
DExIE - An IoT-Class Hardware Monitor for Real-Time
Fine-Grained Control-Flow Integrity

Christoph Spang
spang@esa.tu-darmstadt.de

Embedded Systems & Applications
Group - TU Darmstadt

Darmstadt, Hessen, Germany

Yannick Lavan
Embedded Systems & Applications

Group - TU Darmstadt
Darmstadt, Hessen, Germany

Marco Hartmann
Embedded Systems & Applications

Group - TU Darmstadt
Darmstadt, Hessen, Germany

Florian Meisel
Embedded Systems & Applications

Group - TU Darmstadt
Darmstadt, Hessen, Germany

Andreas Koch
koch@esa.tu-darmstadt.de

Embedded Systems & Applications
Group - TU Darmstadt

Darmstadt, Hessen, Germany

ABSTRACT
The Dynamic Execution Integrity Engine (DExIE) is a lightweight
hardware monitor that can be flexibly attached to many IoT-class
processor pipelines. It is guaranteed to catch both inter- and intra-
function illegal control flows in time to prevent any illegal instruc-
tions from touching memory. The performance impact of attaching
DExIE to a core depends on the concrete pipeline structure. In
some especially suitable cases, extending a processor with DExIE
will have no performance penalty. DExIE is real-time capable, as it
causes only very few and then perfectly predictable pipeline stalls.
It is often faster than software-based monitoring and often smaller
than a separate guard processor. We present not just the hardware
architecture, but also the automated programming flow, and discuss
compact adaptable storage formats for fine-grained control flow
information.

CCS CONCEPTS
• Security and privacy→ Embedded systems security;Hard-
ware security implementation.

KEYWORDS
Fine-Grained Control Flow Integrity, RISC-V, Hardware Security,
Real Time, Low Overhead, IoT

ACM Reference Format:
Christoph Spang, Yannick Lavan,MarcoHartmann, FlorianMeisel, andAndreas
Koch. 2021. DExIE - An IoT-Class Hardware Monitor for Real-Time Fine-
Grained Control-Flow Integrity. InWorkshop on Design and Architectures
for Signal and Image Processing (14 th edition) (DASIP ’21), January 18–20,
2021, Budapest (initially), Hungary. ACM, New York, NY, USA, 9 pages.
https://doi.org/10.1145/3441110.3441146

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
DASIP ’21, January 18–20, 2021, Budapest (initially), Hungary
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8901-3/21/01. . . $15.00
https://doi.org/10.1145/3441110.3441146

1 INTRODUCTION
Internet of Things (IoT) devices have become omnipresent. Due
to their resource constrained nature, they often provide insuffi-
cient security, making them vulnerable to different categories of
code-reuse run-time attacks such as Return- and Jump Oriented
Programming (RoP, JoP) [1] [24]. We propose the Dynamic Exe-
cution Integrity Engine (DExIE), which defends against both of
these kinds of attacks. With minimally invasive changes, DExIE
can be easily attached to existing processor pipelines, which we
demonstrate on four very different RISC-V cores. In most cases, it
requires less area than the processor itself, thus making it more
attractive than using a second core acting as a guard processor for
the first one (which would incur 100% area overhead). The DExIE
architecture is guaranteed to always catch illegal control flow be-
fore illegal instructions are able to affect memory (which could be
disastrous in case of memory-mapped I/O devices). To do so, DExIE
causes only a very limited number of additional pipeline stall cycles
(we observed at most 10%) that are statically perfectly predictable.
The resulting execution behavior leads to very tight Worst-Case
Execution Time (WCET) computations and makes DExIE suitable
for monitoring real-time capable systems. A key contribution of
our work is the development of highly compact adaptable stor-
age layouts for fine-grained inter and intra-function control flow
information. Thus, even for small-scale SoCs, practically useful con-
figurations of DExIE require just 10-12% more on-chip memories
than an unmonitored system. In addition to the hardware architec-
ture, we also introduce a toolchain that can extract the Enforcement
FSMs (EFSMs), which lie at the heart of DExIE’s monitoring, from
generic ELF binaries. In most of the cases we examined, DExIE
monitoring incurs a wall-clock execution time slowdown of just
1.5-1.75x, which is better than pure software-based approaches that
often exceed 2x [4]. Some base processors are especially suitable
for DExIE monitoring, in that they incur neither a clock frequency
penalty, nor a wall-clock execution-time slowdown.

After covering related work (Section 2), the basic mechanism
and security considerations are presented in Section 3. Next, the
software toolchain and the transformation of code into DExIE EF-
SMs is discussed (Section 4.1). This is followed by our hardware
design (Section 4.2) and microarchitecture (Section 4.2.4). In the

26

https://doi.org/10.1145/3441110.3441146
https://doi.org/10.1145/3441110.3441146

DASIP ’21, January 18–20, 2021, Budapest (initially), Hungary Spang, Lavan, Meisel, Hartmann, Koch

final sections, we report evaluation results (Section 5), and conclude
looking to further work (Section 6).

2 RELATEDWORK
In case of JoP [1] and RoP [24] code-reuse attacks, an attacker first
analyses an application to collect a potentially large collection of
abusable code snippets (gadgets). After exploiting a program bug
as entry point, these gadgets are executed in an unintended order,
thus creating a malicious and under some conditions even Turing-
complete exploit without relying on the modification of existing
or insertion of new code. Discussed by [24], a traditional Address
Space Layout Randomization orW ⊕ E cannot fully mitigate such
temporal anomalies. As RoP attack gadgets are concatenated via
return address manipulation, a well-known and effective mitigation
is a shadow stack holding a duplicate [4] [20] or hash of the return
address [18]. By comparing the valid copy to the core’s computed
return address, manipulated return instructions are detected. In
contrast to RoP attacks, a JoP attack’s dispatcher gadget can be
located in the heap memory, thereby bypassing the shadow stack.
To stop JoP attacks, verification of inter- and intra-function Control
Flow Instructions (CFI) is an effective method that can be realized
in different ways, with DExIE being one alternative:

CFIGuard [27] is a software solution that uses Control Flow
Graphs (CFG) and x86-64 ISA hardware capabilities (Last Branch
Recording and PerformanceMonitoring Unit), for a fully-transparent
control flow integrity enforcement (CFIE) in Linux. By monitoring
only indirect branches (16.7 % of all branch instructions executed)
of four different server workloads, CFIGuard reports between 23.9 %
and 32.3 % memory overhead, and a maximum of 5.6 % performance
overhead. The limited performance overhead likely results from
the exclusion of monitoring direct control flow (CF) and the inclu-
sion of IO-time in the server benchmarks. Their constraints are
stored in sparse bitmaps. We started our own research using sparse
bitmaps, as well, to achieve higher speeds and to reduce logic over-
head, but gave up that approach due to an unreasonably high and
poorly-scaling memory overhead, which would render DExIE too
expensive for low-cost IoT devices lacking DDR memory. Instead,
one major contribution of DExIE is a fast, and at the same time,
compact encoding of CF constraints.

Dover Microsystem’s hardware uses a word-based tag-map with
instruction-level granularity [25]. These stateful tags are used for
CFIE with lower than CFG-granularity, but depending on the im-
plemented policies, their concept also covers memory safety and
dataflow integrity. The RISC-V Rocket core, used as an example,
executes C-based programs, which are compiled using an adapted
GCC toolchain. The “Inherently Secure Processor’s” (ISP) configu-
ration is also stored apart from the application, similar to DExIE’s.
Neither memory nor performance overheads are given by Dover in
the literature - we expect them to correlate with individual policies.
The use of caches in their design is a sign of both higher clock
frequencies, but also for unpredictable stalls, making the design
most likely real-time incapable. In contrast, DExIE’s tight encoding
is stored in BRAM and requires no caching, resulting in very few
and fully-predictable stalls.

Intel Tiger Lake cores introduce Intel Control Enforcement Tech-
nology (CET) [16], which is a combination of a shadow stack and

Indirect Branch Tracking. Additional CET instructions mark valid
branch target addresses of indirect branches. A hardware state-
machine verifies that each indirect CF is followed by an ENDBRANCH
and stops the program otherwise. No overheads for performance or
memory are given in the specification. We assume that their perfor-
mance overhead correlates with the number of inserted instructions,
which itself depends on the number of indirect CFIs.

The ARMv8.3 ISA [22], used by i.e., Apple and Qualcomm, im-
plements Pointer Authentication Codes (PACs) by repurposing
formerly unused address bits of 64 bit pointers. Each PAC’s value
is computed using a combination of target address, context and a
chosen key. Again, no overheads are given in the literature.

Alternatively, tags can be used to enforce more sophisticated
security models besides FSM logic. Li et al. [19] combine tight
instruction and memory tagging and deploy the Bell-LaPadula con-
fidentiality and the Biba integrity model. Their highly-specialized
solution’s memory overhead is around 3.13 %, and the logic, regis-
ter and mux overheads range between 9.01 % and 12.06 %, which
are all below DExIE’s overheads. Unfortunately stalls, real-time
capability and performance overheads are not discussed, and their
model cannot fulfill our portability and granularity requirements.

Security tags are often stored as additional instruction bits or a
new instruction type within instructionmemory. Both, the resulting
increase of word width and new instructions, require deep changes
of the individual core (Fig. 5 in [19]). This is sub-optimal for a
portable solution optimized for compatibility to many IoT cores.
Instead, DExIE only requires the tapping of few status signals, and
a stall, and a reset input. Its FSMs are stored in separated memories.
Thereby, all of the cores presented in Section 5 can be fitted with a
common DExIE implementation.

When loading tags together with the corresponding CF instruc-
tion or its target instruction, the constraints required for checking
only become available late during the instruction execution cycle
[19] [22]. In contrast, for each CFI, DExIE directly transitions to
the next CFI’s state and then waits there for the core to catch-up
executing intermediate straight-line code. As DExIE loads the new
constraints with the activation of the previous transition with single
or double-cycle latency, even without cache, the number of stall
cycles per CFI is reduced ideally to zero, see Section 4.2.4.

Tagging of only indirect CF is reasonable for reducing overheads,
but possibly insufficient, as [13] and [15] demonstrate attacks run-
ning on legal CFGs. Such attacks can also bypass DExIE’s standard
checking granularity with CFG-based EFSMs executing one EFSM
transition for any CFI (Section 4.1.1). Therefore, and depending
on the supplied EFSMs, DExIE supports going beyond CFG-grade
granularity, and implements an optional decoupling of function
identifiers (Global Address ID - GAID) and EFSM identifiers (EFSM
ID). For any function call (depending on the callers EFSM and state),
this allows to individually constrain a called function to an alterna-
tive even tighter EFSM. DExIE’s hardware also provides an option
for decoupling individual CF instructions (Local Address ID - LAID)
and their corresponding EFSM’s state (StateID). This enables al-
ternative constraints on any individual CFI depending on its state.
With functions corresponding to alternative EFSMs, and CFIs cor-
responding to alternative states, this variable granularity allows to
tighten the amount of legal CF paths, ideally down to one, thereby
mitigating any CF-attack based on even a single CF-derivation.

27

DExIE - An IoT-Class Hardware Security Monitor DASIP ’21, January 18–20, 2021, Budapest (initially), Hungary

Application: main() getR() main()

DExIE: EFSM #0 EFSM #1 EFSM #0
Runtime:

Call Ret

Figure 1: Active pairs of (function, EFSM) over time

This paper discusses DExIE in conjunction with auto-generated
CFG-based EFSMs that can optionally be hand-edited for finer gran-
ularity (Section 4.1).

3 MECHANISM & SECURITY
CONSIDERATIONS

DExIE by default uses one CFG-based EFSM per function to state-
fully constrain an application function’s legal CF. As we focus on
single-core RISC-V implementations, exactly one pair of EFSM and
software-function is active at any point in time (Fig. 1). In the hard-
ware, narrow bit-width numerical IDs are used to represent wider
CF target addresses, different EFSMs, and their states. DExIE has
been designed with the following in mind:

Attacker model: The attacker can (in)directly and arbitrarily
tamper with control flow instructions [1] [24].

Guarantees: DExIE will react to any CFI violating the currently
active EFSM. It will stop an attacker from calling (jumping, branch-
ing to) a violating code gadget (address). Using a small number of
predictable stalls, DExIE guarantees to react faster than the core
can execute any subsequent illegal memory write instruction.

Assumptions: DExIE is designed with a focus on code-reuse
attacks. A non-write-protected program memory would potentially
allow an attacker to exploit a software weakness (e.g. a buffer over-
flow) for replacing a function with malicious code. If the malicious
code had similar CF structure to the original, or lack any CF at all,
it potentially would not violate the active EFSM, and thus would
be undetectable. Therefore, we assume the existence of a mecha-
nism, e.g., a separate address space or a Memory Protection Unit,
to enforce read-only program memory for defending against code
injection attacks.

Real-time: DExIE is real-time capable. Specifically, this means
that a given code sequence will always take the same execution
time. The monitoring also introduces only very limited (if any)
stall cycles, that are also statically predictable, compared to an
unmonitored execution (Section 4.2.4 and 5).

4 IMPLEMENTATION
4.1 Software Toolchain
Our toolflow (Fig. 2) uses a conventional compiler to compile the
program code into an Executable and Linking Format (ELF) object
file. The object file is used twice: Using objdump it is converted
into a binary image, which is then executed by the RISC-V core.
The object file is also fed into the DExIE-Compiler, which gen-
erates DExIE’s EFSM and address-to-ID mapping configuration.
We make use of the freely available Capstone disassembly library
[6], which we utilize to reconstruct each function’s DExIE Code
Graph (DCG) from the CFG via static analysis (further details in
Section 4.1.1). We use this somewhat indirect approach to ensure
that the generated EFSMs match the actual machine instructions in

the binary executable file. The easier approach of constructing the
EFSMs, e.g., from the assembly-level instructions during compiler
code generation, might be inaccurate, as later tools, such as the
assembler or linker, could change the binary code again. Using a
later-explained set of transformation steps, the Capstone-generated
DCGs get converted into EFSMs. Next, 32 bit addresses are mapped
to narrow IDs, reducing DExIE’s memory overhead. Lastly, EFSMs
and mapping IDs are converted into a dense encoding, and stored
as a DExIE configuration image. This approach does not require
the original source code. However, in case of indirect control flows
(e.g., jump via register) that are not statically disambiguable, extra
code annotations or hand-annotated assembly are needed to define
the valid target(s).

DExIE’s hardware is not only compatible with EFSMs from static
analysis similar to [12], but already supports runtime-profiling-
based EFSMs generated using the Spike simulator [11]. Symbolic
execution is another possible source for EFSMs [2] [21].

4.1.1 Toolchain Details - Creation of EFSMs. Figure 3 shows an
example code-to-EFSM-transformation containing two functions
main() and getR(). Each column contains the result of different
stages in the DExIE toolflow.

Column (a) contains each function’s source code. Using a toolchain
like LLVM or GCC, the code gets compiled into an ELF file, contain-
ing the assembly code shown in Column (b). For reference, Column
(c) holds each function’s traditional compiler CFG. Its nodes contain
control flow instructions (CFI) and non-CFI (nCFI) and its edges
are intra-function CFI (jumps and branches). Column (d) shows
our refined DExIE Code Graph (DCG). Its nodes are code addresses.
Each edge represents a single CFI, or sequences of nCFIs. Based on
DCGs, Algorithm 1 constructs the Function-Local FSMs (FL-FSM)
(Column (e)). After getting interconnected, they become the Whole-
Program EFSMs actually being used for enforcement (Column (f)).
The automatically created result can optionally be hand-tightened
(e.g. deactivate edges, explicit states per loop run, or an alternative
FSM per call) for increased granularity.

Applying Algorithm 1 to getR() function’s DCG results in a
single-state EFSM. Its entry state is also the return state. Because the
function does not contain any CFI, the EFSM lacks any transitions.
For main(), these rules lead to the removal of nodes 164 (no CFI),
144 (another function) and 184 (no CFI). The result of the algorithm
are two FL-FSMs, which are shown in Column (e) of Figure 3.

The final transformation step performs the interconnection be-
tween FL-FSMs. The result can be seen in the figure’s last Column
(f). The purple intra-FSM arrow (e1) is split up into two arrows,
namely one call (f1) to the first state of the called function’s EFSM
and one return (f2) from its accepting state. As result, we create a
model consisting of two interconnected Whole-Program Enforce-
ment FSMs. The main function’s EFSM is capable of calling getR()’s
EFSM, which in turn allows to return back to main()’s EFSM. The
example demonstrates our concepts for intra- and inter-function
CF. It is an alternative to prior work, which deploys EFSMs for
inter-function CFI [23] or system calls [26] only, aiming for lower
overheads, but also coarsening the EFSM CFIE granularity.

This simplified example does not use compiler optimization,
and no optimization is performed on the EFSMs. Currently, for
inter-function CF, only Call and Return instructions are supported.

28

DASIP ’21, January 18–20, 2021, Budapest (initially), Hungary Spang, Lavan, Meisel, Hartmann, Koch

Program
Code

Compiler Toolchain
LLVM or GCC

ELF
Object File

Object
Copy

Binary
Image

RISC-V
Core

DExIE
Compiler

DExIE
Config. Image

DExIE

Build one
DCG per
function

Convert
DCGs to
EFSMs

Map CF
target Addr.

to IDs

Store
EFSMs and

Address Maps

Figure 2: Compilation into RISC-V and DExIE binaries: The DExIE Compiler reads the ELF file, constructs the DExIE Code
Graphs (DCGs) and EFSMs, performs the address-to-ID mapping, and writes the DExIE configuration image.

Algorithm 1: EFSM generation algorithm
1 Input: One DExIE Code Graph (DCG)
2 Output: One Function-Local FSM
3 for each DCG-node do
4 rename node to state;
5 if state is exit state then
6 mark state accepting, allow return to caller;
7 else if a state’s single out edge has no CFI then
8 delete state & out-edge, transfer in-edges & address

to next state;
9 else if state is located in other function then
10 delete state & out-edge, forward in-edge to next

state, assign state’s address to edge;

Thus, DExIE does not yet allow Branches and Jumps between func-
tions and EFSMs. Typically, these result from compiler optimiza-
tion for inter-function CF without stack interaction (e.g., tail-calls),
and have to be avoided for now as DExIE would misinterpret
them as CFIE violations and reset the core. We use the GCC flag
-fno-optimize-sibling-calls for deactivating the optimization of
sibling and tail recursive calls, and thus making DExIE compatible
with all other optimizations at the -O3 level.

4.1.2 DExIE Enforcement FSM (EFSM) Rules. Non-optimized non-
edited DExIE EFSMs (Column (f), Fig. 3) obey a set of basic rules:
Only one FSM and state is active at a time. Each function has
one EFSM. Each CF target address corresponds to one EFSM-state.
EFSM-states begin with a CFI, or alternatively the function’s first
instruction. Execution of a CF instruction always triggers an EFSM
state transition. EFSM-edges specify the legal transitions. In case
of a function call, an EFSM-state can call the first state of another
EFSM. States containing a return instruction are designated as
“accepting” states. A return instruction also reactivates the caller’s
EFSM at the correct state.

4.2 Hardware Architecture
4.2.1 System Architecture and DExIE Interface. Figure 4 shows a
sample RISC-V core with a common 5-stage RISC pipeline and
instruction and data memories. Early pipeline stages are fitted
with custom DExIE wire taps, to forward control flow information
to DExIE as soon as possible. DExIE needs the current Program
Counter (PC), the current instruction, and the next PC. As a first
step in monitoring, DExIE identifies control flow instructions. Next,
the current EFSM’s state’s legal transitions are retrieved from the
Transition Memory. Each transition contains a narrow Address ID,
which indexes one out of two address mapping memory tables in
order to determine the corresponding full-width legal CF target ad-
dress. Finally, the state’s transition addresses are compared against
the core’s next PC (CF target address). If a match is found, the CF is

a) C
Code

b) RISC-V
Assembly

c) Compiler
CFGs

d) DExIE Code
Graphs (DCGs)

e) Function-Local
FSMs (FL-FSMs)

f) Whole-Program
Enforcement FSMs

int getR(){
int i=42;
return i;
}

int main(){
int b=0;
if(b){
getR();
}
return 0;
}

144: <getR>
144-15c: non CFI
160: ret

164: <main>
164-178: non CFI
17c: beqz 184
180: jal<getR>
184-194: non CFI
198: ret

BB 1:
<144-160>

BB 1:
<164-17c>

BB 2:
<180>

BB 3:
<184-198>

144

160

non CFI

164

17c

180

144

184

198

non CFI

branch

non CFI

non CFI

call

ret

144-160
State 0

164-17c
State 0

180-180
State 1

184-198
State 2

(e1):
call 144,
ret

untaken
branch

taken
branch

144-160
State 0

164-17c
State 0

180-180
State 1

184-198
State 2

taken
branch

u. br.

(f1): call

(f2):
ret

EFSM #1

EFSM #0

EFSM #1

EFSM #0

Figure 3: From left to right: Two functions are transformed into interconnected whole-program Enforcement FSMs (EFSM).

29

DExIE - An IoT-Class Hardware Security Monitor DASIP ’21, January 18–20, 2021, Budapest (initially), Hungary

Instruction Memory

Data Memory

RISC-V Core

Fe De Ex Mem WB

Transition Table (TT)

Global Address Mapping (GAM) Table

Local Address Mapping (LAM) Table

DExIE
Identify

CF instruction
Transition
Lookup

Address validation &
EFSM transition

Stall
Reset

PC
Instr.

nextPC

Figure 4: RISC-V core with an attached DExIE monitor. The core provides the current PC, the current instruction, and the
next PC. For any CF anomaly, DExIE resets the core in time, thus prevents any subsequent malicious instruction from being
committed tomemory. Depending on the individual core’s signal taps, its pipeline structure, and its latency formemorywrites,
stalling the core mitigates latency-related security risks. With its close coupling to the monitored processor’s pipeline, DExIE
will also have far tighter, low-latency control than would be possible with a more loosely-coupled Guard Processor. DExIE’s
precise microarchitecture and latency (1-2 cycles) are discussed later in Section 4.2.4.

valid and the corresponding transition into the next EFSM and the
next EFSM state fires. For an unknown address, or non-matching
transitions, the CF is deemed invalid, and DExIE immediately resets
the core.

For the DExIE pipeline taps, we initially considered using stan-
dard interfaces [8][9][10] to attach DExIE to the core. But as these
interfaces only report retired instructions or instruction blocks,
respectively, they come too late and would lead to DExIE missing
its goal of detecting a violation earlier than the next instruction’s
commit, which might be a write instruction to a dangerous memory-
mapped device, having irreversible real-world impact.

4.2.2 Data Structures and Lookup Sequence. This section describes
DExIE’s configuration memories (Fig. 4) and refers to our previous
code example (Fig. 3) to discuss the correspondingmemory contents.
In addition, DExIE’s Shadow Stack (DSS) is introduced.

In Figure 5(a), DExIE’s on-chip memories are shown as grey
boxes (A), (B) and (C). For larger designs these could be extended
by cached DRAM memory, introducing new stalls. The transition
memory (A) contains a legal set of transitions for all states and
EFSMs (Transition Table, TT). A transition consists of activation
information (Boolean: branch or call, and an Address ID), as well as
the transition’s next EFSM and next EFSM state. Each inter- or intra-
EFSM CF-target address must be known in advance. In particular,
these addresses are stored in one of the two DExIE address mapping
tables, namely the (B) intra-function Local Address Mapping (LAM)
table, and the (C) inter-function Global Address Mapping (GAM)
table. Both tables are indexed by narrow Address IDs, and contain
one full-width address per index. Depending on its purpose, an
Address ID can either be a Local Address ID (LAID) or a Global
Address ID (GAID). Each EFSM has its own LAM table, but only a
single GAM table is used for the entire program. Again focusing on
the TT, notice the possibility for decoupling GAID and NextFsmID
(enabling independence of functions and EFSMs), as well as LAID
and NextStateID (enabling independence of CFIs and states), for an
optional refinement of CF granularity.

Next, we focus on the colors shown in Figure 5(a) to demonstrate
sample lookups. The yellow (untaken branch), green (taken branch),
and purple (call) colours correspond to the same-colored transitions
in Figure 3.

Yellow and green refers to the taken and un-taken branches
from State 0 of EFSM 0. First, the instruction is identified as function-
internal CF. Next, from the Transition Table (A) the LAIDs of the
current state’s (State = 0) transitions are both speculatively accessed
in parallel (LAID= 1& 2), and used to index the LAM Table (B) to
read the addresses 0x180 (untaken branch target) and 0x184 (taken
branch target). Finally, both addresses are compared against the
next PC computed by the core. In case of a match, DExIE performs
the corresponding EFSM-internal transition into EFSM 0 and State
1 or 2, as set by the jump decision.

The purple marker refers to the call in State 1 of EFSM 0. Anal-
ogously, the instruction is identified as inter-EFSM call. GAIDs are
read from the Transition Table (A). Each legal transition’s GAID
(here: GAID=0) speculatively indexes the GAM Table (C) to obtain
the corresponding legal target function entry point address (0x144),
which is then validated against the actual nextPC value to finally
transition into the entry state of EFSM 1. Called EFSMs are always
entered in their State 0. Thus, the call transition’s next State ID
entry is not used. Instead, in case of calls, DExIE repurposes the
entry to hold the Return State Identifier. This Return State ID is
temporarily stored on DExIE’s Shadow Stack (DSS) (Fig. 5(b)), and
indicates the caller’s EFSM’s state when the callee’s EFSM returns.

Return instructions are enabled via the DSS (Fig. 5(b)) - a second
independent stack, which is not accessible by the core, similar to
[20]. As in a traditional stack, entries are pushed and popped for
function calls and returns. As shown in the first column of Figure
5(b), each entry holds a copy of the RISC-V core’s return address.
The Columns 2 and 3 show that each entry also contains DExIE’s
return EFSM ID and Return State ID. For any call transition, like
the one described in the previous example (Fig. 5(a)), DExIE pushes
this information onto the stack and enters the called EFSM’s entry
state. For a return from a previously called function, DExIE pops
the top-most entry, verifies the return address, and activates the
return EFSM in the given return state.

4.2.3 Optimization of Data Structures. In practice, our design im-
plements optimizations, which were not described in the simplified
example, but which significantly reduce memory requirements. For
hardware/software systems that do not fully exploit a 32-bit ad-
dress space, DExIE address entries within the GAM table can be
narrowed to match the extent of the address space actually used.

30

DASIP ’21, January 18–20, 2021, Budapest (initially), Hungary Spang, Lavan, Meisel, Hartmann, Koch

Legal CFIs
for FSM0:

EFSM 0, State 0
Instruction:
Untaken Branch
to: 0x180
EFSM 0, State 0
Instruction:
Branch to: 0x184
EFSM 0, State 1
Instruction:
Call to: 0x144

(A) Transition Table (TT)

State 0:
Br/
Call

LAID/
GAID

Next
StateID

Next
FsmID

Br
Br

LAID:1
LAID:2

1
2

0
0

State 1:
Br/
Call

LAID/
GAID

Next
StateID

Next
FsmID

Call
...

GAID:0
...

2
...

1
...

State 2:
No valid transitions except

ret from ret. state

(B) Local Address Map
(LAM)

0x164 <LAID: 0>
0x180 <LAID: 1>
0x184 <LAID: 2>

(C) Global Address
Map (GAM)

0x144 <GAID: 0>
0x164 <GAID: 1>
0xFFF <GAID: 2>

(a) DExIE’s memory contents: (A) Transition Table, (B) Local Address Mapping
(LAM) and (C) Global Address Mapping (GAM) tables.

Verify Ret. Addr. Specify caller’s EFSM and state
for a return

Ret. Address

0x00000184

<empty>

<empty>

Ret. EFSM ID

0 <main>

<empty>

<empty>

Ret. State ID

2 <Accept. State>

<empty>

<empty> St
ac
k
di
re
ct
io
n

(b) DExIE Shadow Stack

Figure 5: DExIE configuration memory contents (a) and Shadow Stack (b). Colors and contents correspond to Figure 3.

Next, our LAM table does not implement wide absolute, but narrow
function-local addresses, which can be sized to fit the largest func-
tion expected to be executed on this processor. Finally, un-taken
branches that transition into the current EFSM’s next state can be
encoded using just a single additional bit per state. This lazy-next-
state encoding (LNSE) requires sequential state IDs for subsequent
untaken branches, which is realized by a prior reordering of states.
When looking again at Figure 5(a), LNSE significantly reduces over-
heads for the TT and LAM tables, as the yellow transition to 0x180
is expressed by a single bit.

In the discussion so far, all tables were assumed to have the
same fixed sizes. By analyzing typical IoT baremetal applications
from the Embench benchmark suite, as well as a sample program
using Contiki-NG (an embedded OS) [7], we verified that common
applications contain a broad range of function sizes. This would
lead to wasted memory space in the "one size for all" approach,
since all memory blocks for TT and LAM tables would have to be
configured to fit the largest function’s EFSM number of the states.
Therefore, DExIE allows to dynamically re-partition its internal
memory at configuration load-time, right before the system boots.
Multiples of 2n are used to define the number of FSM-instances
and the number of states per FSM-type for up to four FSM-types.
For the experiments in Section 5, four different EFSM table sizes
(2, 16, 64 and 512 states), as well as 8,16,4, and 1 table instances of
these sizes are configured.

4.2.4 Microarchitecture and Parallel Table Lookups. In contrast
to our efforts, most related work (Section 2) focuses on solutions,
which are either not real-time capable, or do not explicitly guarantee
to stop execution earlier than any subsequent malicious access to a
MMIO device can happen [3].

The performance overhead of a CFIE monitor depends on the
dynamic frequency of CFIs. We express this as theCFRate , defined
as the number of CFIs per clock cycle. ACFRate = 1 indicates a CFI
every clock cycle, = 1/2 one every second clock cycle etc. Without
pipelining EFSM transitions, DExIE has a maximum CFRate, which
it can process without requiring stalls. This depends on the core-
specific latency between getting the data from the taps and when
DExIE has to make the valid/invalid decision. In case the core’s
CFRate is temporarily higher than DExIE’s, automatic stalls are
used, preventing DExIE from being overtaken.

Our actual microarchitecture targets at CFRates between 1 and
1/2 (Fig. 6). In order to achieve such high throughput/ low-latency
monitoring, speculative queries to our TT held in FPGA BRAM
are implemented, with a maximum number of legal CF targets per
EFSM state configured to 2. These accesses can be performed in
parallel using Dual-Ported BRAM. Therefore, this implementation
supports all directly addressed CFI, but limits indirectly addressed
CFIs to a maximum of 2 targets. Note that for more complex codes
using a larger number of indirect targets, DExIE can be configured
to either employ slower sequential lookups, or use multiple memory

Next Instruction is:

a) br/jump
CFRate = 1/2
Latency = 2

b) call
CFRate = 1
Latency = 1

c) ret
CFRate = 1
Latency = 1

Get valid LAIDs
from TT

Get valid next
states from TT

Get valid next
EFSMs from TT

Get valid GAIDs
from TT

Pop stack

LAM Table: LAID
to local address

GAM Table: GAID
to function addr.

Next PC == A or B?,
transition to
next state A or B,
request next TT

Next PC == A or B?,
transition into EFSM
A’s or B’s entry state,
push stack, req. next TT

Perform transition

Verify return address

LAID A
LAID B

Address A
Address B
Next PC

Next state A
Next state B

GAID A
GAID B

Address A
Address B

Next PC
EFSM A
EFSM B

Return state
Return EFSM

Expected return address
Next PC

Figure 6: DExIE’s microarchitecture: TT lookup before address mapping, TT BRAM is queried at transition time, two alterna-
tive CF targets are loaded in parallel to hide memory latency. BRAM reads are marked blue, LUTRAM reads green.

31

DExIE - An IoT-Class Hardware Security Monitor DASIP ’21, January 18–20, 2021, Budapest (initially), Hungary

blocks to perform multiple lookups in parallel. Another compiler-
based solution would be an additional splitting of valid targets by
constructing a binary tree of branches.

Fig. 6 shows DExIE’s operation at the microarchitecture level.
First, the CFI is identified as a branch/jump (a), call (b) or return (c).
In case of branches and jumps (a) at a CFRate up to 1/2, valid
LAIDs and their corresponding next states are read from the state’s
TT entry (queried in advance). The LAIDs index the LAM Table,
which provides both valid target addresses at the beginning of the
next cycle. Next, the valid addresses are compared against the next
PC address. If a match is found, the CF is valid, and DExIE requests
the next state’s TT entry and transitions to the current EFSM’s next
state. The call (b) mechanism is similar. The GAIDs of the valid
targets are read from the TT entry (queried in advance), which are
then used to combinationally index the LUTRAM-based GAM Table
to retrieve the corresponding function addresses. In parallel, both
target EFSM IDs are read from the TT entry. Finally, the RISC-V
core’s next PC address is compared to both legal addresses, and
if a match is found, the corresponding transition into the EFSM’s
entry state, as well as a stack push and the next state’s TT query,
are performed. Because the GAM Table holds far fewer entries than
all of the LAM Tables combined, the GAM Table is implemented in
LUTRAM, which is faster than BRAM, thus supporting aCFRate of
1. Returns (c) are also supported at aCFRate of 1: First, the DExIE
stack in LUTRAM is popped. DExIE transitions into that return
state in the return EFSM. In parallel, DExIE verifies the next PC
address by comparison with the popped valid return address.

5 EVALUATION
DExIE is evaluated in combination with different RISC-V cores
(Piccolo, PicoRV32, Taiga and VexRiscv). Each FPGA design’s clock
frequency, LUTs, Register and BRAM usage is compared to the
corresponding core-only implementation. We evaluate our design
using four benchmarks from Embench-IoT [5], which covers real-
world IoT tasks. In Figure 7, the benchmark’s corresponding EFSMs
are grouped by their number of states in multiples of 2n .

The size of DExIE’smaximum total configurationmemory should
be chosen to fit all applications that are expected to run on the pro-
cessor (here: the four benchmarks). At boot-time, the configuration
memory can then be re-partitioned to fit a specific application’s EF-
SMs. As all benchmarks need only one legal call and branch-taken
target per CFI, the evaluation configures DExIE to use only single-
instead of dual-ported memories.

All CPU cores are implemented as Processing Elements (PE) in
the Task Parallel System Composer (TaPaSCo) FPGA SoC frame-
work [14] [17] targeting the VC709 Virtex 7 device prototyping
board using Xilinx Vivado 2018.3 which, in our case, yields better
results than more recent versions. On the software side, we use
GCC 9.2.0 and Embench 0.5 Draft compiled at Embench default -O2
with RV32IM, but disallowing inter-function branches and jumps
(as described in Section 4.1.1) for DExIE. To find each design’s high-
est frequency, synthesis was run iteratively. Note that performance
baselines for the cores can be found in [14].

Figure 8(a) shows the achieved maximum clock frequencies for
the core-only and DExIE-extended implementations. As expected,
achieving DExIE’s strong security guarantee of preventing any
outside-world impact via MMIO-Devices, and at the same time stay-
ing real-time capable at CFRates between 1 and 1/2, often comes
at the price of a slower clock frequency. Using an asynchronous
reset, all cores but VexRiscv give DExIE two cycles of latency be-
tween sending their combined <PC, instruction, next PC>message
to DExIE, and the commit of the next instruction to the memory
interface, the point where the valid/invalid decision has to have
been made by DExIE. For all cores but VexRiscv, single-cycle stalls
only occur for back-to-back CFIs (which rarely occurs in typical
applications). VexRiscv is stalled an additional cycle, if a CFI is
followed by a memory write instruction.

Depending on the core’s size, which in turn varies with the scope
of the instruction set being supported (Table 1), LUT requirements
increase by 54% to 124%, as shown in Figure 8(b). The absolute
overhead depends on the core-specific interface and Vivado’s op-
timization algorithm, which duplicates logic for better timings.
Figure 8(c) shows an increased register usage between 2.24 and 7.04
kilobit. This is mainly caused by the GAM table being implemented
in LUTRAM. When comparing the BRAM cost of using DExIE (Fig.
8(d)), we use the minimal Embench target system as a baseline,
which has 64 kB data + 64 kB of instruction memories in BRAM.

The slight performance improvement for Piccolo is due to vari-
ations in the Vivado toolchain. Depending on the core, the per-
formance overhead ranges from 0% to more than 100% (Table 1).
PicoRV32 has been optimized for very high fmax and small area.
It thus is a "worst-case" for DExIE monitoring, which carries a
comparatively high area and performance overhead. At the other
end of the spectrum lies the Piccolo core, which carries a far lower
overhead and no performance slowdown. The percentage of DExIE’s
extra clock cycles for stalls ranges from 0% for the fast-clocking
and higher-latency PicoRV32, to 10.4 % for Taiga with its partially
independent execution units.

1 2 4 8 16 32 64 128 256 512
0
2
4
6

States per EFSM

#
EF

SM
s Aha-Mont64 Edn Matmult-Int Ud

Figure 7: Benchmarks and their corresponding EFSMs

32

DASIP ’21, January 18–20, 2021, Budapest (initially), Hungary Spang, Lavan, Meisel, Hartmann, Koch

Benchmark / Core Core’s ISA Aha-Mont64 Edn Matmult-Int Ud
w/o w w/o w w/o w w/o w

Piccolo RV32ACIMU 5.17 s 4.88 s 31.56 s 29.82 s 38.86 s 36.73 s 15.83 s 14.96 s
PicoRV32 RV32IM 17.43 s 40.88 s 23.75 s 55.70 s 24.40 s 57.20 s 16.32 s 38.28 s
Taiga RV32IMA 1.79 s 2.65 s 1.86 s 2.75 s 2.03 s 3.01 s 1.57 s 2.33 s
VexRiscv RV32IM 8.79 s 15.34 s 6.68 s 11.61 s 6.93 s 12.06 s 6.99 s 12.00 s

Table 1: Each core’s ISA aswell aswall-clock execution time per core and benchmark, without andwith theDExIE unit attached

Picc Pico Tai Vex
0
50
100
150
200
250
300

MHz

69

340

200
235

73

145 135 135

(a) Clock frequencies

Picc Pico Tai Vex
0
3
6
9
12
15
18
21
k

13.62

4.34 4.66 3.83

20.96

8.48 8.02 8.59

only core
with DExIE

(b) Look Up Tables (LUTs)

Picc Pico Tai Vex
0.0
2.5
5.0
7.5
10.0
12.5
15.0
17.5
20.0
kb

10.7

3.52 3.09 3.52

17.74

6.95
5.33

7.34

(c) Registers in Kilobit

Picc Pico Tai Vex
100
110
120
130
140
150
160
170
kB

132 128
136 140

148
142 142

154

(d) BRAM in Kilobyte

Figure 8: DExIE evaluation results: Clock frequencies, Look Up Tables (LUTs), Registers in Kilobit, BRAM in Kilobyte

6 CONCLUSION
DExIE is an on-chip low-overhead fine-grained CFIE monitor that
guarantees to react faster than a subsequent illegal instruction
may perform a memory write, blocking an attack’s potentially
irreversible malicious real-world impact. Its limited area and per-
formance costs often make DExIE a better solution than alternative
approaches, such as software instrumentation, or the use of a full-
scale guard processor. DExIE is especially attractive when it can be
attached to a suitable base pipeline. For such pipelines, which are
not primarily optimized for fmax, DExIE can operate with no clock
frequency penalty or wallclock slowdown. Because it is designed
with reduced latency in mind, DExIE causes no stalls for PicoRV32
and only few and fully-predictable stalls for other cores. In our next
steps, we will scale DExIE and its toolflow up to better support
multi-target indirect branches, interrupts, contexts, further reduce
overheads, and continue exploring another toolchain for finer than
CFG granularity, fully-utilizing DExIE’s capabilities.

ACKNOWLEDGMENTS
This research work has been funded by the German Federal Min-
istry of Education and Research and the Hessian Ministry of Higher
Education, Research, Science and the Arts within their joint sup-
port of the National Research Center for Applied Cybersecurity
ATHENE.

REFERENCES
[1] Tyler Bletsch, Xuxian Jiang, Vincent Freeh, and Zhenkai Liang. 2011. Jump-

oriented programming: a new class of code-reuse attack. 30–40. https://doi.org/
10.1145/1966913.1966919

[2] Frank Busse, Martin Nowack, and Cristian Cadar. 2020. Running Symbolic Ex-
ecution Forever. In Proceedings of the 29th ACM SIGSOFT International Sym-
posium on Software Testing and Analysis (Virtual Event, USA) (ISSTA 2020).
Association for Computing Machinery, New York, NY, USA, 63–74. https:
//doi.org/10.1145/3395363.3397360

[3] S. Das, W. Zhang, and Y. Liu. 2016. A Fine-Grained Control Flow Integrity
Approach Against Runtime Memory Attacks for Embedded Systems. IEEE Trans-
actions on Very Large Scale Integration (VLSI) Systems 24, 11 (2016), 3193–3207.

[4] Lucas Davi, Ahmad-Reza Sadeghi, and Marcel Winandy. 2011. ROPdefender:
A detection tool to defend against return-oriented programming attacks. In
Proceedings of the 6th International Symposium on Information, Computer and
Communications Security, ASIACCS 2011. 40–51.

[5] Div. 2019. Embench-Iot Github Repository. https://github.com/embench/
embench-iot

[6] Div. 2020. Capstone The Ultimate Disassembly Framework. http://www.
capstone-engine.org/

[7] Div. 2020. Contiki-NG: The OS for Next Generation IoT Devices. https://github.
com/contiki-ng/contiki-ngf

[8] Div. 2020. RISC-V Debug Specification. https://github.com/riscv/riscv-debug-
spec

[9] Div. 2020. RISC-V Formal Verification Framework. https://github.com/
SymbioticEDA/riscv-formal

[10] Div. 2020. RISC-V Trace Specification. https://github.com/riscv/riscv-trace-spec
[11] Div. 2020. Spike RISC-V ISA Simulator. https://github.com/riscv/riscv-isa-sim
[12] Chen et al. 2019. Automated Finite State Machine Extraction. In Proceedings of

the 3rd ACM Workshop on Forming an Ecosystem Around Software Transformation
(London, United Kingdom) (FEAST’19). Association for Computing Machinery.
https://doi.org/10.1145/3338502.3359760

[13] Evans et al. 2015. Control Jujutsu: On the Weaknesses of Fine-Grained Control
Flow Integrity. In Proceedings of the 22nd ACM SIGSAC Conference on Computer
and Communications Security (Denver, Colorado, USA) (CCS ’15). Association for
Computing Machinery, New York, NY, USA, 901–913. https://doi.org/10.1145/
2810103.2813646

[14] Carsten Heinz, Yannick Lavan, Jaco Hofmann, and Andreas Koch. 2019. A
Catalog and In-Hardware Evaluation of Open-Source Drop-In Compatible RISC-
V Softcore Processors. In IEEE Proc. International Conference on ReConFigurable
Computing and FPGAs (ReConFig). IEEE.

[15] H. Hu, S. Shinde, S. Adrian, Z. L. Chua, P. Saxena, and Z. Liang. 2016. Data-
Oriented Programming: On the Expressiveness of Non-control Data Attacks. In
2016 IEEE Symposium on Security and Privacy (SP). 969–986.

[16] Intel. 2020. Control-flow Enforcement Technology Specification, Rev.
3.0. https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-
enforcement-technology-preview.pdf

[17] Jens Korinth, Jaco Hofmann, Carsten Heinz, and Andreas Koch. 2019. The
TaPaSCo Open-Source Toolflow for the Automated Composition of Task-Based
Parallel Reconfigurable Computing Systems. InApplied Reconfigurable Computing.
Springer International Publishing, Cham, 214–229.

[18] Jinfeng Li, Liwei Chen, Qizhen Xu, et al. 2019. Zipper Stack: Shadow Stacks
Without Shadow. ArXiv (2019).

[19] Yang LI and Jun-wei LI. 2018. A Technique Preventing Code Reuse Attacks Based
on RISC Processor. DEStech Transactions on Computer Science and Engineering

33

https://doi.org/10.1145/1966913.1966919
https://doi.org/10.1145/1966913.1966919
https://doi.org/10.1145/3395363.3397360
https://doi.org/10.1145/3395363.3397360
https://github.com/embench/embench-iot
https://github.com/embench/embench-iot
http://www.capstone-engine.org/
http://www.capstone-engine.org/
https://github.com/contiki-ng/contiki-ngf
https://github.com/contiki-ng/contiki-ngf
https://github.com/riscv/riscv-debug-spec
https://github.com/riscv/riscv-debug-spec
https://github.com/SymbioticEDA/riscv-formal
https://github.com/SymbioticEDA/riscv-formal
https://github.com/riscv/riscv-trace-spec
https://github.com/riscv/riscv-isa-sim
https://doi.org/10.1145/3338502.3359760
https://doi.org/10.1145/2810103.2813646
https://doi.org/10.1145/2810103.2813646
https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-enforcement-technology-preview.pdf
https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-enforcement-technology-preview.pdf

DExIE - An IoT-Class Hardware Security Monitor DASIP ’21, January 18–20, 2021, Budapest (initially), Hungary

(08 2018). https://doi.org/10.12783/dtcse/CCNT2018/24682
[20] H. Ozdoganoglu, T. N. Vijaykumar, C. E. Brodley, B. A. Kuperman, and A. Jalote.

2006. SmashGuard: A Hardware Solution to Prevent Security Attacks on the
Function Return Address. IEEE Trans. Comput. 55, 10 (2006), 1271–1285. https:
//doi.org/10.1109/TC.2006.166

[21] Tran Nghi Phu, L. Hoang, N. Toan, Nguyen Dai Tho, and N. N. Binh. 2019.
C500-CFG: A Novel Algorithm to Extract Control Flow-based Features for IoT
Malware Detection. 2019 19th International Symposium on Communications and
Information Technologies (ISCIT) (2019), 568–573.

[22] Qualcomm. 2017. Pointer Authentication. https://www.qualcomm.com/media/
documents/files/whitepaper-pointer-authentication-on-armv8-3.pdf

[23] M. Rahmatian, H. Kooti, I. G. Harris, and E. Bozorgzadeh. 2012. Hardware-
Assisted Detection of Malicious Software in Embedded Systems. IEEE Embedded
Systems Letters 4, 4 (2012), 94–97. https://doi.org/10.1109/LES.2012.2218630

[24] Ryan Roemer, Erik Buchanan, Hovav Shacham, and Stefan Savage. 2012. Return-
Oriented Programming: Systems, Languages, and Applications. ACM Trans.
Inf. Syst. Secur. 15, 1, Article 2 (March 2012), 34 pages. https://doi.org/10.1145/
2133375.2133377

[25] G. T. Sullivan, A. DeHon, S. Milburn, E. Boling, M. Ciaffi, J. Rosenberg, and A.
Sutherland. 2017. The Dover inherently secure processor. In 2017 IEEE Interna-
tional Symposium on Technologies for Homeland Security (HST). 1–5.

[26] Nai Xia, Bing Mao, Qingkai Zeng, and Li Xie. 2007. Efficient and Practical Control
Flow Monitoring for Program Security. In Advances in Computer Science - ASIAN
2006. Secure Software and Related Issues, Mitsu Okada and Ichiro Satoh (Eds.).
Springer Berlin Heidelberg, Berlin, Heidelberg, 90–104.

[27] Pinghai Yuan, Qingkai Zeng, and Xuhua Ding. 2015. Hardware-Assisted Fine-
Grained Code-Reuse Attack Detection. In Research in Attacks, Intrusions, and
Defenses, Herbert Bos, Fabian Monrose, and Gregory Blanc (Eds.). Springer Inter-
national Publishing, Cham, 66–85.

34

https://doi.org/10.12783/dtcse/CCNT2018/24682
https://doi.org/10.1109/TC.2006.166
https://doi.org/10.1109/TC.2006.166
https://www.qualcomm.com/media/documents/files/whitepaper-pointer-authentication-on-armv8-3.pdf
https://www.qualcomm.com/media/documents/files/whitepaper-pointer-authentication-on-armv8-3.pdf
https://doi.org/10.1109/LES.2012.2218630
https://doi.org/10.1145/2133375.2133377
https://doi.org/10.1145/2133375.2133377

	Abstract
	1 Introduction
	2 Related Work
	3 Mechanism & Security Considerations
	4 Implementation
	4.1 Software Toolchain
	4.2 Hardware Architecture

	5 Evaluation
	6 Conclusion
	Acknowledgments
	References

