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Introduction

Energy efficiency

Important in design of computer systems
Future systems will be constrained by their power
consumption

Upcoming trend

Replacement of homogeneous with heterogeneous
accelerators
Top eight systems in the Green500 list use GPUs

Scientific applications used at scale

Can profit from HPC systems
Efficient deployment: performance-/energy-wise
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Molecular Docking (MD)

MD aims to find poses of strong interaction
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AutoDock

One of the most cited MD
tools

Lamarckian Genetic
Algorithm (LGA)

LGA = GA + LS

Genetic Algorithm (GA)

Local Search (LS)
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Our previous work on AutoDock

AutoDock-OpenCL
Data-parallel approach
for GPUs/CPUs

Fine-grained &
multi-level
parallelization

Enhanced search
More accurate pose
prediction

Available LS methods

Solis-Wets (legacy)
ADADELTA (new,
gradient-based)
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Our Contribution

Energy efficiency analysis of OpenCL-accelerated AutoDock

1. Correlation between performance and power consumption

Solis-Wets vs. ADADELTA

2. Impact of molecular complexity on

Execution performance
Energy efficiency
Multi-core CPUs & many-core GPUs
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Execution profiling: Vega 56 GPU
OpenCL configuration

56 compute units
64 work-items / work-group

MD setup

# LGA runs: R = 100
Input ID: 3s8o

Profiling is focused on the
local-search kernel (Krnl LS)

Krnl LS Solis-Wets ADADELTA

Total time (%) 99 99
# Calls 120 46
Avg. time (ms)∗ 225 5526
Occupancy (%) 20 10

LS is the bottleneck

Solis-Wets requires

more kernel enqueues

(# Calls) than ADADELTA

Overall duration:

# Calls×Avg. time

In both cases,

GPU utilization is low

∗Avg. time measured per kernel enqueue
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Preliminary power profiling: Vega 56 GPU
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Idle: 7.4 W

TDP: 210 W

ESW: 4.00 kJ

EAD: 29.28 kJ

High-to-low are transitions to hostHigh-to-low are transitions to hostHigh-to-low are transitions to host

Vega 56 power profiles using Input ID: 3s8o (Tsampling = 50ms)

Solis-Wets
ADADELTA

Power swings correspond

to switching between

host-side and kernel

Internal sensors accessed through software-based meters

Tsampling = 50 ms (max. supported on Vega 56)

Energy consumption (power integrated over time)

Solis-Wets: ESW = 4.0 kJ
ADADELTA: EAD = 29.3 kJ
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Power profiling: V100 GPU

AutoDock-OpenCL (ADADELTA)

duration ' 25 s

AutoDock-OpenCL (ADADELTA)

duration < 25 s

Sampling period does not affect profile shape . . .

. . . but the shorter Tsampling, the more samples are lost

Energies at Tsampling = {20, 10} ms are slightly different
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Impact of Tsampling on V100 power
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More samples are lost with Tsampling = 10 ms

Next experiments are performed using Tsampling = 50 ms
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Energy-Efficiency Gain
Accelerator devices

GPUs: Vega 56 (on-premise), V100 (AWS p3.2xlarge)
CPUs: E5-2666 v3 CPU (18 cores, AWS c4.8xlarge)

Baseline: original AutoDock

Implements only Solis-Wets LS method
Does not support multithreading

Solis-Wets ADADELTA
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Performance & Energy Efficiency
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V100 GPU
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Speedup Energy efficiency gain

Growing molecular complexity

Efficiency:

Solis-Wets > ADADELTA

GPU: highest gains on 3drf

SpeedupSW ∼ 400×
EnergySW ∼ 297×

Higher Solis-Wets efficiency

Higher ADADELTA efficiency 11/13



Performance & Energy Efficiency
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E5-2666 v3 CPU

Solis-Wets
ADADELTA

Speedup Energy efficiency gain

Growing molecular complexity

Efficiency:

Solis-Wets > ADADELTA

CPU: highest gains on 1u4d

SpeedupSW ∼ 18×
EnergySW ∼ 14×

Higher Solis-Wets efficiency

Higher ADADELTA efficiency

GPUs faster than CPUs: more suitable mapping

of AutoDock-OpenCL onto GPU hardware
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Final Remarks

1. AutoDock-OpenCL: comparing LS methods
ADADELTA

Lower speedups �
Lower energy efficiencies �
Higher quality of dockings � (for complex molecules)

Solis-Wets

More efficient for small molecules

2. Energy gains
V100 GPU: most efficient

Solis-Wets: ∼297×, ADADELTA: ∼137×
E5 CPU: least efficient

Solis-Wets: ∼13×, ADADELTA: ∼7×

3. GPUs more efficient than CPUs

Fine-grained parallelization more suitable for GPUs
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