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Abstract. The computing potential of programmable switches with
multi-Thit/s throughput is of increasing interest to the research com-
munity and industry alike. Such systems have already been employed
in a wide spectrum of applications, including statistics gathering, in-
network consensus protocols, or application data caching. Despite their
high throughput, most architectures for programmable switches have
practical limitations, e.g., with regard to stateful operations.

FPGASs, on the other hand, can be used to flexibly realize switch architec-
tures for far more complex processing operations. Recently, FPGAs have
become available that feature 3D-memory, such as HBM stacks, that is
tightly integrated with their logic element fabrics. In this paper, we exam-
ine the impact of exploiting such HBM to accelerate an inter-server join
operation at the switch-level between the servers of a distributed database
system. As the hash-join algorithm used for high performance needs to
maintain a large state, it would overtax the capabilities of conventional
software-programmable switches.

The paper shows that across eight 10G Ethernet ports, the single HBM-
FPGA in our prototype can not only keep up with the demands of
over 60 Gbit/s of network throughput, but it also beats distributed-join
implementations that do not exploit in-network processing.
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1 Introduction

Distributed database systems are commonly used to cope with ever-increasing
volumes of information. They allow to store and process massive amounts of data
on multiple servers in parallel. This works especially well for operations which
require no communication between the involved servers. For operations which do
require communication - such as non-colocated SQL joins - sending data between
servers can quickly become the performance bottleneck. For these operations, a
distributed setup does not always achieve performance improvements, as shown
in [11].

Recent papers have suggested the use of In-Network Processing (INP) [2,5,12]
to accelerate distributed computations. INP employs programmable switches to
offload processing across multiple servers into the network itself, which reduces
the volume of inter-server data transfers. However, the current generation of
programmable switches still have some limitations in this scenario. For instance,
many current INP solutions are restricted to mostly stateless operations, as they
lack large memories. This limits the applicability of these switches for INP, as the
aforementioned joins, e.g., cannot be implemented without keeping large state.

As a solution, [8] proposes a new INP-capable switch architecture based on
an FPGA, which can be integrated into the Data Processing Interface (DPI) [6]
programming framework for INP applications. This architecture provides much
more flexibility compared to software-programmable switches and, in addition, is
well suited for memory-intensive operations. FPGA based architectures have been
show to support hundreds of Gbit/s of network throughput [14], but for stateful
operations, such as a database join, memory bandwidth is still the limiting
factor [8].

Recently, FPGAs using 3D-memory, such as High-Bandwidth-Memory (HBM),
have become available. This new memory type allows to perform multiple memory
accesses in parallel, resulting in a huge increase in performance compared to
traditional DDR memory. However, because multiple parallel accesses are required
to achieve a performance advantage, the user logic must be adapted in order to
actually exploit the potential performance gains.

Our main contribution is to adapt an FPGA-based INP switch architecture [8]
to use HBM efficiently. To achieve this, we compare the performance of HBM for
different configurations to determine the best solution for our architecture. Finally,
in our evaluation we show that our HBM-based version can achieve more than
three times the throughput of the older DDR3-SDRAM based INP accelerator,
and easily outperforms a conventional eight server distributed database setup
not using INP.

The remainder of this paper is structured as follows. In Section 2 we introduce
the organization of HBM on Xilinx FPGAs and analyze its performance for differ-
ent configurations. Afterwards, Section 3 introduces the hash join operation which
is used as an example INP operation for our proposed architecture. In Section 4
we present a new HBM-based architecture for INP-capable switches. Finally, we
report our experimental results in Section 5, and discuss some limitations of the
current implementation with possible refinements, in Section 6.
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2 HBM Performance

This section introduces the HBM organization on current Xilinx FPGAs, after-
wards the HBM performance for different configurations is analyzed.

2.1 HBM Organization

Selected Xilinx FPGAs include HBM, offering a range of number of logic cells and
the available amount of HBM. For the currently available devices, this amount
ranges from 4 GB to 16 GB. Independent of the size, the organization of the HBM
does not differ: The HBM on these devices is split into two stacks, which are
attached at the bottom edge of the FPGA matrix. Memory access is realized via
eight memory channels per stack - each providing two pseudo channels, resulting
in a total of 32 pseudo channels over both stacks. Each pseudo channel may only
access its associated section of memory (1/32 of the available total memory). The
programmable logic can access the HBM via 32 AXI3 slave ports. By default,
each AXI3 slave port is directly connected to one of the pseudo channels, so
each AXI3 port can only access one memory section. Alternatively, an optional
AXT crossbar can be activated, which allows each AXI3 port to access the entire
memory space - but at a cost in latency and throughput. In this work, we do not
use the optional crossbar. Figure 1 shows the organization of one HBM stack.

The 32 AXI3 slave ports are distributed over the entire width of the bottom
edge of the FPGA matrix. Each port has a data width of 256 bit and can run
at a clock frequency of up to 450 MHz. This results in a theoretical aggregate
memory bandwidth of 460 GB/s.

2.2 HBM Performance

In many cases, it will not be possible
to run the Processing Element (PE)
at 450 MHz. Thus, it is either neces-
sary to run the HBM slave ports syn-
chronously at a lower clock frequency,
or alternatively, to perform clock do-
main conversion (CD) by inserting a
SmartConnect IP between the PE and
HBM. In the latter case, it is also pos-

Fig. 1. Organization of a single HBM stack, sible to use different data-widths and
showing the memory channels (MC), mem- protocols on the PE-side, and also let
ory sections (MS), and AXI3 slave ports the SmartConnect perform data-width
(P). Each line between an AXI3 port and a (DW) and protocol conversion (PV),
memory section indicates a pseudo channel. as required. To assess the performance
The optional AXI crossbar is not shown. impact of the different options, we ana-

lyze four configurations, ranging from

no SmartConnect, to a SmartConnect
which performs all three conversions (CD+DW+PV). The four configurations are
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shown in Figure 2. Other configurations - for example a SmartConnect IP with
clock domain and protocol conversion - are also possible, but yield no additional
performance data as they are covered by the other four options and are thus
omitted.

DIRECT CD
AXI3 AXI3 sc AXI3
PE 250MHz HEM PE 250MHz 450MHz HEM
256hit 256hit 256bit
CD+DW CD+DW+PV

PE AXI3 AXI3 HBM PE AXI4 AXI3 HBM
250MHz sc 450MHz 250MHz sc 450MHz
512bit 256bhit 512bit 256bhit

Fig. 2. The four analyzed configurations for connecting the PE with the HBM. The
lines represent AXI connections, and are annotated with the protocol version, clock
frequency and data width. The configurations are named based on the conversions (CD:
clock-domain-, DW: data-width-, PV: protocol-version-) employed.

The rest of this section will compare the performance in various criteria
of these four configurations. The goal of this evaluation is to find the best
configuration for our specific application scenario. It does not strive to be a
general evaluation of HBM performance. Thus we focus this evaluation on the
random access performance, as this is the access pattern used by our hash-join
architecture (see Section 4). All results shown use only one AXI3 slave port. As
we do not use the AXI crossbar, the HBM ports are completely independent,
and the performance scales linearly when using multiple ports in parallel.
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(a) Random read performance (b) Random write performance

Fig. 3. HBM random access performance in I/O operations per second for the different
configurations at a clock frequency of 250 MHz.
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Figure 3 shows the random access performance for the different configurations.
The results indicate a large performance benefit for small read accesses (up to
256 bit) for the DIRECT configuration, compared to all other configurations. This
is likely caused by the additional latency introduced by the SmartConnect as
shown in Figure 4. For small write accesses, all configurations achieve a similar
performance, as these are not affected by this additional latency. For wider
memory accesses the performance depends less on the latency, but more on the
maximum throughput of the AXI connection. Thus, the configurations DIRECT
and CD perform worse because in both of the cases where the PE-side has a
data-width of 256 bit, and is running at only 250 MHz. Therefore, the maximum
throughput is lower than the theoretical maximum of the HBM slave ports.

This shows that for our application, the best solution is omitting the Smart-
Connect (DIRECT), as we only use memory accesses with a size of 256 bit (see
Section 4).

Finally, Figure 5 shows that for this scenario of small random accesses, the
peak performance is reached around 200 MHz. Thus, for our design (see Section 4),
a clock frequency of 250 MHz suffices to achieve maximum memory performance.
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Fig. 4. Read access latency for the differ-
ent configurations. The addition of an AXI
SmartConnect for CD/DW/PV increases
the latency considerably.

Fig. 5. Random access performance for
clock frequencies ranging from 50 MHz to
450 MHz using the DIRECT configuration
and 256 bit wide memory accesses.

3 Hash Join

The join operation is common in relational databases for analytical processing,
and is frequently used in data warehouses and data centers [3,4]. Its purpose
is the merging of two relations into one, based on a shared key (Equi-Join). A
database query can include multiple join operations to combine information from
multiple tables. Such queries are especially prevalent in Data Warehousing [9],
where typical queries join a fact table with multiple dimension tables in order
to compute analytical aggregations. The fact table holds very fine-grained data
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(e.g., each entry could correspond to one order in a retail store data warehouse),
which causes the fact table to typically be orders of magnitude larger than the
dimension tables. The dimension tables include descriptive attributes of the
fact table, and as such need to be joined with the fact table in order to answer
analytical queries. While many join implementations exist, we chose to focus on
the no-partition hash join [1], as this is a commonly used and well understood
parallel hash join implementation.

Fundamentally, the join operation consists
of two steps: (1) building a hash table on the
join key of the smaller dimension table, and (2)
probing that hash table with the join key of
the larger fact table. In a query with multiple
joins, a hash table is built on each dimension
table such that the fact table can be probed
into each of the hash tables to produce the
query result. On a single-node system this ap-
proach works well if the main memory is suffi-
ciently large to hold the database tables, hash
tables and intermediate join result. However,
for large databases (such as data warehouses),
where tables are partitioned across multiple
servers in a cluster, the join cannot simply be
processed in parallel on each server without
network transfers.

DN

Traditionally, for processing such a dis-
tributed join, it must be ensured that tuples
which share the same join-key from two tables
are processed on the same server. This step
is referred to as shuffling (or re-partitioning),
and shown in Fig. 6 for three tables partitioned
across a number of servers «, 3,7, .... Given
the high chance that two tuples with the same
join-key do mot reside on the same server, distributed joins often incur heavy net-
work communication for shuffling, which typically dominates the overall runtime
of the join query. The bandwidth requirements for shuffling increase further when
the distribution of tuples in the shuffling step is not uniform, as some servers
then receive considerably more data than the others [8]. This skewed scenario
leads to high ingress congestion, which results in low overall system performance
and utilization.

Fig. 6. Traditional distributed
database join of the tables
A < B 1 C distributed across
multiple servers, requiring shuffles

As an alternative, we propose to execute the hash join following the In-
Network Processing (INP) paradigm, for which we realize a high-performance
hardware-accelerated INP-capable switch that is able to perform the two steps of
the hash join directly on data flowing to the switch, without the need for shuffles.

Figure 7 gives a complete example of both the hash join algorithm itself, as
well as the INP realization. It also foreshadows some of the design decisions for
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Fig. 7. Sample INP-style hash join over four tables, with data distributed over three
servers.
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the microarchitecture of the INP switch, e.g., the use of HBM to hold the hash
tables, further described in Section 4. Note that, for clarity, we use the foreign
keys A.b, A.c, A.d here explicitly in an SQL WHERE clause, instead of employing
the JOIN keyword. In this highly simplified example, we assume that each of the
three servers «, 3, holds just one row for each of the dimension tables, and just
two rows of the fact table A.

In the Hashing Phase, the three servers «, 3,y transfer the required contents
of the tables to-be joined to the switch. This happens in parallel across multiple
network ports of the INP switch, and is sensitive neither to the order of the
transferred tables, nor to that of the individual tuples. During this transfer, the
hash tables are built: For each key value, the hash function determines a bucket
where that tuple is to be stored in. In the example, the hash function distributes
the tuples across just two buckets per database table. The buckets for each
table are spread out across multiple memories for better scaling and parallelism
(further explained in Section 4). Hash collisions are resolved by having multiple
slots within a bucket, and using the first available slot to hold the incoming
tuple. Running out of slots in a bucket is an indicator that the switch memory
is insufficient to perform the specific join in INP mode, and a fallback to the
traditional join has to be used instead. The issue of these bucket overflows is
further discussed in Section 4.2 and Section 6. In Figure 7, the buckets and slots
used for the tuples incoming over the network are highlighted in the same colors.

Memory Access
Hash Req — 1 Hash Unit L?lnit HBM @
Probe Req — All Hash Units @ Slave Port

Split Requests
based on Address

Re-order .
FIFOs " T x32

Re-order + Distribute
Responses back
to Hash Units

| 5! Frame
SFP+ Parser/ @

Generator

. x16 L x16

Frame

—

SFP+ Parser/ @
Generator

HBM @
Ethernet Frame @ — Slave Port

SRC MAC (48b) | DST MAC (48b) | Eth type (16b) | Relation ID (8b)

JoinKeyID (8b) |Sequence # (32b)| # Tuples (32b) | Hashing? (8b) The HBM Slave Ports form a ’
continuous address space.

I/

(key, value), (key, value), (key, value), (key, value)

Fig. 8. Full system overview of the proposed INP Hash Join implementation. Hash and
probe requests from the 10G Ethernet ports (a) are forwarded to one of the Hash Units
(b). Each Hash Unit is responsible for creating one Hash Table. The Hash Units have
to access the 32 HBM channels (d), which is realized through specialized arbitration
units (c) that ensure routing. The auxiliary units are not shown. For the contents of
the Ethernet frame (e), only the relevant parts of the header are shown.

After the hash table has been built in the switch from just the columns of
the dimension tables B, C, D required for this specific join, the larger fact table
A is streamed in. As it, too, has been distributed over all of the servers «. ..,
this occurs over multiple network ports in parallel. Each of these tuples contains
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the three foreign keys for selecting the correct rows from the dimension tables.
The actual values are then retrieved by using the foreign keys to access the hash
table (bucket and slot), and returned by network to the server responsible for
this part of the join. Again, we have marked the incoming foreign keys and the
outgoing retrieved values in the same colors.

4 Architecture

The architecture presented here is a new design based on an earlier prototype,
which was implemented on a Virtex 7 FPGA, attached to two DDR3 SDRAM
channels [8]. That older architecture is capable of handling 20 Gbit/s of hash join
traffic, but is not able to scale beyond that, as the dual-channel memory can not
keep up with the random access demands. We present here a completely new
implementation of the same basic concepts, but redesigned to target a newer
UltraScale+ FPGA and fully exploit HBM. Figure 8 shows a high-level overview
of the system.

The new design can be broken down into four separate parts, which deal
with different aspects of the processing flow. Network operations are performed
decentralized in network frame parsers (Figure 8a). The incoming frames are
parsed into hash and probe requests, which are then forwarded to the actual
hash units (Figure 8b), where each unit is responsible for managing one hash
table. Next in the processing chain is the memory access unit (Figure 8c), which
coordinates the memory accesses coming from the hash units and distributes
them to the attached HBMs (Figure 8d). The results of memory accesses, namely
the join tuples in the Probing Phase of the algorithm, are collected, encapsulated
into network frames (8a), and returned to the server responsible for that part of
the distributed join result.

The Ethernet interfaces and frame parsers (Figure 8a) run at a clock frequency
of 156.25 MHz to achieve 10 Gbit/s line rate per port, while the rest of our design
runs at 250 MHz. As discussed in Section 2 this is sufficient to achieve the
maximum performance for the HBM in our scenario.

4.1 Network Packet Processing

The BittWare XUP-VVH card used in our experiments, contains four QSFP28
connectors, which can provide up to 100 Gbit/s each through four 25 Gbit/s links
in one connector. We use these links independently in 10 Gbit/s mode, allowing
in a maximum of 16 10 Gbit/s Ethernet connections. The data from each link is
transferred over an AXI Stream interface as 64 bit per clock cycle of a 156.25 MHz
reference clock. However, the receiving unit must not block. Hence, the units
processing the Ethernet data have to be lock-free.

To keep things simple in the FPGA, we directly use Ethernet frames and
omit higher-level protocols. The frame parsers (Figure 8a) can parse the frames
sequentially without needing any inter-frame state. Each frame starts with the
required Ethernet information, source and destination MAC, as well as the
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Ethernet type, followed by a hash-join specific, custom header. This header
contains information to identify the purpose of the frame (hash or probe), the
relation the frame belongs to, the number of tuples in the frame, and a sequence
number. The body of the frame contains a number of tuples. For a join with four
relations A, B, C and D, each tuple contains eight 32 bit numbers. In the hashing
case, the tuple contains only the key and value of the tuple to hash. In the
probing case, the first four values indicate the primary key (PK) of A, followed
by the foreign keys (FK) of the other relations (three 32b words in total, one for
each dimension tables used in this example). The following four values are the
corresponding values, which are actually used only in Probe replies. This common
structure for both requests and replies, with place holders for the actual result
data, was chosen since it keeps the ingress and egress data volumes balanced.

The frame parser retrieves the tuples from the network port and places
them in queues to be forwarded to the hashing units. A frame is dropped if the
queue is not sufficiently large to hold the entire frame. This avoids a situation
where the input channel would block. However, no data is actually lost: The
accelerator recognizes this case and explicitly re-requests the dropped data from
the server, identified by the sequence number and relation ID. When using eight
10G Ethernet connections, about 0.08% of all requests are re-requested in this
manner.

In the other direction, probe results are accumulated in a queue and sent
back to the source of the request in the same format as described before.

4.2 Hash Table

The hash tables are the core of the algorithm. To keep up with the demands
of the network, the hash units (Figure 8b) are highly throughput optimized.
Accordingly, the goal of this implementation is to keep the HBM slave ports as
busy as possible, as the random access performance is the limiting factor.

To clarify this, the following section presents a brief introduction to the hash
table algorithm employed. The insert algorithm requires four steps: (1) find the
bucket corresponding to the requested key, (2) request the bucket, (3) update
the bucket if an empty slot exists, and (4) write back the updated bucket. Hence,
every insert requires one bucket read and one bucket write. If the bucket is
already full, a bucket overflow occurs, and an extra resolution step is necessary
to avoid dropping the data (see below).

The probe step is simpler and requires only steps (1) and (2) of the insert
algorithm, with an additional retrieve step which selects the correct value from
the slots inside the bucket.

Performance-wise, step (1) is of paramount importance. A poorly chosen
mapping between the keys and the values results in lower performance, as
either the collision rate increases, or the HBM slave ports are not utilized fully.
Fortunately, latency is not critical at this point allowing a fully pipelined design.

Like any hash table implementation, this implementation has to deal with
collisions. As each HBM slave port is relatively wide (256 bit for HBM, see
Section 2) compared to the key and value tuples (32 bit each in our case), the
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natural collision handling method uses multiple slots per bucket. The number of
slots per bucket can be chosen relatively freely, but as the benchmarks performed
in Section 2 show, a bucket size corresponding to the width of one HBM slave
port is optimal.

For the specific case of database joins, it turns out that complicated bucket
overflow resolution strategies are not necessary, as the nature of the data itself
can be exploited instead: The keys used for accessing the hash table are actually
the database primary and foreign keys. This means that the keys are usually just
numbers ranging from 0 to N — 1, with N being the size of the relation. This is
especially common in read-only analytical database systems. Accordingly, the
values can simply be distributed across the available buckets by using a simple
modulo with the hash table size as hash function. For other applications, where
this is not the case, and the keys span a larger space, tools such as [13] can be
used to generate integer hash functions with good distribution behavior. In our
scenario, buckets will only overflow when the entire hash table is already full
anyway, resulting in an out-of-memory condition for this specific join.

The hash tables are placed interleaved in memory (see Figure 7) to let every
hash table use all of the available HBM slave ports. The design uses one Hash
Unit per hash table in the system, leading to three Hash Units in the system for
the proposed evaluation in Section 5.

4.3 Memory Access

However, the throughput-optimized spreading of data across all available memory
leads to the next problem: The memory accesses from the different hash units have
to be routed to the corresponding HBM slave ports (Figure 8d). Connecting the 32
available HBM slave ports requires additional logic. The naive approach of using
the vendor-provided interconnect solutions, which use a crossbar internally, is not
feasible. First of all, this approach would serialize the majority of requests, making
it impossible to fully utilize the HBM slave ports. Secondly, the interconnect
has to connect the three master interfaces of the Hash Units with the 32 slave
interfaces of the HBM, which results in a large and very spread-out layout, due
to the crossbar design of that interconnect. Such a design fails to be routed
at the high clock frequencies required to achieve optimal HBM random access
performance. Hence, a special unit is needed that arbitrates between the masters,
and allows efficient access to all HBM slave ports, while remaining routable.

The proposed design, shown in Figure 8c, takes memory requests from the
hash units and places them in separate queues. The following memory selection
step requires two stages to allow routing on the FPGA even with 32 slave ports:
The first step splits the incoming requests onto four queues based on their address.
Each splitter section handles the access to a sequential section of memory, which
corresponds to the placement of the HBM slave ports on the FPGA. The second
step then selects a request from the incoming queues using a fair arbiter, and
forwards the request to the corresponding HBM slave port.

For the return direction, the out-of-order answers from the HBMs have to be
re-ordered, as the Hash Units expect the answers to be in-order with its requests.
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This is done by keeping track of the order in which requests have been forwarded
to the HBM slave ports. When answers arrive, this queue is then used to ensure
that the answers are returned in the same order as they have been requested in.

5 Evaluation

The evaluation of the system focuses on two aspects: (1) The scaling of the
system itself across a number of ports, and (2) the performance compared to a
classical distributed database hash join system with multiple worker servers.

5.1 System Performance

The proposed system, hereafter referred to as NetJoin, is evaluated using the
TaPaSCo [7] FPGA middleware and SoC composition framework to generate
bitstreams for the BittWare XUP-VVH board. The Xilinx UltraScale+ VU37P
device on the board features 8 GB of HBM and up to 2.8 million ”Logic Elements”
in a three chiplet design.

Overall, we use only a fraction of the available resources on the VU37P. The
biggest contributor is our PE with about 17% of the available CLBs. A detailed
list of the resource usage of the PE, HBM, and the SFP+ connections is shown
in Table 1.

Table 1. Resource Usage for the PE, HBM and SFP+ controllers. The percentage of
the total available resources of this type on the VU37P FPGA is given in parentheses.

LUTs Registers CLBs BRAMs

NetJoin PE 135k (10.39%) 197k (7.56%) 28k (17.03%) 30 (0.33%)
HBM Controller 1.5k (0.12%) 1.6k (0.06%) 0.5k (0.33%) 0
SFP+ Interface 19k (1.48%) 31k (1.19%) 4.98k (3.05%) 0

The following benchmarks use a three table join scenario, where one fact table
A is joined with three dimension tables B, C and D. The first benchmark compares
the scaling of the system when varying the number of network interfaces. The
size of the dimension tables is kept at 100 x 10% elements, while the fact table
has 1.0 x 10° elements. The results, presented in Figure 9, show that the system
scales linearly up to six ports, and slightly less than linearly for seven ports.
This indicates that up to six ports, the system is able to fully keep up with the
line rate of 60 Gbit/s. Figure 10 shows the scaling for the phases (Hashing and
Probing) separately.

5.2 Baseline Comparison

The software baseline not using INP is executed on eight servers, each fitted with
an Intel Xeon Gold 5120 CPU @ 2.2 GHz and 384 GB of RAM. The servers are
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Fig. 10. Hashes and probes per second
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is up to three times faster, as it requires
only one memory read to perform. Hashing
on the other hand, requires one read and
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connected via 10G BASE-T using CAT 6 RJ45 cables to a Stordis BF2556X-1T
programmable switch. Furthermore, a master server with the same hardware is
used to control execution. The baseline system operates with eight SFP+ ports
on the switch, for a total maximum bandwidth of 80 Gbit/s.

As before, all the experiments join a fact table A with three dimension tables B,
C and D. The first experiment compares the scaling behavior of both approaches
for different fact table sizes with fixed dimension tables. The results in Figure 11a
show that even for small sizes of the relation A, the NetJoin approach is already
two times faster than the software baseline. As the intermediate results are
relatively small here, the shuffling step does not incur a big overhead in the
software baseline, but is nonetheless noticeable. For larger sizes, however, the
advantage of avoiding the shuffling steps by INP becomes more pronounced. In
the tested range, NetJoin-HBM is already three times faster than the baseline,
and its execution time grows slower than the non-INP baseline. Note that these
results represent the optimal scenario for the software baseline, as the keys are
equally distributed across all servers. Also, remember that the older DDR3-based
INP design from [8] cannot even keep up with the current software baseline,
which now uses considerably more powerful hardware than available in the earlier
work.

In the skewed case, where only a few servers have to do the majority of the
processing, the advantage of the INP approach over the baseline grows, even on
the older INP accelerator. In this scenario, one server receives 34.6% of the data,
a second server receives 23.1% of the data and the rest receives 15.4%, 10.2%,
6.9%, 4.6%, 3% and 2% respectively. As described in Section 3, this leads to high
ingress congestion and much sequential processing. The INP approach, on the
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Fig. 11. Comparison of NetJoin-HBM, the baseline running in software on eight servers,
and the older DDR3-based architecture from [8] which runs at 20 Gbit/s. Three joins
are performed with tables B, C and D at a static size of 100 x 10° tuples. The size of
relation A is varied.

other hand, does not suffer from this issue, and is able to process the data in
the same way as before. The results in Figure 11b confirm this observation. For
very small sizes of A, the NetJoin-HBM approach remains about two times faster.
Increasing the size of A shows that the skewed case is handled poorly by the
software baseline. At the highest tested table size, NetJoin-HBM is already 7.2x
faster than the baseline for the skewed scenario. For comparison, the unskewed
baseline is about 2.3x faster than its skewed counterpart.

6 Conclusion and Future Work

This work is motivated by the observation that the performance of an existing
FPGA-based INP switch architecture is mainly limited by the memory access
performance. To overcome this bottleneck, we propose an enhanced architecture,
which uses HBM instead of DDR memory. We show that by exploiting HBM, we
achieve more than three times the throughput of an older DDR3 SDRAM-based
INP accelerator for joins [8].

The design is currently limited by the size of the available HBM memory. As
most HBM-FPGA boards also still include DDR4-SDRAM, it would be possible
to increase the amount of available memory by using both memory types. However,
this would be a more complex architecture, due to the access differences between
HBM and DDR, and the necessity to partition the data between HBM and DDR.

Another issue of our current architecture is the possibility for write after read
errors. Considering the average response time of the HBM is 35.75 cycles, there
can be cases where a second read to the same bucket occurs before the earlier
write has been completed. The probability of this happening can be calculated
based on the probability of a collision happening depending on the number of
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outstanding requests, which is about 5.45 x 1076 [10]. For many data-analytics
applications, this error rate will be acceptable. However, in applications where
this chance for error can not be tolerated, a possible solution is the introduction
a cache-like approach for keeping track of the in-flight requests and handling
these avoiding the hazards (similar to MSHRs in caches).
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