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Abstract—Programmable switches allow to offload specific
processing tasks into the network and promise multi-Tbit/s
throughput. One major goal when moving computation to the
network is typically to reduce the volume of network traffic,
and thus improve the overall performance. In this manner,
programmable switches are increasingly used, both in research as
well as in industry applications, for various scenarios, including
statistics gathering, in-network consensus protocols, and more.

However, the currently available programmable switches suffer
from several practical limitations. One important restriction is
the limited amount of available memory, making them unsuit-
able for stateful operations such as Hash Joins in distributed
databases. In previous work, an FPGA-based In-Network Hash
Join accelerator was presented, initially using DDR-DRAM to
hold the state. In a later iteration, the hash table was moved to
on-chip HBM-DRAM to improve the performance even further.

However, while very fast, the size of the joins in this setup
was limited by the relatively small amount of available HBM. In
this work, we heterogeneously combine DDR-DRAM and HBM
memories to support both larger joins and benefit from the far
faster and more parallel HBM accesses. In this manner, we are
able to improve the performance by a factor of 3x compared
to the previous HBM-based work. We also introduce additional
configuration parameters, supporting a more flexible adaptation
of the underlying hardware architecture to the different join
operations required by a concrete use-case.

Index Terms—HBM, FPGA, Hash Join, INP, In-Network
Processing

I. INTRODUCTION

The amount of data stored and processed using databases has
exploded in recent years. This is especially true for analytical
workloads, but also for many other applications. As a single
server is often unable to handle these huge amounts of data by
itself, distributed database systems are used to store and process
the information. A significant downside of this distributed
architecture, though, is the communication overhead incurred
when the required data is split across multiple nodes. While
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there are operations that can be executed independently on
each server, e.g., an SQL filter, several widely used database
operations require the exchange of data between the involved
nodes. One example for this type of communication-intensive
operation is the SQL join. Prior work has shown that these
operations do not benefit from distributed execution, and thus
limit the performance of the entire system [11].

One approach to cope with these communication-intensive
operations is the use of In-Network Processing (INP) [3, 6, 10,
12]. INP uses specialized switches which can be programmed
to execute a specific operation. By offloading the execution
of this operation from the involved nodes to the switch, the
volume of data sent over the network can often be reduced.
However, the current generation of programmable switches lack
large memories, making them unsuitable for memory-intensive
operations such as the aforementioned SQL join.

The authors of [9] have suggested to use an FPGA-based
INP-capable switch architecture, which can be integrated into
the Data Processing Interface (DPI) [7]. More recently, the
authors of [13] proposed an improved architecture using fast
HBM instead of DDR for better performance. However, this
improved version came with two problems: First, the available
amount of HBM is limited, putting a relatively low upper
bound on the table sizes for the join operation. Second, that
design had the potential for data races, leading to erroneous
entries in the join result under certain conditions.

Our first contribution beyond [13] is a significantly improved
hardware architecture, which can both handle larger joins
by being able to use large off-chip DRAM banks to retain
entries spilled from HBM, as well added synchronization
logic that can track all in-flight requests in the highly parallel
INP system, completely eliminating the risk of data races.
This new architecture thus guarantees correct operation under
all workloads. Then, we evaluate the performance of our
new architecture and compare it with both [9, 13]. Our
evaluation shows that the new architecture easily outperforms a
conventional eight worker distributed database setup not using
INP, and also improves the peak performance over [13] - which



used HBM as well - by a factor of 3x.
The remainder of this paper is structured as follows: In

Section II we present background information regarding the
use of HBM for efficiently handling random accesses, and
the internals of our SQL join implementation. Afterwards,
Section III introduces our suggested architecture combining
HBM and DDR, while Section IV discusses implementation
details of the central part of the architecture, the parallel
hashing units. Finally, we report the results of our evaluation in
Section V, and conclude with a discussion of some remaining
limitations and solution ideas in Section VI.

II. BACKGROUND

A. HBM

HBM is a fast on-chip dynamic memory which is available
on some FPGAs in the Xilinx UltraScale+ family of devices in
capacities of 4GB to 16GB. According to Xilinx datasheets [1,
14], the HBM achieves transfer rates of up to 460GB/s, making
it significantly faster than traditional off-chip DDR4-DRAM.
These high transfer rates are achieved using parallelism: The
HBM is actually not a single monolithic memory, but rather
consists of 32 independent ones. Each of these 32 memories
offers a capacity of 1/32 of the total HBM size, and can be
accessed via its own AXI3 slave port. These 32 AXI3 slave
ports use a data-width of 256 bit, and support a clock frequency
of up to 450MHz. However, this high clock frequency is
not always required: [13] shows that for the use case of
small, random accesses at a granularity of 256 bit, the peak
performance is already reached at 200MHz.

B. SQL Join

The join is a common SQL operation which is widely
used in relational databases for analytical processing and thus
also frequently occurs in data center settings [4, 5]. The join
operation merges a relation A with another relation B based
on shared join-keys. Multiple join operations can be chained
to merge more than two relations. While there are several
implementations for the join operation, we will focus on the
no-partition hash join [2] in this work, as this is a commonly
used and well understood parallel hash join implementation.

This implementation is divided into two steps: First, a hash
table is build with the contents of one of the relations. For this,
the smaller relation - the so-called dimension table - should be
chosen. Afterwards the hash table is probed using the entries
of the larger relation - the so-called fact table - producing the
result. When chaining multiple joins, it is possible to execute
each of the two stages in parallel for all joins.

Unfortunately, the execution of the join operation becomes
problematic in distributed database setups, where the contents
of the different relations are spread across multiple nodes
α, β, γ, . . . . In this case, it must first be ensured that tuples
with same join-key from the two relations are processed on a
single node. The traditional way to achieve this is by using a
shuffling (or re-partitioning) step before the execution of each
actual join as shown in Figure 1. This shuffling leads to heavy
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Fig. 1. Traditional distributed database join of the tables A ./ B ./ C
distributed across multiple servers α, β, γ, . . . , requiring shuffle operations.
HT stands for hash table.

network traffic, which will often dominate the overall runtime
of the distributed join.

To overcome this, we propose to execute the join operation
following the In-Network Processing (INP) paradigm, using
a custom high-performance FPGA-based INP-capable switch
which is able to execute multiple chained joins on data flowing
through the switch, thus eliminating the costly shuffles. The
rest of this section will explain our INP implementation of
the hash join algorithm in-depth, using the small example in
Figure 2 for reference.

In the highly simplified example, we assume that each of
the three servers α, β, γ holds just one row for each of the
dimension tables, and just two rows for the fact table A.

In the Hashing Phase, the three servers α, β, γ transfer the
required contents of the dimension tables to the switch. This
happens in parallel across multiple network ports of the INP
switch, and is sensitive neither to the order of the transferred
tables, nor to that of the individual tuples. The INP switch builds
the hash tables of the received tuples by applying the hash
function to the key to find the bucket number, and afterwards
stores the tuple in this bucket. Hash collisions are resolved
by having multiple slots within a bucket, and using the first
available slot to hold the incoming tuple. In Figure 2, the
buckets and slots used for the tuples incoming over the network
are highlighted in the same colors.

After the hash tables have been built, the Probing Phase
starts where the tuples of the larger fact table A are streamed in.
As it, too, has been distributed over all of the servers α, β, γ,
this again occurs over multiple network ports in parallel. Each
of these tuples contains the three foreign keys for selecting the
correct rows from the dimension tables. The actual values are
then retrieved by using the foreign keys to access the correct
bucket, finding the slot with the matching key, and returning
the result to the server responsible for this part of the join.
Again, we have marked the incoming foreign keys and the
outgoing retrieved values in the same colors.

III. ARCHITECTURE

In this section we present architecture, which improves upon
prior solutions [9, 13] in three key aspects: First, [13] had



Hashing Phase: Transfer dimension tables B,C,D to INP switch and store in Hash Tables

Probing Phase: Query INP switch with fact table A to retrieve join results via Hash Tables
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Fig. 2. Sample INP-style hash join over four tables, with data distributed over
three servers. For clarity the join keys A.b, A.c, A.d are explicitly stated in
a WHERE clause, instead of employing the JOIN keyword.

the, issue that read-after-write hazards could occur when a
second request to a specific bucket was started while the first
request to the bucket was still in-flight. While the probability
for these errors was rather low (5.45× 10−6) [13], due to the
large data sizes they still caused some incorrect results. Our
new architecture completely eliminates these errors by always
keeping tracking of in-flight requests.

Our second improvement concerns the maximum size of the
hash tables, and thus the dimension tables of the join operation.
In both [9] and [13] only 8GB of memory was available,
limiting the maximum size of the joins. Join operations
exceeding that size would lead to the INP join failing, which
would be reported to the database to redo the join in the
traditional manner. Our new architecture uses off-chip DDR4-
DRAM as a secondary memory to also support dimension
tables exceeding the HBM capacity.

And finally, our new architecture improves the overall system
performance by introducing a more parallel architecture.

The rest of this section will first give an overview of our

architecture. Afterwards, we present the functionality of the
different parts and how they interact. Due to the size and
complexity of our architecture, especially for the many internal
and external memory interfaces, significant optimization effort
was required in order to reduce the resource usage and get the
design through Vivado P&R at a reasonable clock frequency.
We will discuss the most important of these optimizations,
some of which are specific to the Xilinx UltraScale+ family
of devices, in the following text.

Furthermore, our architecture is highly configurable. We
will discuss the impact of the most important configuration
parameters, which will be typeset in this text as configuration
parameter (C) [1,2,4], e.g., with regard to the achievable
performance and the resource usage. Some of these parameters
also use a shorthand given in parentheses. Where applicable,
we show example values in square brackets.
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Fig. 3. Architecture overview with two hash units, four HBM ports and one
DDR4-DRAM interface.

Figure 3 presents an overview of our architecture. From
left to right, our architecture consists of three major parts:
The Network part, the Hash Units and the Memory Access
Unit. These will be detailed in Section III-A, Section III-B and
Section III-C respectively.

Our design uses two clock domains: The network part runs
at 156.25MHz - this is required by the external 10G network
ports - while the rest of our design runs at 250MHz. As stated
in Section II-A, the latter is sufficient to achieve the peak
performance of the HBM here, because our architecture uses
only 256 bit wide random memory accesses.

Two important configuration parameters affect the entire
design: Each Hash Unit manages one hash table, thus the
number of Hash Units (HU) [2,3,4] determines the number of
parallel (chained) join operations the design can execute. As
each Hash Unit has separate connections to the Network and
Memory Access parts, this parameter affects all parts of the
architecture.

The degree of parallelism (P) [1,2,4] determines the number
of requests each Hash Unit can handle in parallel per cycle,
and thus highly impacts the performance of the entire system.
To allow parallel operation, the Network part needs to provide
multiple requests per cycle to each Hash Unit, and the Memory
Access part must be able to handle multiple memory accesses
per cycle. Thus, the connections from the Hash Units to the
Network and Memory Access part shown in Figure 3 are actually
multiple independent connections, the number depending on the
configured degree of parallelism. For the rest of this work, we
will use the term channel when talking about these connections:



A single channel can transfer at most one data item per cycle
per direction.

A. Network

The Network part contains multiple Network Units, which
are grouped into P Network Groups, with each group having
one channel to each of the hash units in the design. This
ensures that the network part is able to provide sufficient
requests to fully utilize the parallelism in the hash units. Each
network unit connects to one of the external network ports
and is responsible for parsing incoming Ethernet frames and
forwarding the contained requests to the respective hash unit(s).

There are two types of requests: hashing requests contain a
key-value pair that should be added to a given hash table, and
probing requests, which contain several keys - one for each of
the dimension tables - which are used to probe the respective
hash table to find the matching value. Each Ethernet frame
contains multiple requests of a single type.

It is a hard requirement by the external network port and
vendor-provided Ethernet core that our network units never
block. The incoming data width and clock frequency are
determined by the Ethernet core as well: Our Network Units
must be able to handle 64 bit each cycle at 156.25MHz. We
use a large FIFO to buffer incoming requests before forwarding
them to the respective hash units. This allows us to hide small
stalls in the rest of the architecture without immediately having
to drop frames. The FIFO also synchronizes the requests
into the clock domain of the hash units. If there are too
many incoming requests, we need to drop frames to avoid
the FIFO filling up completely - which would stall further
frame processing. When a frame does need to be dropped, we
retain the sequence number of the dropped frame to re-request
the data from the original sender, ensuring that the requests of
the dropped frame are not lost, but will just be processed at a
later time.

In addition, the network units are also responsible for sending
probe results back to the sender. To allow this, each probe
request to the hash units contains the ID of the originating
network unit. This information is retained during execution of
the request, and then used to return the reply to the correct
network unit after completion. The network units collect these
responses and send them back to the external sender in the
same frame format as the incoming data.

B. Hash Unit

The Hash Units form the core of our architecture and
execute the algorithm presented in Section II-B. Each hash
unit is responsible for building the hash table for exactly one
dimension table, thus the number of hash units is equal to
the number of joins the design can process at once. As stated
earlier, this is an important configuration parameter in our
architecture.

Compared to previous work, the hash units have been heavily
modified and augmented with two major design goals:

First, the hash units are now able to keep track of all in-
flight requests to the memory. This is necessary to prevent

RAW data hazards when a specific bucket is accessed before
a modification of the same bucket is completed. Our solution
is similar to the miss status holding registers (MSHRs) used
in cache architectures. We also experimented with moving this
request-tracking functionality to near the HBM ports. However,
we did not find a solution ensuring correctness, while achieving
the required throughput with acceptable area efficiency.

Secondly, our new hash units are now able to process multiple
requests per cycle, matching the degree of parallelism. This
change allows us to improve the overall performance beyond
what was possible in previous work. The degree of parallelism
also affects the outside connections of the hash units. Namely,
it implies an equal number of channels from each hash unit to
the network and memory access parts.

As the hash units are the central part of our design, we
provide more details about their implementation in Section IV.

C. Memory Access Unit

The Memory Access Unit is responsible for connecting the
hash units with the available memory, namely the HBM and
off-chip DDR4-DRAM.

As explained earlier, each hash unit has multiple channels
to the memory access unit, matching the degree of parallelism.
However, it is not necessary to connect all channels of all hash
units to each HBM slave port: The available HBM is partitioned
evenly across all of these connections, thus each connection
only needs access to the HBM slave ports of its own partition.
With, e.g., two hash units and a degree of parallelism of two
for each unit, the 32 HBM slave ports are thus partitioned
evenly into 8 HBM slave ports per connection.

The memory access unit works as follows: It receives
memory accesses from the hash units, and forwards them to
the correct HBM port, depending on the address, and returns
the responses to the requester. The memory accesses from the
hash units also include a special Cache Line Index, which
needs to be preserved by the memory access unit, and then
returned with the response. The index is used to allow correct
out-of-order processing of the responses in the hash units.

While this functionality is straightforward, the implementa-
tion complexity of the memory access unit mainly stems from
two aspects: First, it is challenging to route the connections
to up to 32 HBM memories, while keeping the resource
usage reasonable and still provide good throughput. Thus it
is of paramount importance to keep the individual parts as
small and simple as possible. Second, the requirements on
the memory access unit depend on the degree of parallelism
and the number of hash units, as together these determine the
number of channels coming from the hash units, and thus
also how many HBMs ports need to be connected to each
channel. Therefore, the memory access unit is not a static
component, but is highly parameterized to be automatically
generated matching the current requirements. This also requires
corner-case handling, e.g., when the number of HBMs cannot
be equally partitioned across the channels. To this end, our
implementation is also able to share a HBM between two
channels, if required.



IV. HASH UNITS

A. Hash Table

The available HBM is divided into HU memory ranges, each
holding one of the hash tables. Each hash table contains a
number of buckets with four slots per bucket. The slots are
used for collision handling: if the first slot of a bucket is
already occupied, the data can be stored in the second slot.
Each slot can store a pair containing a 32 bit key and 32 bit
value. The number of four slots per bucket was chosen so that
the total width of a bucket matches the 256 bit access width of
a HBM port. To indicate empty slots we use the reserved value
-1. Our architecture will automatically initialize the memory
correctly before executing the join. The time required for this
initialization is not included in our evaluation, as it is negligible
compared to the total runtime.

If more than four tuples must be stored in a single bucket
due to collisions, a bucket overflow occurs. In this case, we
move the full bucket from the HBM to the DDR4-DRAM, and
thus have an empty bucket in the HBM again. In the probing
phase, we then also need to check the DDR4-DRAM for the
matching entry if it was not found in the HBM. The maximum
required size of one hash table is determined by the number of
entries in the dimension table and the size of a single hash table
entry. As our architecture uses 32 bit-wide keys and values,
the dimension table size is capped at 232 entries. Each entry is
64 bit wide, yielding a maximum of 232 ∗ 8B = 32GiB per
hash table. As long as the off-chip DDR4-DRAM is sufficiently
large to fully store the required number of hash tables, this
approach ensures that no data is lost and we always produce
correct results.

However, due to the performance gap between HBM and
off-chip DDR4-DRAM, extensively spilling buckets from HBM
to the DDR4-DRAM will severely reduce the processing speed
of our design.

The number of buckets per hash table depends on the
available HBM memory and the number of Hash Units in
the design. It can be computed by

#BUCKETS =
HBMSIZE

256 bit · HASHUNITS
(1)

For 3 hash units and 8GB of HBM, this results in a number
of around 90 million buckets per hash table. More details of
our hash table operations are explained in Section II-B.

B. Hash Unit Structure

Figure 4 shows the internal structure of one Hash Unit.
Incoming requests from the network ports are first forwarded
to the Hasher (1) which calculates the bucket for the request as
well as the HBM address of this bucket. There is a configuration
option use hash function which determines how the hasher
actually computes the bucket: If it is activated, the bucket is
computed as

bucket = hash(key) mod #BUCKETS

If it is deactivated, the hashing is skipped and only the modulo
operation is applied. The hash function can be skipped without

adverse effects when dealing with unique keys - which is
typically the case in database environments. Afterwards, an
entry in the Completion Buffer (2) is reserved. This is only
done for probing requests, as hashing requests do not require
a response to the sender. This reserve operation will return
a token, which is added to the request information. It will
later be used by the completion buffer to reorder the responses
according to the original request order.

The following steps require the requests to be grouped
by the most-significant bits of the HBM address. Up to this
point, they were grouped by their originating Network group.
Thus, the requests are first routed to FIFOs (3) depending
on their most-significant address bits, and then redistributed
(4) to the respective Request Cache (5). The token generated
by the completion buffer also contains information about the
originating network group, allowing the completion buffer to
return the result to the correct group after completion.

In contrast to traditional caches, the Request Cache does
not store data read from the memory for later accesses, but is
only used to keep track of the in-flight requests. However, it
works similarly to the miss status holding registers (MSHRs)
found in traditional caches. Thus we also use the well-known
cache-terminology where applicable.

Instead, the main task of the Cache is to prevent data hazards
when, during the hashing phase, a bucket is accessed again
before an earlier access has completed. The cache prevents
these hazards by storing the in-flight memory accesses in Cache
Lines (5.3), indexed by the lower bits of the bucket number.
As each cache line can only hold one entry, this will stall
subsequent requests to the same bucket until the first request
completes. The contents of a cache line include a valid bit,
the bucket, the key, and either the value (in the case of a hash
operation), or the completion buffer token (in the case of a
probe operation).

The request cache must be able to handle two events:
Incoming requests from the FIFOs (4), and responses from the
memory (6). The pseudo-code of these two operations can be
found in Listing 1.

Note the DDR4-DRAM accesses in lines 22 and 33, for
which a separate request cache exists. There is always only
one instance of this DDR request cache, independently of the
parallelism in the rest of the design. It operates similarly to the
caches discussed here, which handle the in-flight HBM requests.
Also, note that single a bucket may be spilled to DDR (l. 22)
multiple times during hashing, resulting in multiple instances
of this bucket in the DDR. Thus, queryDDR in line 33 can
actually result in multiple DDR reads: The DDR request cache
will go through all instances of this bucket, until a matching
pair is found.

Early experiments have shown that the number of cache
lines must be in the order of several thousands to achieve a
reasonable performance. Combined with the fact that it also
needs to be able to execute both functions shown in Listing 1
in each cycle, this gives rise to an implementation challenge:
Typically, the relatively small amount of memory for the request
cache would best be implemented in fast on-chip BRAM. But
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1 function insertRequest(request) {
2 line_index = getCacheLineIndex(request.bucket)
3 if (isCacheLineEmpty(line_index)) {
4 occupyCacheLine(line_index)
5 fillCacheLine(line_index, request)
6 // fetch bucket content from memory
7 // line_index will be preserved with the access
8 readHBM(request.bucket, line_index)
9 } else {

10 // do nothing
11 }
12 }
13 function handleReadResponse(data, line_index){
14 // extract original request from cache line
15 request = readCacheLine(line_index)
16 if (request.isHashing) {
17 // add (key, value) to empty slot in bucket
18 addPair(data, request.keyValuePair)
19 // write updated bucket to memory
20 if (isBucketFull(data)) {
21 // spill full bucket out to DDR
22 writeDDR(request.bucket, data)
23 // clear bucket in HBM
24 writeHBM(request.bucket, emptyBucket)
25 } else{
26 writeHBM(request.bucket, data)
27 }
28 } else {
29 // find matching pair in bucket
30 pair = find(data, request.key)
31 if (pair == null) {
32 // no match found
33 queryDDR(request)
34 } else {
35 // forward found pair to completion buffer
36 completeOutput(request.token, pair)
37 }
38 }
39 clearCacheLine(line_index)
40 }

Listing 1. Pseudocode for request cache operations.

two issues arise from this: First, when accessing BRAM, the
response - including the data when reading - is only available
in the following clock cycle. Secondly, BRAM at most allows
two memory accesses per cycle. This is not sufficient here:
When inserting a request, we need to read a cache line to
check if it is empty (l. 3), and write a cache line (l. 4,5). When
handling the memory response, we need to read the cache line

(l. 15), and clear it (l. 39).

To overcome these issues, we store the valid bit of the Cache
Lines separately using the Xilinx LUTRAM primitives, while
the rest is stored in BRAM. The LUTRAM primitive we use
stores up to 64 1-bit entries, allows one write operation and
up to three read operations per cycle. This means we can, e.g.,
use just 32 LUTRAMs to store the valid bits of 2048 cache
lines. Furthermore, when reading from the LUTRAM, the
data is available in the same cycle. This means the operations
accessing the valid bit (l. 3,4,39) need to access only the
LUTRAM, while the operations accessing the rest (l. 5,15)
access only the BRAM. With this approach, we require only
one read and one write per cycle to the BRAM, thus the two
available ports of the BRAM suffice. However, the valid bit
in the LUTRAM still needs to be written twice (l. 4,39) per
cycle, while a LUTRAM primitive only allows a single write
per cycle. In most cases this is actually not relevant, as the two
parallel write accesses will often target two different LUTRAM
instances. In the rare case where both writes need access to the
same instance, we need to delay one of them. It is not possible
to delay occupying a cache line (l. 4), because this could result
in incorrect behavior, as the cache line would be seen as empty
in the next cycle. However, it is possible to delay clearing a
cache line (l. 39), as this does not affect correctness.

Another issue arises, when the cache line, to which a new
request is mapped, is already occupied: In this case, the new
request is blocked until the previous request in this cache line
is completed (l. 10) - unfortunately this would by default stall
all following requests as well due to head-of-line blocking,
and thus significantly reduce the performance. To overcome
this, incoming requests are not stored in a single FIFO (which
causes the head-of-line blocking), but rather multiple Bucket
Group FIFOs (5.1). Each of these FIFOs is responsible for
a range of cache lines, and incoming requests are distributed
to the FIFOs accordingly. In each cycle, all FIFOs check if
the cache line of their first entry is currently empty - if so,
they indicate this to an Arbiter (5.2). This arbiter then uses a
round-robin approach to decide which Bucket Group FIFO is
chosen in each cycle, while giving priority to FIFOs that are
more than half full.



V. EVALUATION

For the evaluation of our architecture, we focus on two
aspects: First, we show the performance and scaling of our
system itself, comparing various configuration options with
regard to the degree of parallelism, the number of Hash Units,
and the effect of using the DDR4-DRAM as secondary memory
for handling HBM spills. We also examine the resource usage
for these different configurations. Afterwards, we compare our
proposed system to a classical distributed database setup using
eight servers, as well as the prior work from [9, 13].

For the evaluation of our architecture, we use special
hardware Benchmark Units which generate the network traffic
containing the requests for our design on the FPGA. These
benchmark units can be fine-tuned to generate the exact
load required, thus allowing us to more accurately measure
the performance of our system than when using software-
generated workloads., which often suffer from OS and PCIe
bus interference. In a real-world setup, the benchmark units are
just replaced by the connections to the physical network ports,
without any changes to our architecture itself. The benchmark
units are controlled via PCIe. Their programming options
include the number of active benchmark units and the sizes of
the dimension tables and the fact table. Each active benchmark
unit will then be assigned a portion of all dimension tables
and the fact table, and will then generate the hash and probe
requests from this partition in a random order.

For our evaluation we use the Bittware XUP-VVH board
with a Xilinx UltraScale+ VU37P FPGA having 8GB of HBM.
Our board carries two 128GB DDR4-DIMMs which we use
as secondary memory. For the external connections - including
HBM, DDR4 and the network ports - we rely on the TaPaSCo
[8] FPGA middleware and SoC composition framework.

A. Absolute System Performance

The performance of our system depends on the configuration
options. First, we explore the impact of the degree of parallelism
and number of Hash Units on the peak performance of our
architecture. For this experiment, the dimension table size is
fixed to 100× 106 entries, which can be stored completely in
HBM.

TABLE I
PEAK PERFORMANCE OF OUR ARCHITECTURE FOR DIFFERENT
PARALLELISM AND HASH UNIT CONFIGURATIONS, AS MILLION

OPERATIONS PER SECOND. THE NUMBERS IN PARENTHESES ARE THE
MINIMUM NUMBER OF 10G PORTS REQUIRED TO ACHIEVE THE

PERFORMANCE. THE PERFORMANCE OF [13] FOR HU=3 IS GIVEN FOR
REFERENCE.

Parallelism #HU=2 #HU=3 #HU=4

P = 2 474 (10) 462 (14) 470 (16)
P = 4 782 (20) 746 (20) 703 (20)
[13] 248

This allows us to measure the peak performance our
architecture can achieve, since it avoids the overhead for
spilling buckets to DDR4-DRAM. Table I shows the maximum
operations per second our architecture achieves for the probing

phase. We focus on the probing phase here, as it dominates the
runtime of the join in a typical setup with smaller dimension
tables, and a large fact table. However, the performance of the
hashing phase scales similarly.

Two key observations can be made: First, our proposed
architecture improves over [13] by a factor of 1.86x or 3x, for
a degree of parallelism of two or four, respectively. The slower
speedup scaling when increasing the parallelism from two to
four is due to the limited memory bandwidth: As the number
of HBMs on the chip is fixed, and the number of channels
between the hash units and the memory access unit grows,
fewer HBMs are available per channel. Thus, each individual
channel achieves a lower performance, as it is constrained by
its fraction of the total available memory bandwidth. Secondly,
the minimum number of 10G ports required to fully load our
architecture with requests increases with the number of hash
units. This is explained by the fact, that a probing request
contains one key for the fact table and one key for each
dimension table. Thus, the size of each probing request grows
with more hash units, resulting in fewer transferred requests
per second for a fixed network bandwidth, in turn needing
more 10G ports to reach the peak rate of requests per second.

1 3 5 7 9

Dimension Table Size (tuples) ×108

1

2

3

4
O

p
er

at
io

n
s

p
er

S
ec

on
d

×108

real theoretical

Probing

Hashing

Probing [9]

Hashing [9]

Fig. 5. Performance impact of using DDR4-DRAM for spilling buckets.
With a growing dimension table size, the number of spilled buckets increases,
putting more load on the DDR4-DRAM subsystem. The performance values
from [9] are given as reference.

In a second experiment, we measure the performance
impact when the off-chip DDR4-DRAM is used for spilling
hash buckets. We measured the performance of both phases
individually, using an architecture configured with three hash
units and a parallelism of two. The results are shown in Figure 5,
which also gives the performance of the DDR-only design of
[9] for reference. Note that [9] reported their performance at
50× 106 elements per dimension table, which is is the value
we use in Figure 5. Furthermore, [9] uses only 8GB of memory,
and can thus support at most 350× 106 elements. For easier
comparison, the curves for [9] extend beyond this point.

As expected the performance of the probing phase drops
significantly as soon as more buckets need to be spilled to
DDR4-DRAM, starting around a dimension table size of
300× 106 elements. Starting at 700× 106 elements, some
buckets have received more than eight values during hashing,



resulting in multiple spilled instances of this specific bucket. In
turn, multiple DDR reads for finding a matching tuple might
be necessary during probing to iterate over all of the spilled
bucket instances. Performance will drop further with every
spilled bucket, bounded only when reaching the maximum
dimension table size introduced by the width of the unique
keys. On the other hand, the performance of the hashing phase
drops only slightly. This is due to the hash table being built
completely in the fast HBM, with the delays for intermittent
spills from HBM to DDR4 being mostly hidden by the normal
HBM-based operation.

Overall, though, our new architecture is a significant im-
provement over prior DDR-only work: When mainly operating
in HBM, probing is up to 6x faster for a parallelism of two,
and 10x faster for a parallelism of four, than its DDR-only
predecessor. As explained before, the performance degrades
gracefully when HBM capacity is exhausted, at some point even
below the theoretical performance of [9]. We write theoretical,
because these numbers can not be directly compared: The
performance of [9] is given at 50× 106 elements per dimension
table, while our architecture only drops below this level at
700× 106 elements. The performance of [9] does not drop
significantly when increasing the number of elements, but it
can handle at most 350× 106 elements due to the limited
memory capacity.

TABLE II
RESOURCE USAGE OF OUR ARCHITECTURE FOR DIFFERENT

CONFIGURATIONS. THE PERCENTAGE OF THE AVAILABLE RESOURCES ON
THE VU37P FPGA IS GIVEN IN PARENTHESES.

LUTs Registers CLBs BRAMs

2HU2P 156k (11.9%) 157k (6.0%) 34k (21.1%) 143 (7.1%)
2HU4P 273k (21.0%) 230k (8.8%) 54k (32.9%) 307 (15.2%)
3HU2P 194k (14.9%) 191k (7.3%) 43k (26.2%) 174 (8.6%)
3HU4P 367k (28.1%) 283k (10.8%) 74k (45.6%) 363 (18.0%)
4HU2P 218k (16.7%) 206k (7.9%) 46k (28.5%) 220 (10.9%)
4HU4P 436k (33.4%) 307k (11.8%) 82k (50.6%) 467 (23.2%)

Finally, we discuss the resource usage for the different
configuration options of our architecture in Table II. As
expected, the resource usage grows when increasing the number
of hash units or the degree of parallelism. The key resource is
CLBs, of which 50% of the VU37P device are required for
the largest design with HU=P=4. From measurements taken
at the on-board power management chip, the join accelerator
board draws 47W when idle (most of it going to keeping the
network connections and memories up), and just up to 47W
when running.

B. Performance Comparison with Prior Work

In the second part of our evaluation, we compare the
performance of our system to a software baseline not using INP,
and the previous work [9, 13]. The software baseline is executed
on eight workers, each using an Intel Xeon Gold 5120 CPU @
2.2GHz using 384GB of RAM. The servers are connected via
10G BASE-T using CAT6 RJ45 cables. Furthermore, a master
server with the same hardware is used to control execution.

We use eight threads to execute the software baseline for our
experiments. Further increasing the number of threads does not
improve the performance as the bottleneck is – depending on
the phase – either the 10G network connection or the DRAM.
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Fig. 6. Speedup of our architecture over the best-case software baseline
using eight workers. The prior work [9, 13] is shown for comparison. This
experiment uses three joins with a dimension table size of 100× 106 tuples.

The scenario used for this comparison is joining a fact table
A with three dimension tables B, C and D. The dimension
table size is fixed at 100× 106, while the fact table size is
varied. Figure 6 shows the speedup of our proposed architecture
and that of the prior work [9, 13] over the software baseline.
Note that for this experiment, the keys are distributed equally
across the eight workers, which is the best-case scenario for
the software baseline. It can be seen that our new architecture
performs at 6x. . . 9x of the performance of the software baseline
and the DDR-only accelerator [9], and 3x that of the HBM-
only unit of [13]. Note that for the chosen dimension table
size of 100× 106 tuples, no spilling to DDR occurs. As
discussed in the previous section, spilling significantly reduces
the performance of the new architecture. However, we cannot
show this drop in relation to earlier work, as neither of the two
prior INP solutions can actually handle joins which exceed
a memory capacity of 8GB, and the slowdown in our new
approach becomes pronounced only for the larger joins our
new architecture is capable of, as indicated in Figure 5.

VI. CONCLUSION AND FUTURE WORK

This work is motivated by two limitations of existing INP
join accelerators: First, prior work did not scale up to larger
dimension table sizes, and additionally risked incorrect results
due to data hazards. We propose an improved architecture,
which uses a cache-like approach to prevent the incorrect
results, and uses off-chip DDR4-DRAM as secondary memory
to support larger dimension tables. Furthermore, our improved
architecture also improves the performance by a factor of 3x
compared to previous work. Note that we used the best-case
scenario for software as a baseline.

Even with the achieved advances, several options for future
improvements exist. These include integrating our proposed
architecture into a full-scale FPGA-based switch to enable
the use in a real-world distributed database setup, as well as
schemes for faster lookups of spilled data during probing.
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