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Abstract—In recent years, FPGAs have established themselves
as an important acceleration platform next to GPUs in heteroge-
neous HPC systems, providing flexibility and high performance
for tasks such as machine learning inference or DNA sequencing.

While the design of the FPGA-based accelerator cores has
become accessible to a broader range of users through customized
RISC-V soft-cores and the maturity of High-Level Synthesis
(HLS), the integration of and interaction with such accelerator
cores in the overall heterogeneous system remains a challenging
task.

The open-source TaPaSCo framework eases this task by
providing a concise software API and middleware for the interac-
tion with FPGA-based accelerator system-on-chips automatically
generated from user-provided accelerator cores.

In this work, we present an extension of the TaPaSCo frame-
work which improves the launch rates and latencies of FPGA-
accelerated compute jobs, a crucial factor for the performance
of the overall system, through hardware/software-co-design of
an improved Rust-based software runtime, and a job dispatcher
itself accelerated by hardware.

Our evaluation shows that the new dispatchers can provide an
improvement of up to 6x in job throughput with only minimal
resource overhead.

Index Terms—FPGA, Runtime, Task launching

I. INTRODUCTION

In recent years, HPC workloads are becoming increasingly
diverse. In the quest to provide each of these applications with
the best possible performance, most HPC systems are now
heterogeneous systems, combining the “classical” multi-core
CPU with a whole range of different, specialized accelerators.
Next to GPUs, vector processors (e.g., NEC Aurora), and
dedicated AI accelerators such as Cerebras’ Wafer Scale Engine
(WSE), FPGAs have begun to play an important role in these
heterogeneous systems. Starting out in low-power embedded
use-cases such as [1], they have now advanced into HPC/Cloud
scenarios [2], providing the flexibility to implement different
application-specific hardware accelerators on a single platform.

While modern hardware-description languages (HDL) such
as Bluespec or Chisel3, the availability of open-source RISC-V
CPU softcores, and the significant advances in the usability
and performance of High-Level Synthesis (HLS) have made
it easier to design the FPGA hardware accelerator itself, the
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integration of these accelerators into the overall heterogeneous
hardware/software system, specifically the interaction with the
host CPU, remain a challenging task.

The open-source framework TaPaSCo [3], [4] was created to
facilitate exactly this task by providing an automatic tool-flow
to create a complete FPGA-design from individual accelerator
cores for a large variety of platforms and a concise C/C++-based
runtime API that allows to manage FPGA device execution
from the host CPU, including job launches and data-transfers
between the host main memory and FPGA memory.

So far, the TaPaSCo execution model has been entirely host-
centric, i.e., every device job launch required synchronization
with the host. If an application is composed from multiple small
tasks that should be executed on the FPGA, but depend on each
other’s results, the repeated synchronization with the host can
add significant overhead to the overall application performance.
In order to overcome this limitation, we present an extension of
the TaPaSCo SoC framework and middleware that allows for
on-device job launch offloading and inter-PE synchronization.
To this end, we extend TaPaSCo’s hardware architecture with
a hardware dispatcher and re-design a substantial part of
TaPaSCo’s software runtime.

In our evaluation, we measure job throughput and launch
latency.

II. RELATED WORK

The task of compute job invocation has also been addressed
by the major FPGA vendors. Xilinx provides the Xilinx
Runtime Library (XRT) [5], which is integrated into their
OpenCL and HLS workflow. Intel has the Open Programmable
Acceleration Engine (OPAE), which is a runtime to access
OpenCL and RTL kernels on an Intel FPGA [6]. More
specialized solutions of hardware-software co-design have been
presented: Tang et al. [7] used a hardware scheduler to assist
a RTOS running on a soft-core, and ReconOS [8] orchestrates
co-execution using both hardware- and software threads. The
framework Connectal [9] provides automation for creating
a design consisting of hardware and software components.
Asynchronous communication between the components is
provided in the form of Portals.

GPUs face similar challenges, which have been addressed in
many publications, e.g., Chatterjee et al. [10] implemented a
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Fig. 1. TaPaSCo runtime stack for interaction with FPGA-based accelerators
from host.

runtime for dynamic task parallelism. Originating in the GPU
space, the Heterogeneous System Architecture (HSA) specifies
communication and memory interfaces to allow job execution
on a heterogeneous computing system with different processing
units. An implementation of HSA on FPGA is presented in [11].
[12] introduces an integrated compute/memory infrastructure
for FPGAs, including support for speculative execution and
more fine-grained dynamic scheduling than that defined in the
HSA model.

Synchronization of tasks has been addressed by HSA [11]
and OpenCL [13]. The common feature are barriers, which
delay the processing of subsequent tasks until a condition is
met. This can be used to enforce task-dependencies in the
execution schedule.

III. TAPASCO

The main purpose of the open-source Task-Parallel System
Composer (TaPaSCo) framework is to facilitate the integration
of FPGA-based accelerators into heterogeneous systems. To
this end, TaPaSCo provides two main components: A software
runtime library to interact with FPGA accelerators and a tool-
flow to easily compose complete FPGA-based system-on-chip
designs from one or multiple IP-cores. TaPaSCo supports a
whole range of different FPGA platforms. Next to embedded
FPGA-boards (e.g., Zynq, Zynq UltraScale+ MPSoC), TaPaSCo
is available on a variety of data-center scale FPGA extension
boards, such as the Xilinx AU280 board or the Bittware XUP-
VVH platform. In recent releases, support for the Amazon EC2
F1 FPGA instances available in the AWS cloud has also been
added to the TaPaSCo framework [2].

A. Runtime API

A TaPaSCo FPGA-based SoC design can comprise one
or more instances of multiple different accelerator cores,
called Processing Elements (PE). To interact with the FPGA
accelerator SoC and the different cores, TaPaSCo provides

1 #include <tapasco.hpp>
2 #include <vector>
3 using namespace tapasco;
4

5 ...
6 /* Perform automatic initialization
7 of first device: */
8 Tapasco tapasco;
9 /* data buffer */

10 std::vector<int> v = {0, 1, ...};
11 auto buf = makeWrappedPointer(
12 v.data(), v.size() * sizeof(int));
13 /* Launch a TaPaSCo job */
14 auto myjob = tapasco.launch(
15 KERNEL_ID,
16 buf);
17 /* Wait on Future myjob for completion */
18 myjob();
19 ...

Listing 1. Excerpt of the main loop of the host program (C++17).

a runtime API, which can be used from C and C++. It is
responsible for data-transfers between host- and FPGA external
memory and for launching jobs on the device. TaPaSCo uses a
multi-layer approach for the runtime API (depicted in Figure 1),
allowing the software interface for an application to be re-used
across different target FPGA platforms.

The example code in Listing 1 shows how to launch a
TaPaSCo job with the concise C++ API. The first step is to
create a TaPaSCo object. As most accelerator jobs require
some data, the next step is to prepare any buffer(s) for
input and result data. If the data type is not trivial, the
makeWrappedPointer function is required to associate
a data size with the pointer. Unless a buffer is marked as being
input/output-only, the default (used here) employs the same
buffer for both purposes. Afterwards, a TaPaSCo job can be
prepared. This takes a Kernel ID and any used data buffers as
arguments. The Kernel ID represents the implemented function
of a processing element. Elements with the same function
therefore have the same Kernel ID. This call launches the job
asynchronously, the Future obtained as result can be checked
for the completion of the execution.

The TaPaSCo runtime translates the function calls to low-
level driver calls and accesses to the registers on the FPGA.

The driver initialization happens when a Tapasco object
is created. Then in line 14 of Listing 1, a TaPaSCo job is
launched. It uses the given Kernel ID and in the example
buf as a parameter. In the background, the runtime reserves a
processing element, copies the content of buf to the memory
of the FPGA card and starts the processing element. The call
in line 18 is blocking until the processing element has finished.
The runtime receives an interrupt, signaling the completion of
the processing element and copies back the buffer(s) holding
results. The application can then continue its execution.

B. Automatic Toolflow

Next to the runtime API, TaPaSCo also provides an auto-
mated tool-flow to compose complete FPGA SoC design from
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the individual accelerator cores, depicted in Figure 2.
In a TaPaSCo-based FPGA design, the central unit of ab-

straction is the Processing Element (PE). Processing Elements
can be defined in a variety of ways, including manual design
with a hardware-description language (HDL), through C/C++
based High-Level Synthesis (HLS), which is also automated by
TaPaSCo [14], or by importing existing software core CPUs,
such as open-source RISC-V cores [15].

Independent of how a PE was defined, for the use with the
TaPaSCo framework, it must always expose a standardized
interface, referred to as T-shape, depicted in Figure 3. The
T-shape has three main components: The control interface is
used for communicating configuration information with the
PE, in the current standard architecture of TaPaSCo this is
realized through an AXI4 Lite Slave interface backed by a
configuration register file.

The signaling component of the T-shape interface is also
used for communication with the surrounding infrastructure
and the host, e.g., for signaling completion of a computation
job through a simple interrupt wire.

The last component of the T-shape interface, the data
component, gives a Processing Element access to important
infrastructure components, such as memories. In the current
TaPaSCo standard architecture, the data component is realized
through one or more AXI 4 Master interfaces that give the PE
access to external DRAM or HBM2 memory typically found
on data-center scale FPGA extension boards.

Implementing the T-shape interface for a processing element
is usually straight-forward: As the interface was heavily inspired
by Vivado HLS, IP cores generated by Vivado HLS are directly
compatible with TaPaSCo’s T-shape interface. For HDL-based
PEs and soft-cores, a suitable interface or wrapper can easily
be implemented, as demonstrated in [15].

After all PEs have been defined, an Architecture can be
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Fig. 4. TaPaSCo system-on-chip template with the platform-independent
architecture surrounded by platform-dependent infrastructure.

composed from multiple different PEs and also multiple
instances of each PE. Multiple instances of the same PE are
subsumed in so-called Processing Clusters, and all PEs in all
Processing Clusters are then connected to signal aggregators
to form an Architecture as shown in Figure 4. The current
TaPaSCo standard architecture is host-centric, i.e., PEs work
completely independently from each other, cannot be connected
directly (data-exchange is still possible via memory) and cannot
synchronize with each other. Individual device jobs need to be
synchronized by the host, if necessary.

A TaPaSCo architecture is still completely platform-
independent and can be used on multiple different target
platforms without modification. To create a full FPGA SoC-
design, the architecture is automatically connected with the
infrastructure components of the user-selected target platform
(cf. Figure 4). The now-completed FPGA-design can then
automatically be synthesized to a ready-to-use FPGA bitstream.
To this end, TaPaSCo will pass the design information to the
vendor’s tools (e.g., Vivado in case of Xilinx platforms), which
will eventually generate the bitstream. To further optimize
the performance of the FPGA-design, TaPaSCo offers the
possibility to run a fully automated design-space exploration
(DSE), which will optimize the number of accelerator cores
within the resource boundaries of the target platform and/or
the design frequency.

As stated earlier, the current TaPaSCo architecture and exe-



TABLE I
REGISTER INTERFACE FOR A PROCESSING ELEMENT.

Offset Function

0x00 Control signals
0x04 Global Interrupt Enable Register (GIER)
0x08 Interrupt Enable Register (IER)
0x0c Interrupt Status Register (ISR)
0x10 Return value
0x20 Parameter #1
0x30 Parameter #2
... Parameters

cution model is very host-centric. This can cause inefficiencies,
if an application is composed from multiple small device jobs,
as the high latency in the communication between host and
FPGA (e.g., introduced by the PCIe interface) adds significant
overhead to the device job launch. In the evaluation section, it
can be seen that the launch latency is longer than 8 µs.

Therefore, in this work, some responsibility for job launch
management is moved from the host-side software runtime
to the FPGA hardware, allowing for on-device job launch
offloading. To this end, the original runtime implementation is
replaced and extended with a new Rust-based implementation
(described in Section IV) and the SoC design is extended with
a hardware-accelerated job dispatcher (cf. Section V).

IV. IMPROVED RUNTIME

The originally C-based TaPaSCo runtime was reimplemented
in the programming language Rust, in order to improve
maintainability, enable safer concurrency, and to reduce typical
error sources [16]. As the Rust compiler does more checking
at compile time, many sources of bugs in the old runtime could
be avoided.

In the following, all required tasks of the runtime are
explained:

1) Initialization: The first step when starting up a FPGA
accelerator is to initialize all processing elements. As processing
elements in TaPaSCo are based on the memory-mapped register
interface of Vivado HLS, the control registers for interrupt
enable (IER) and global interrupt enable (GIER) have to be
set-up (see Table I). IER is used to configure interrupts on
the done and ready state of the processing element. Global
interrupts are activated with the GIER register, otherwise the
interrupts configured by the IER register are not available for
external units. Furthermore, depending on the FPGA platform,
the DMA engine and interrupt controllers have to be initialized.

2) Job Launch: Before the launch of a job, all required
parameters have to be prepared. Specifically, all data buffers
have to be accessible by the processing element during the
execution. This means that on a PCIe based platform, which
typically has separate host and device memories, a DMA engine
has to move data between host and FPGA card. Then, pointers
to those memory locations and other parameters are assigned
into the hardware parameter registers of the processing element.
The actual launch of the processing element is performed by
writing to the control register.

3) Job Finalization: The completion of the execution of
the processing element is signaled by triggering an interrupt
to the host. The interrupt handling on the FPGA is platform
specific, but eventually, an interrupt is raised in the host Linux
OS. The runtime acknowledges the reception of the interrupt to
the processing element by writing into the hardware interrupt
status register and can then continue with the execution.

These steps require information about the actual SoC
composition. To this end, an FPGA-wide TaPaSCo status
core provides an overview of all supported features, a list
of the contained processing elements and further platform
elements and their addresses on the FPGA. This allows for
self-describing hardware without the need to store specific
configuration details in the software stack.

The Rust runtime supports both C and C++ APIs, realized as
a foreign function interface (FFI). The C++ interface is based on
the generated code from the FFI and provides a higher level of
abstraction than the C API by implementing wrapper functions.
The Rust-provided C++ API is backwards-compatible with
applications developed for the original version.

A breaking change on the interface between runtime and
kernel driver was introduced for the interrupt handler. To relay
the interrupt signal from the Linux kernel driver to a userspace
application, the eventfd mechanism is now used. This simplifies
the implementation considerably without incurring performance
penalties. The userspace runtime just registers an eventfd file
descriptor inside the TaPaSCo kernel driver, and can then
receive the interrupts issued by the FPGA.

V. HARDWARE JOB DISPATCHER

For even higher job launch rates, the dispatch mechanism
itself can be hardware-accelerated. Thus, we examined how to
move a useful subset of the dispatcher functionality of the new
Rust-based runtime (Section IV) onto the FPGA in the form
of the Cascabel hardware dispatcher. The motivation here is to
reduce communication latency between a host system and the
FPGA accelerators. We aim for maximum performance, even
at the expense of some of the additional flexibility provided
by the full-scale software dispatcher.

The Cascabel hardware module, designed in Bluespec
System Verilog consists of two parts: a queue to store the
jobs to be launched, and the dispatcher to invoke those jobs
on the processing elements. As seen in Figure 5, it is inserted
between the host and the SoC-architecture holding the actual
PEs.

A. Hardware Queue

The queue module has a functionality inspired by HSA [11].
It contains the job queue and provides a way for the host to
enqueue jobs for execution. The queue is implemented as a
BlockRAM and is memory-mapped into the host address space
(Figure 5a). To be able to use this block of memory, additional
hardware logic in the form of read and write pointers for the
queue are required. As concurrent accesses to the registers can
occur with a multi-threaded host software, both pointers have
to be modified by atomic operations. E.g., When a queue read
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is performed, the current queue entry is returned and at the
same time, the pointer register value is atomically incremented.
This ensures that accesses to the queue are free of conflicts.

The queue is managed by the read and write pointers. Every
queue element has a fixed size of 512 bit and can be of the
type Job or Barrier. A Job is the standard TaPaSCo job,
which is used to start a processing element. The associated
queue entry contains the TaPaSCo Kernel ID, the number of
parameters and up to four 64 bit parameter values. The Barrier
is used for synchronization purposes, it blocks further execution
until all previously launched processing elements have finished.
This is required, for example, in the case that results stored
in memory should be reused in subsequent jobs, and would
otherwise result in conflicting memory accesses. The barrier
element contains a parameter, which specifies whether the host
should be informed of the barrier completion by sending a
specific interrupt. This feature enables the hardware dispatcher
to autonomously launch entire sequences of jobs and barriers
without host intervention, notifying the host only once the
entire job pipeline has completed. This behavior is achieved
by setting the interrupt signal request only in the last barrier
of the job sequence.

The job queue can be accessed as a memory-mapped device
by the host to submit new jobs. On the dispatcher side, jobs are
retrieved from the SoC-side of the queue for further processing.

B. Hardware Dispatcher Operation

The hardware dispatcher dequeues entries from the queue
and then processes them (Figure 5b). If it is a Barrier, the
processing of later entries is paused until all active processing
elements have finished. Optionally, the barrier can raise an
interrupt to signal completion of the barrier operation to the
host (Figure 5f).

Otherwise, if the entry is a Job, the selector submodule has
to select an idle processing element with the same Kernel ID
as the job. This selector is FIFO based: For every Kernel ID,
there exists a dedicated FIFO. Idle processing element IDs are
stored in a FIFO. At system startup, every FIFO is initialized
with all processing elements of the associated Kernel ID (this

is the state of the FIFO contents shown in Figure 5). The
Kernel ID from an incoming Job is then used to dequeue the
ID of an idle processing element from the appropriate queue.
If no idle processing element can be found, further execution
is blocked until an idle processing element is available again.
The dequeued entry, identifying an idle processing element for
that Kernel ID, is then forwarded to the launcher submodule
(Figure 5c), and is used to start the processing element for the
Job: A state machine writes the parameters and the control
registers of the processing element (Figure 5d). Execution of
the Job is then begun.

On job completion, the finishing processing element issues
an interrupt (Figure 5e) to the dispatcher. Without the hardware
dispatcher, these completion signals would have been issued
directly to the host. With the Cascabel hardware dispatcher,
though, they are now evaluated on the SoC to re-enqueue the
ID of the now idle-again processing element into the correct
FIFO. Only if a Barrier entry explicitly requests host signaling
will the Barrier’s completion interrupt be forwarded to the host.
As described before, we use this selective signalling to enable
synchronization-free autonomous execution of the hardware
accelerators as much as possible.

The dispatcher is dependent on the TaPaSCo system compo-
sition. As a result, the hardware module has to be generated
for every composition. Automated generation is integrated into
the TaPaSCo tool-flow.

With its performance-optimization, the hardware dispatcher
is less flexible than the software-based one. For example, all
memory allocation and DMA transfers still rely on the existing
software runtime. In addition, the Cascabel currently has these
limitations: (1) Cascabel-launched jobs may have at most four
parameters. Supporting a larger number of parameters would
require a way to store the variable length of parameter data
outside of the dispatch queue. (2) Cascabel itself currently
cannot initialize PE-local memories, such as load firmware into
the instruction memories of programmable soft-core processing
elements. However, Cascabel is able to dispatch jobs to PEs
whose memories have been preloaded using the software



runtime. (3) Currently, the return value of a processing element
is not interpreted in Cascabel. If desired, a return FIFO to
the host could be added that would buffer all return values of
completed jobs, to be sent all at once after the next Barrier
interrupt.

The Cascabel hardware dispatcher is integrated into the
platform-wrapper of TaPaSCo. From a logical point of view,
it is located between the host and the accelerator architecture
parts. The host accesses the job queue via an AXI interface
(Figure 5a). Cascabel then invokes processing elements in
the architecture with another AXI interface (Figure 5d). For
the interrupts, it is vice-versa: interrupts from the processing
elements in the architecture (Figure 5e) are handled in Cascabel.
As described above, Cascabel signals the host using interrupts
only if explicitly requested in a Barrier (Figure 5f).

VI. EVALUATION

For the evaluation, the new runtime and the hardware
dispatcher are compared to the previously existing runtime.
Two different FPGA platforms are used: (1) the Xilinx Alveo
U280 as a PCIe based FPGA for datacenter usage and (2)
a AVNet Ultra96 as a multiprocessor SoC with embedded
FPGA fabric. However, due to the versatility of TaPaSCo, any
supported FPGA platform could be used. The host CPU for the
U280 is an AMD EPYC 7351P with 16 cores, for the Ultra96
it is the on-chip quad-core ARM Cortex-A53 processor. The
first part of the evaluation focuses on synthetic benchmarks to
obtain measurements for the maximum possible performance.
Then a more realistic application is implemented for the three
different implementations (original C-based, new Rust-based
and Cascabel hardware-accelerated dispatcher). Lastly, the
resource usage of the hardware-based dispatcher is assessed
for various configurations.

A. Job Launch Throughput and Latency

The first metric is the job throughput, which states the
number of jobs scheduled within a timeframe. To measure this,
a simple counter processing element is used. The PE uses
a parameter to set the number of clock cycles to wait and then
raises an interrupt afterwards. In the benchmark, the bitstream
contains 16 counter PEs and the counters count just one clock
cycle. The design frequency of this simple setup is 450MHz.

In Figure 6, the resulting throughput is plotted. It can be seen
that all three versions benefit from launching jobs from multiple
host-threads. With the reduced communication overhead of
the hardware version, the maximum throughput can only be
reached with a higher number of threads, as the computation
on the host-side is now the limiting factor. This behaviour
is even more apparent on the Ultra96, due to its slower host
processor. The new software runtime has more than double the
throughput of the old one. The Cascabel hardware dispatcher
adds another factor of 3x, yielding a maximum throughput of
over 6MJobs/s.

To measure the latency, a counter instance is used again. This
time, a single job is launched, and the total time for starting,
execution and handling the interrupt is measured. The execution

TABLE II
AVERAGE DISPATCH LATENCY FOR SINGLE-SHOT KERNELS WITH VARIOUS

EXECUTION TIMES.

Alveo U280 Ultra96
Cycles Original New Hardware Original New Hardware

@ 450MHz [µs] [µs] [µs] [µs] [µs] [µs]

1 19.40 8.54 13.92 19.18 12.45 13.85
16 21.75 8.56 13.94 19.01 12.46 13.91

8192 22.26 10.33 12.64 19.13 12.42 11.88
222 158.23 45.46 49.15 118.75 91.52 90.30

time is subtracted from the final result to obtain only the launch
overhead. For the hardware dispatcher, a barrier is inserted
after the job to receive an interrupt. Due to variations in single
measurements, an average over multiple runs is calculated.
The measurements were collected as long as changes in the
average are more than 10 ns. The results in Table II show an
improvement with the new software runtime, on the U280 the
latency is less than half of the original value. In most cases,
the hardware version has a slightly worse latency than with the
new software runtime. With the barrier and additional on-chip
latency, single job execution does not perform as well as with
the new software runtime.

Note that in all cases, the dispatch latency increases for jobs
with longer execution times. We suspect that this slowdown is
due to interactions within the host system, specifically the host-
side TaPaSCo process being idle for longer periods of time,
when waiting for the completion of longer-running compute
jobs executing on the FPGA. This idleness might give the
Linux OS-level scheduler cause to context-switch away from
the TaPaSCo process to perform other tasks, and then incur
another OS-level penalty to context-switch back to the TaPaSCo
process once a hardware Barrier signals job completion to the
host by interrupt. Similarly, the host CPU might start to slow-
down the clock frequency for the core executing the waiting
TaPaSCo process, incurring another delay to ramp the CPU core
clock up again after the FPGA SoC has signalled completion.
This misbehavior, though, has only limited impact in practice,
as the increased dispatch latency is negligible compared to the
longer compute job run-times.

With the latency measurement from the host, the on-chip
launch latency cannot be measured directly. A lower bound can
be approximated based on the job throughput, as the hardware
internally launches all jobs sequentially. At 6MJobs/s, this
results in an on-chip latency of 167 ns.

B. Performance of Multi-Job Pipelines

In this subsection, we examine a more complex application
with three different kernels. The kernels used are arrayinit,
arrayupdate and arraysum. The three kernels are implementing
operations on arrays: arrayinit creates an array in memory
and initializes it with values, arrayupdate updates the values
in the array and arraysum calculates the sum over all array
values, with array sizes of 32 kB. With those three kernels,
we demonstrate a simple pipeline application having data
dependencies between the kernels.



5 10 15 20 25 30

# of Host Threads launching Jobs

0

1,000,000

2,000,000

3,000,000

4,000,000

5,000,000

6,000,000
Jo

b
s

P
er

S
ec

o
n

d
Original

New

Hardware

(a) Alveo U280

1 2 3 4

# of Host Threads launching Jobs

250,000

500,000

750,000

1,000,000

1,250,000

Jo
b

s
P

er
S

ec
o

n
d

Original

New

Hardware

(b) Ultra96

Fig. 6. Job throughput measured in jobs per second.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Kernel Types

14,500

15,000

15,500

16,000

16,500

17,000

17,500

C
a

sc
a

b
el

C
L

B
L

U
T

s

1 2 3 ... 11

12 13 14 ... 22

23 24 25 ... 32

#1

#2

#3

Kernel ID

PE ID FIFOs

(a) Increasing number of different kernels, 32 PEs in total

5 10 15 20 25 30

Processing Elements

13,000

14,000

15,000

16,000

C
a

sc
a

b
el

C
L

B
L

U
T

s

1 2 3

4 5 6

7 8

9 10

#1
Kernel ID

PE ID FIFOs

#2

#3

#4

(b) Increasing total number of PEs, four different kernels

Fig. 7. Scaling CLB LUTs overhead of Cascabel hardware dispatch for various configurations.

With the C and Rust software runtimes, a dependent job
cannot be scheduled before the previous job has finished
execution and returned to the host. With Cascabel, it is now
possible to schedule dependent jobs in advance. By using
barriers, the data dependencies will be maintained on the SoC
without host interaction. Figure 8 shows a simplified sample
schedule with just two processing elements per kernel, and
inserted barriers. The different colors are representing batches
of tasks. Within one batch, the exact binding of a job to the
processing element is irrelevant. However, it has to be assured
that arrayupdate is only operating on data completely initialized
by arrayinit. To this end, the barrier feature is used. After two
batches, complete utilization of all six processing elements is
achieved.

As the hardware queue does not yet support reordering, the
starting sequence of the jobs is important. If we were to issue all
arrayinit jobs first, then all jobs for arrayupdate, and finally all
jobs for arraysum, this would leave many processing elements
unused. Thus, we currently have to rely on the software-side
to ensure a suitable ordering when enqueuing the jobs into
Cascabel for dispatch.

For our measurements here, we use an SoC having eight
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PE
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#3
#4
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t
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Batch #1 Batch #2 Batch #3 Batch #4

Fig. 8. Pipeline application utilizing Cascabel’s barrier feature to maintain
inter-kernel data dependencies on-chip.

instances of each kernel, in contrast to just the two shown in
Figure 8. These processing elements are clocked at a frequency
of 400MHz. Running 100,000 iterations of this pipeline on
the Rust-based runtime takes 16.1 s with a single thread and
5.7 s with 8 threads. Using the Cascabel hardware dispatcher,
this is reduced to 6.25 s for a single thread, and 4.42 s with 8
threads.



C. Hardware Resources and Performance

The resource overhead for Cascabel is analyzed here for a
fixed clock frequency of 300MHz and compared to a TaPaSCo
composition without the hardware dispatcher. Figures are given
for the U280. No major differences are expected for the Ultra96,
as it has a similar FPGA fabric and the hardware module is
the same.

In Figure 7, the additional CLB LUTs utilization of the
Cascabel hardware core is shown. For all configurations, the
numbers are below 2% of the available resources (1,303,680
CLBs). All configurations require 20.5 RAMB36 BlockRAMs
for the job/barrier queue and the dequeuing FIFOs (Figure 5b).
As the hardware job dispatcher is automatically generated and
customized for each SoC architecture, the resource overhead is
kept to the necessary minimum and no resources are wasted.

The Cascabel hardware module is located between the
platform-dependent host-interface and the architecture. In
TaPaSCo, both of these parts run in different clock domains.
The Cascabel hardware crosses into both clock domains: the
queue submodule resides in the host clock domain, whereas the
selector, launcher and interrupt controller submodules are in the
clock domain of the architecture holding the PEs. The host is
clocked at 250MHz and meets timing closure. The maximum
frequency for the architecture is only slightly impacted by the
Cascabel module. All tested configurations could be clocked
faster than 400MHz.

Comparing the results with related work is difficult, as
published evaluation results are scarce. Connectal [9] only gives
latency figures for one-directional transfers. The documentation
of Xilinx XRT [17] states an overhead between 30 µs and 60 µs,
which can be interpreted as a measurement similar to the latency
in this evaluation. HSA on FPGA [11] measured 58.1 µs for
all dispatch steps, thus without handling the job completion.
In both cases, the measurements are for PCIe based cards.
Our best case latency is less than 9 µs for the new Rust based
runtime.

VII. CONCLUSION AND FUTURE WORK

This work presented an improved job launch interface for
TaPaSCo, an open-source framework that greatly simplifies the
task of integrating FPGA-based accelerators into heterogeneous
systems. By careful hardware/software-co-design of a new Rust-
based software runtime and a hardware-accelerated dispatcher,
job launch latencies and throughputs could be improved
significantly over the previous software-only implementation.
Even though the FPGA footprint of hardware dispatcher is
very small, Cascabel can still provide a 3x improvement in job
throughput over the highly optimized new Rust-based software
dispatcher.

The hardware based dispatcher is currently a proof-of-
concept implementation. Beyond lifting the limitations de-
scribed above, two additional features seem highly desirable.
First, some form of scheduling better than “FIFO” should be
implemented, e.g., by allowing job re-ordering in the queue.
At the moment, performance may be lost when inserting the
jobs in an unsuitable ordering. At the cost of higher resource

utilization, a better scheduler could both improve performance
and reduce the need for manual tuning of the job ordering.

A second improvement could be the support for on-chip
job creation. The hardware dispatcher could provide an SoC-
side enqueuing port, where the processing elements themselves
could issue new jobs. This would again reduce the number of
high-latency interactions with the host, and allow more flexible
pipelines to be realized.

For another improvement, Inter-PE communication could be
implemented. Data could then flow directly between processing
elements, eliminating even more transfers between the host
and processing elements.

The new software runtime is already publicly available for
testing on Github https://github.com/esa-tu-darmstadt/tapasco/
tree/feature/NewRuntime. The hardware dispatcher will be
available as an optional feature in the next release of the
open-source framework TaPaSCo.
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