SPNC: Accelerating Sum-Product Network
Inference on CPUs and GPUs

Lukas Sommer*, Michael Halkenhiuser®, Cristian Axenie!, Andreas Koch*
*Embedded Systems and Applications Group, TU Darmstadt, Germany
TIntelligent Cloud Technologies Laboratory, Huawei Munich Research Center, Munich, Germany
*{sommer, halkenhaeuser, koch} @esa.tu-darmstadt.de, fcristian.axenie @huawei.com

Abstract—Probabilistic models are receiving increasing atten-
tion as a complementary alternative to more widespread machine
learning approaches, such as neural networks. One particularly
interesting class of models are so-called Sum-Product Networks
(SPN), which combine the expressiveness of probabilistic models
with tractable inference, making them an interesting candidate
for use in real-world applications.

Yet, as Sum-Product Networks are a young class of machine
learning models, the software ecosystem is comparably sparse.
In this work, we enhance the ecosystem with a domain-specific
compiler that allows to easily and efficiently target CPUs and
GPUs for Sum-Product Network inference.

Using a real-world application of Sum-Product Networks, a ro-
bust speaker identification model, we showcase the performance
improvements our compiler can achieve for SPN inference on
CPUs and GPUs.

Index Terms—Sum-Product Networks, Machine Learning,
MLIR, LLVM, CPU, GPU

I. INTRODUCTION

Similar to other probabilistic models, Sum-Product Net-
works (SPN) are receiving increasing attention for their ability
to handle the uncertainty found in real-world scenarios better.
Yet, in contrast to more popular machine learning models
such as neural networks (NN), the software ecosystem for
Sum-Product Networks is comparably sparse, hindering their
deployment in actual applications.

Research libraries such as SPFlow by Molina et al. [1]
allow to train and construct Sum-Product Networks from data,
but their inference implementation in pure Python does not
leverage all hardware features of the target platform, e.g., CPU
vector extensions.

To address this problem, in this work, we enhance the
SPN ecosystem by developing a domain-specific compiler for
performing fast Sum-Product Network inference on CPUs and
GPUs. To this end, we develop a complete compilation flow
(Section IIT) based on the open-source MLIR [2] and LLVM
[3] frameworks. The flow is currently able to compile for
two main targets, namely x86 CPUs with vector extensions
and CUDA GPUs. On both platforms, the mapping strategies
implemented in the compilation pipeline make sure to employ
the target hardware’s features for fast inference.

To facilitate the integration of the compiler into the ma-
chine learning experts’ workflows, we develop an easy-to-use
Python interface that seamlessly interacts with the open-source
SPFlow [1] library for SPN training and modelling.

In the evaluation in Section IV, using a real-world applica-
tion of SPNs for robust automatic speaker identification, we
demonstrate how the compilation can accelerate inference by
up to a factor of 814x.

Furthermore, we provide necessary background information
on Sum-Product Networks in the next section, and discuss
related works in Section V.

II. SUM-PRODUCT NETWORKS

SPNs [4] are a relatively young class of probabilistic mod-
els. Similar to other probabilistic graphical models (PGM),
SPNs are able to efficiently handle real-world uncertainties,
such as missing feature values. In contrast to most neural
network architectures, SPNs are also able to quantify uncer-
tainty over the output. An overview of modelling approaches,
learning algorithms and practical usage examples of SPNs can
be found in the survey by Paris et al. [5].

Sum-Product Networks capture the joint probability of a
set of variables (i.e., features) in the form of a directed
acyclic graph (DAG). Regardless of the application and the
underlying data, the DAG is always composed from three
different types of nodes. At the bottom of the DAG, so-called
leaf nodes capture the univariate probability distribution of a
single variable/feature.

Further up in the graph, a combination of product nodes
and weighted sum nodes is used to capture the joint prob-
ability distribution. Product nodes represent factorizations of
independent variables, weighted sum nodes, on the other hand,
represent a mixture of distributions. The structure of the SPN
depends on the distribution of the underlying data, and can
either be learned from data, or be hand-crafted, followed by
just parameter learning. A small example of an SPN graph is
shown in Fig. 1.

After a valid SPN graph has been obtained, the SPN can be
used to solve machine learning tasks, such as classification,
by performing inference on the graph. To this end, the SPN
DAG is traversed bottom-up (starting at the leaf nodes). The
univariate leaf nodes are queried using the partial or full
evidence specified as input. After that, the probability values
are propagated upwards, until eventually a single probability
value is obtained at the root node.

The compiler developed in this work aims to accelerate the
inference in Sum-Product Networks by efficiently mapping
them to different hardware targets. Learning of the SPN is



w7 i ws
IC R
+ + A +

W1 A W ws A wa ws ®_ W6

N DNV MDD N NN AN

Fig. 1. Example of a Sum-Product Network graph.

assumed to have taken place beforehand, using a standard
Sum-Product Network framework such as SPFlow [1].

III. COMPILATION FLOW

The general approach in this work for generating code for
the fast inference in Sum-Product Networks is to compile the
inference on a given SPN down to target-specific code with a
compilation flow based on the open-source MLIR framework!.
A detailed description and background information of MLIR
and its design can be found in [2].

Independent of the compilation target, the same interface
(Section ITI-A) and target-agnostic part of the MLIR pipeline
(Section III-B) are used. After that, the remaining, target-
specific MLIR pipeline and compilation steps are used to
produce an executable for the respective target (Section III-C
& and Section III-D), which can then be loaded by the runtime
component (Section III-E).

A. Python Interface

To seamlessly integrate with the SPFlow library [1], the
compiler offers a Python-based interface. The Python interface
is implemented using Pybind112. For efficient exchange of
SPN models between the Python interface and the compiler,
implemented in C++, a binary serialization based on the open-
source Cap’n Proto® library was implemented.

The Python interface is also used for the runtime component
(Section III-E). As Pybindll has full support for numpy
arrays, input data for execution can simply be provided as
numpy arrays, and the result data will likewise be returned as
a numpy array.

B. Target-Agnostic Pipeline

The target-agnostic part of the MLIR pipeline uses two
SPN-specific dialects. The HiSPN dialect’s design closely
resembles the representation used internally by SPFlow and
captures an SPN model on a high-level of abstraction. The
binary serialized SPN model is directly de-serialized to the
HiSPN dialect.

After that, the HiSPN module is lowered to the second
SPN-specific dialect called LoSPN. This dialect represents the
computation necessary for computing an SPN inference query
on the given DAG as a Kernel comprising one or multiple
Tasks, which in turn contain the SPN operations. The LoSPN
module is the starting point for the target-specific flows.

Thttps://mlir.llvm.org
Zhttps://github.com/pybind/pybind11
3https://capnproto.org/

C. CPU Compilation Flow

For CPU compilation, the LoSPN Tasks and Kernel are low-
ered to functions, which contain code to process the query for
a single or a batch of input samples. To this end, a combination
of multiple dialects, which are part of the MLIR framework,
is used. If requested by the user, the CPU compilation flow
will also perform vectorization. Here, the use of the MLIR
framework and its ability to capture an application’s high-level
structure allow the compiler to reliably perform vectorization
and optimizations. Afterwards, the MLIR module is translated
to LLVM IR and the LLVM backends are used to generate an
executable, which, if requested, is linked with vector libraries
such as Intel SVML or Libmvec for efficient implementations
of elementary functions (e.g., 1og). The use of LLVM allows
the compiler to target any CPU for which a LLVM backend
is available, vectorization support is currently limited to x86
(AVX, AVX2).

D. GPU Compilation Flow

When targeting GPUs, the LoSPN Tasks are lowered into
GPU device functions, while the Kernel is lowered to host
code that controls GPU device execution and memory transfers
between host and device. Similar to the CPU flow, a com-
bination of multiple MLIR dialects is used to represent the
computation and SIMT execution model on the GPU. Later,
the GPU and host portions of the code are separated. While
the host portion undergoes a similar process as the CPU flow,
eventually yielding a executable that, at runtime, will load and
execute the GPU code, the GPU portion is first translated to
NVVM IR. Using LLVM’s PTXAS backend, this NVVM IR
is translated to PTX assembly and, after that, to a CUDA GPU
binary (CUBIN format) through Nvidia’s CUDA tools.

E. Runtime Component

As described in Section III-A, triggering the actual infer-
ence, using the compiled kernel, is also possible through the
Python interface. For seamless integration with the Python
workflow, the interface supports numpy arrays. The runtime
component is then responsible for loading the compiled kernel
and managing execution.

When targeting CPUs, the runtime component will also
break down the set of inputs into multiple subsets and manage
concurrent execution on independent subsets using OpenMP.

The compiled kernels are also cached in the runtime to
accelerate repeated invocations of inference.

IV. EVALUATION

Our goal is to evaluate our compiler with a real-world
application of Sum-Product Networks, therefore we are using
the SPNs from [6] for our evaluation. In this work, Sum-
Product Networks are used to perform automatic speaker
identification, outperforming two CNN-based approaches for
speaker identification with regard to robustness.

For our evaluation, we are going to use two different
scenarios from the paper by Nicolson et al. [6], namely the
identification on clean speech samples (245567 samples) and



Tensorflow - CPU » 1.5x

Tensorflow - RTX2070 » 1.4x

CPU, No Vec. 564x

CPU + AVX2 801.3x

GPU - RTX2070 352.2x

o

200 400 600 800
Speedup over SPFlow

Fig. 2. Performance comparison for clean speech samples, given as speedup
over execution in SPFlow.

identification on noisy speech samples with marginalization
(1227835 samples). In both cases, 628 SPN models are evalu-
ated, one for each speaker, which have been reproduced using
the open-source release of the speaker identification by Nicol-
son et al.*. A sample comprises 26 features, each encoded as
single-precision floating point value. We use computation in
log-space to avoid deviation from the original result, using
single-precision floats as the underlying data type.

All experiments are conducted on a machine with an AMD
Ryzen 9 3900XT CPU equipped with 32 GB RAM and an
Nvidia RTX 2070 Super GPU with 8 GB RAM, running
Ubuntu 20.04 with kernel version 5.8, CUDA 11.2 and the
CUDA driver version 460. We use GLIBC Libmvec version
2.31 as vector library.

In all experiments using our compiler, we measure the
execution time from Python, i.e., the execution time always
also includes the invocation overhead of the Python interface
in addition to the actual execution time. We track compilation
time and execution time separately (also for Tensorflow). The
average compilation time for CPU is 3.3s (max. 18s) and for
GPU 1.7s (max. 4.1s). The translation of the SPFlow graph to
a Tensorflow graph takes 8.6s on average (max. 14.5s).

A. Performance Comparison

For performance evaluation, we will compare the execution
time of the compiled kernel against SPFlow’s performance
when executing in Python and when translating and executing
a Tensorflow graph (on both CPU and GPU).

For the CPU compilation flow, the comparison includes the
configuration not using vectorization on CPU, and compiling
for CPU using vectorization and a vector library for opti-
mized implementations of elementary functions (e.g., 10g) on
AVX2. For the GPU, a batch size of 64 is used, determined
through a simple grid-search. Fig. 2 shows the performance
comparison for the clean speech samples, the plot gives the
speedup over the Python execution in SPFlow. The speedup
achieved by translating the SPFlow graph to a Tensorflow

“https://github.com/anicolson/SPN-ASI

CPU, No Vec. 482.3x

CPU + AVX2 814.8x

GPU - RTX2070 524.7x

=]

200 400 600 800
Speedup over SPFlow

Fig. 3. Performance comparison for noisy speech samples, given as speedup
over execution in SPFlow.

graph is relatively low on both CPU (geo.-mean 1.5x) and
GPU (geo.-mean 1.38x), as the graph is still broken down into
individual operations that are launched through the Tensorflow
runtime.

In contrast, SPNC achieves an average speedup of 564x,
even without vectorization. While the speedup does not in-
crease linearly with the vector size, because the initial load-
ing of values into vector registers requires significant effort,
vectorization still increases the speedup to 801x with AVX2.
Compilation for the GPU achieves an average speedup of
352x.

Fig. 3 shows the same comparison for the noisy speech sam-
ples, using marginalized inference. Unfortunately, the transla-
tion to Tensorflow graphs, which is currently part of SPFlow,
does not support the marginalization necessary for the noisy
speech samples, so no bars for Tensorflow can be included
in this plot. When compiling for CPU, SPNC again achieves
large speedups, with an average of 482x without vectorization
and 814x with vectorization for AVX2. In this comparison,
the GPU executable outperforms the CPU executable without
vectorization with a mean speedup of 524x, as more samples
are available for simultaneous processing.

The reason why the executable for the GPU drops behind
the executable with vectorization in both comparisons is data
movements between host and device, which in both cases make
up for more than 60% of the execution time. So even though
the execution on the GPU itself is very fast, the data movement
overhead, which is not present when compiling for CPU, leads
to a higher overall execution time.

Despite that, use of SPNC for CPU and GPU provides
speedups of multiple orders of magnitude in comparison to
SPFlow’s Python-only evaluation, benefiting ML experts when
running inference on Sum-Product Networks.

V. RELATED WORK

To the best of our knowledge, the compiler presented in this
work is the first compiler for Sum-Product Networks, enabling
efficient inference on multiple hardware platforms.



For creation, training, inference, and experimentation with
Sum-Product Networks, a number of libraries have been
proposed over the years. The two most popular ones, according
to the survey conducted by Paris et al. [5], are SPFlow’ [1]
and libspn6 [7].

SPFlow allows users to either programmatically create an
SPN or learn it, including its structure, from data. It also
supports inference on the obtained SPN, either in pure Python,
or, for a limited number of cases, through a translation to
a Tensorflow graph and execution of that graph. As our
evaluation in Section IV has shown, our compiler significantly
outperforms both variants. Because SPFlow is so popular
among SPN researchers, we have decided to integrate our
compiler with it, allowing users to feed SPNs learned with
SPFlow directly to our compiler, and perform inference with
the compiled kernel, using our Python interface for both steps
(cf. Section III-A).

Libspn also allows to perform parameter learning and in-
ference for SPNs, again through translation to a Tensorflow
graph, which has yielded suboptimal performance in our
evaluation in Section IV.

Another interesting approach to efficient training and in-
ference for SPNs is through tensorization of the SPN graph,
as shown in [8] or [9]. However, these implementations are
limited to weight learning, with the structure of the SPNs
being subject to additional constraints, whereas our compiler
can process SPNs with arbitrary DAG structure.

As custom hardware architectures for inference in machine
learning models such as neural networks have already demon-
strated great potential, we have developed a custom, FPGA-
based inference accelerator for Sum-Product Networks in prior
work [10], [11]. However, as the automatically generated
accelerator uses a fully spatial hardware layout, the maximum
size of SPNs that can be mapped to the FPGA is limited by
the available hardware resources to sizes significantly smaller
than the SPNs evaluated in this work, and the flow does not
support Gaussian distributions.

VI. CONCLUSION & OUTLOOK

In this work, we have presented SPNC, a domain-specific
compiler for fast inference in Sum-Product Networks. The
implementation of SPNC is based on the open-source MLIR
framework, which, by providing common infrastructure for the
design of intermediate representations and suitable abstrac-
tions for different hardware platforms, facilitates the imple-
mentation of domain-specific compilers.

SPNC was designed as a valuable addition to the Sum-
Product Network ecosystem, and to provide fast inference to
ML experts and researchers working with Sum-Product Net-
work models. To this end, SPNC can seamlessly integrate with
SPFlow, a popular open-source library for SPN construction,
learning, and representation, through its Python interface.

In our evaluation, using an SPN-based robust automatic
speaker identification as an example of a real-world application

Shttps://spflow.github.io/SPFlow/
Shttps://www.libspn.org/

of Sum-Product Networks for an ML task, the comparison
with the currently available inference mechanisms in SPFlow
showed that SPNC can achieve a speedup over SPFlow of a
factor of up to 814x when compiling for CPU with AVX-2
vector extensions, and up to a factor of 524x when compiling
for CUDA GPUs.

In the future, we plan to support even more hardware
platforms, such as ARM SVE and AMD GPUs through
SPNC’s MLIR-based compile flow.

AVAILABILITY

SPNC is available as open-source software under the
Apache v2 License on Github’. In the releases section on
Github, pre-built packages for Linux systems can be found
for download and installation via Python pip.

ACKNOWLEDGEMENTS

Calculations for this research were conducted on the Licht-
enberg high performance computer of TU Darmstadt. This
research was partially funded by the German Federal Ministry
for Education and Research (BMBF) with the funding ID ZN
01|S17050.

REFERENCES

[1] A. Molina, A. Vergari, K. Stelzner, R. Peharz, P. Subramani, N. D.
Mauro, P. Poupart, and K. Kersting, “Spflow: An easy and extensible
library for deep probabilistic learning using sum-product networks,”
2019.

[2] C.Lattner, M. Amini, U. Bondhugula, A. Cohen, A. Davis, J. A. Pienaar,
R. Riddle, T. Shpeisman, N. Vasilache, and O. Zinenko, “Mlir: Scaling
compiler infrastructure for domain specific computation,” in CGO 2021,
2021.

[3] C.Lattner and V. Adve, “LLVM: A Compilation Framework for Lifelong
Program Analysis & Transformation,” in Proceedings of the 2004 Inter-
national Symposium on Code Generation and Optimization (CGO’04),
Palo Alto, California, Mar 2004.

[4] H. Poon and P. Domingos, “Sum-product networks: A new deep archi-
tecture,” in 2011 IEEE International Conference on Computer Vision
Workshops (ICCV Workshops), 2011.

[5] L Paris, R. Sanchez-Cauce, and F. J. Diez, “Sum-product networks: A
survey,” 2020.

[6] A. Nicolson and K. K. Paliwal, “Sum-product networks for robust
automatic speaker identification,” 2020.

[71 A. Pronobis, A. Ranganath, and R. P. Rao, “Libspn: A library for
learning and inference with sum-product networks and tensorflow,” in
Principled Approaches to Deep Learning Workshop, 2017.

[8] R. Peharz, A. Vergari, K. Stelzner, A. Molina, X. Shao, M. Trapp,
K. Kersting, and Z. Ghahramani, “Random sum-product networks:
A simple but effective approach to probabilistic deep learning,” in
Proceedings of UAI, 2019.

[9] J. van de Wolfshaar and A. Pronobis, “Deep Generalized Convolu-

tional Sum-Product Networks for Probabilistic Image Representations,”

arXiv:1902.06155 [cs, stat], Sep. 2019.

L. Sommer, J. Oppermann, A. Molina, C. Binnig, K. Kersting, and

A. Koch, “Automatic mapping of the sum-product network inference

problem to fpga-based accelerators,” in IEEE International Conference

on Computer Design (ICCD). 1EEE, 2018.

L. Sommer, L. Weber, M. Kumm, and A. Koch, “Comparison of

arithmetic number formats for inference in sum-product networks on

fpgas,” in 2020 IEEE 28th Annual International Symposium on Field-

Programmable Custom Computing Machines (FCCM), 2020, pp. 1-10.

[10]

(11]

7https://github.com/esa-tu-darmstadt/spn-compiler



