ms have slightly longer executions (> 25 s)
than those for Tsampling = 10 ms (< 25 s). Furthermore, MD
log files tracking the entire execution for Tsampling = {50, 20,
10} ms indicate similar total program durations of ∼28.2 s,
which in turn would correspond to a total number of {564,
1410, 2820} power samples, respectively. However, the power-
sampling log files – from which power profiles were plotted –
instead have {559, 1331, 2520} power samples. This suggest
a loss of samples that accounts for {0.8, 5.6, 10.6}%, meaning
that more samples are lost when using shorter Tsampling periods.

2) E5-2666 CPU: in contrast to the V100, where decreas-
ing Tsampling and R values resulted in still consistent power
profiles, we observed that for Tsampling = 10 ms and R = {1,
10} LGA runs, power-sampling log files showed erroneous
measures (e.g., only ∼10 W during most of the execution).
We believe this is due to a limitation also observed in other
software-based power meters (e.g., RAPL-based ones [23]).

CPU power profiles were characterized by draws higher
than the CPU thermal design power (TDP). As indicated
in [24], this is due to the turbo mode feature, which makes
chips run at higher frequencies and exceed the TDP under full
load. On the E5-2666, all executions of the OpenCL program
were characterized by a 100% utilization of all 36 CUs.

Finally, for each device, there is a slight difference in energy
(in the range of some 0.1 kJ) when comparing measurements
sampled at 20 ms vs. those at 50 ms. While this is not critical,
increasing the sampling frequency also increases the number
of samples lost during measurement, introducing larger inac-

curacies for larger molecules. Therefore, the next experiments
are all performed using Tsampling = 50 ms.

D. Energy efficiency

Fig. 3 depicts the speed and energy efficiencies achieved for
each molecule in our dataset. This is used for understanding
the correlation between both metrics on GPUs and CPUs.

On the V100, running Solis-Wets results in higher efficien-
cies with larger molecules (larger Nrot and Natom) vs. the
AUTODOCK baseline, with max. gains of ∼400x (speed) and
∼297x (energy) using 3drf. ADADELTA results in slower
executions compared to Solis-Wets in all cases. The highest
gains of ∼112x (speed) and ∼137x (energy) are achieved
using 1u4d as input.

On the E5-2666, efficiencies of both LS methods tend
to decrease with growing molecular complexity. Solis-Wets
executions are more efficient than those of ADADELTA. The
Solis-Wets method achieves min. gains of ∼3.5x (speed) and
∼2.0x (energy) when using 3er5. ADADELTA executions
achieve their max. gains of ∼11x (speed) and ∼7.0x (energy)
when using 1u4d. However, while ADADELTA speedups
were at least 1.5x (using e.g., 3er5), their corresponding
energy-efficiency gains are lower than one (i.e., efficiency
losses) with the largest inputs (e.g., 1jyq, 4er4, 3er5). Lower
efficiencies of ADADELTA are due to the GC (Algorithm 3),
which becomes more time-consuming for larger molecules.

Table. III reports the geometric mean of energy-efficiency
gains for the entire dataset. Although power draws of up to
∼300 W were observed on the V100 (i.e., higher than on
the other devices), due to its much shorter runtimes, it yields
higher energy gain factors over the baseline: ∼297x (Solis-
Wets) and ∼137x (ADADELTA). The advantage of the V100
over the Vega 56 – quantified here as a ratio of geo. mean gains
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Fig. 3. Efficiency gains of OpenCL-AUTODOCK vs. baseline (R = 100).

of 2.3x (= 203.7
88.6 , Solis-Wets) and 3.3x (= 45.6

13.8 , ADADELTA)
– come at higher economic costs, currently by a factor of 20x
at street prices (mid 2019). Moreover, Table III indicates that
the E5-2666 was the least-efficient device. Compared to the
V100, its ratios of geo. mean gains are 0.015x (Solis-Wets)
and 0.026x (ADADELTA). Such ratios are much lower than
the hourly-price ratio of 0.475x (= $1.817/h

$3.823/h ) when using their
respective AWS instances2 [25]. This means, the V100 offers
higher energy gains than the E5-2666, for the same price.

TABLE III
ENERGY EFFICIENCIES OF OPENCL-AUTODOCK VS. BASELINE (R = 100).

Energy Solis-Wets ADADELTA
efficiency Vega 56 V100 E5 Vega 56 V100 E5
Geo. mean 88.6 203.7 3.1 13.8 45.6 1.2

Although the reported energy gain factors (Fig. 3) show
a significant advantage of Solis-Wets over ADADELTA,
the longer runtimes and higher energy-consumptions of
ADADELTA result in higher-quality dockings in many
cases [13]. This is a Solis-Wets vs. ADADELTA trade-off,
where for molecules with few rotatable bonds (Nrot < 8),
Solis-Wets could lead to sufficiently good results, and thus,
spending more computing resources running ADADELTA is
not worth it. However, for molecules where Nrot > 11,
ADADELTA is likely to find better solutions, even in cases
where Solis-Wets is simply not able to find any solution at all.

IV. CONCLUSIONS

Regarding energy savings of our OpenCL-AUTODOCK im-
plementation, the V100 GPU was the most efficient device,
achieving max. gains of ∼297x (Solis-Wets) and ∼137x
(ADADELTA). On the other hand, the E5-2666 CPU was

2Charges comprise only compute capacity (Frankfurt region).

the least efficient one, yielding max. gains of ∼13x (Solis-
Wets) and ∼7x (ADADELTA). The device-specific mapping of
OpenCL constructs has a considerable impact on performance.
The higher energy efficiencies achieved on GPUs are attributed
to the fine-grained parallelization employed, which is more
suitable to the underlying many-core GPU architecture.
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