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Abstract—Shared Virtual Memory (SVM) can considerably
simplify the application development for FPGA-accelerated com-
puters, as it allows the seamless passing of virtually addressed
pointers across the hardware/software boundary. Especially ap-
plications operating on complex pointer-based data structures
can profit from this approach, as SVM can often avoid having to
copy the entire data to FPGA memory, while performing pointer
relocations in the process.

Many FPGA-accelerated computers, especially in a data center
setting, employ PCIe-attached boards that have FPGA-local
memory in the form of on-chip HBM or on-board DRAM.
Accesses to this local memory are much faster than going to
the host memory via PCIe. Thus, even in the presence of SVM,
it is desirable to be able to move the physical memory pages
holding frequently accessed data closest to the compute unit
that is operating on them. This capability is called physical page
migration.

The main contribution of this work is an open-source frame-
work which provides SVM with physical page migration ca-
pabilities to PCIe-attached FPGA cards. We benchmark both
fully automatic on-demand and user-managed explicit migration
modes, and show that for suitable use-cases, the performance
of migrations cannot just match that of conventional DMA
copy-based accelerator operations, but may even exceed it by
overlapping computations and migrations.

Index Terms—shared virtual memory, SVM, page migrations,
FPGA accelerators

I. INTRODUCTION

Hennessy and Patterson identify domain-specific approaches
in their 2018 Turing Award lecture [1] as one of the key
enablers for future advances in computer architecture. Recon-
figurable computers are, by their very nature, an ideal means
to that end. However, the resulting need for communication
between general-purpose and domain-specific processing ele-
ments raises new architecture challenges. One of these is the
more complicated programming required when pointer-based
data structures must be handled.

A proven approach to simplify this scenario is the use of
Shared Virtual Memory (SVM) between processing units to
allow the free exchange of pointers in a common address
space. However, SVM alone does not fully solve the problem,
as many processing elements have faster locally attached
memories, leading to a NUMA systems architecture.
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Here, it is desirable to migrate the underlying memory pages
with their data to physical memory close to the processing
elements that currently work most intensively on the data.
Thus, allowing those elements the fastest access, but still
keeping the memory easily accessible for other processing
elements that access it less frequently.

Our contributions to achieve such a behavior are threefold:
(1) an open-source framework for easily building heteroge-
neous computing systems using shared virtual memory be-
tween CPU(s) and FPGA-based processing elements, (2) sup-
porting efficiently migrating physical memory pages between
the locally attached memories, and (3) benchmarking multiple
operating modes suitable for different classes of applications.

We begin by introducing terminology and related work in
Section II, present our systems architecture in Section III,
which we then evaluate in Section IV. We conclude in Section
V and look ahead towards future work.

II. RELATED WORK

In conventional memory management schemes, such as the
existing TaPaSCo framework [2], the hardware accelerator on
the FPGA uses physical addresses to access data in memory.
In the SVM concept, however, the accelerator operates in the
same virtual address space as the user software running on the
CPU. In modern operating systems, the mappings between
virtual and physical memory pages are saved in multi-level
page tables. Translating a virtual to a physical address by
iterating over the page table is called a Page Table Walk
(PTW). PTWs can be performed in software, or directly in
hardware by a Memory Management Unit (MMU). MMUs
also include Translation Lookaside Buffers (TLBs), which
serve as a cache for recent address translations. One technique
to implement SVM in a heterogeneous system with several
memories are physical page migrations. Here, the memory
pages are migrated to the memory, in which the compute unit
requiring the data can access it most efficiently.

The majority of existing implementations of SVM for FPGA
platforms use systems with a coherent or shared physical
memory, which simplifies the task of keeping data consistent
considerably. Embedded Systems-on-Chip (SoCs), such as the
Xilinx Zynq [3] or Intel Cyclone [4] platforms, are thus quite
suitable for SVM, since FPGA and CPU share the actual
physical memory anyway.



Lange et al. [5] implement SVM on the ML310 recon-
figurable SoC [6]. They use an IOMMU on the FPGA for
address translations of the accelerator’s memory requests,
which contains a TLB, and is able to perform PTWs over the
CPU page tables for address translations. Hence, only page
faults must be handled in software on the CPU. To guarantee
memory coherency, the CPU cache is flushed before launching
the hardware accelerator. Furthermore, Lange et al. extend the
OS kernel in order that TLB flushes are forwarded to the
IOMMU as well.

Pass A Pointer [7], which implements support for OpenCL
Fine-grained system SVM [8] on the Cyclone V platform [4],
has a very similar approach to [5]. Additionally, the IOMMU
of Pass A Pointer coalesces multiple faults on contiguous
pages into a single request to reduce the overall number of
interrupts. Pass A Pointer uses the Accelerator Coherency
Port (ACP) to achieve cache-coherency at any time, and the
IOMMU supports atomic memory operations from the FPGA
and CPU.

Vogel et al. [9] propose a general SVM framework for
embedded SoCs. Similar to our work, Vogel et al. do not
include PTW support in their on-FPGA IOMMU, but handle
TLB misses like page faults in software. They propose a
two-level TLB hierarchy with a small Level 1 TLB with
mappings of arbitrary length, and a large Level 2 TLB with a
BRAM-based design. Compared to other on-FPGA IOMMU
implementations, this approach allows much higher capacity at
the cost of a variable look-up latency. However, the accelerator
must be aware that the IOMMU returns error responses after
TLB misses, and offers so-called prefetching commands to
issue TLB misses in advance for more efficient fault handling.
Also, the user must decide whether the coherent ACP or
the more performant direct port to host memory is used for
memory requests. This gives a programmer more flexibility
and space for optimizations, but also requires more knowledge
and intervention. In contrast, our framework does not require
changes to most accelerators, and almost no guidance by the
user software.

The Convey Hybrid-core machine [10] has two distinct
memory pools attached to the host processor and co-processor
respectively [11]. In contrast to our work, host and co-
processor can access both memory pools, and different page
sizes are supported. Nevertheless, the programmer is encour-
aged to explicitly place or migrate data to the closest memory
pool by using compiler directives to achieve shorter access
times. Unlike our framework, the Convey machine does not
support automatic page migrations, though.

The work of Ng et al. [12] and IBM CAPI [13] target
FPGA accelerator cards, and are both implemented on-top
of PCIe, similar to our work. However, in the work of Ng
et al. and in CAPI, the FPGA accesses data directly in
host memory using PCIe, which leads to potentially higher
latency and lower bandwidth than when using device local
memory. Ng et al. simply pin required memory pages in
host memory and flush the CPU cache before granting the
hardware accelerator on the FPGA access to the data. Hence,

they cannot guarantee data coherency for concurrent memory
access from the CPU and FPGA. In CAPI, the FPGA shares
system memory coherently with the CPU cores using the
symmetric multi-processor (SMP) bus interconnect fabric to
participate in the CPU core’s coherency protocol. However,
this requires dedicated hardware support on the host side, and
thus, CAPI is only compatible with the POWER architecture.
In order to increase performance, Ng et al. and CAPI provide
a MMU with a TLB, as well as a data cache on the FPGA
side. In CAPI the MMU includes additional PTW support.

Two further platforms with an even closer coupling between
host CPU and FPGA are the Intel HARP platform [14] and
Enzian [15]. While Enzian uses its custom coherent intercon-
nect ECI [16], newer versions of HARP connect the FPGA
cache-coherently via UPI to the distributed shared memory
of the Xeon processor cores. Two PCIe links increase the
maximum memory bandwidth further [17]. By using coherent
connections to the CPUs, both platforms avoid again explicit
data movements and ensure data consistency, however achieve
higher bandwidth and lower latency than CAPI via PCIe [18].

Upcoming bus standards such as OpenCAPI [19], CXL [20]
and CCIX [21] are designed to extend or replace PCIe and
support cache-coherent accesses, virtual addressing, and the
inclusion of device local memory in a system memory map.
Nonetheless, PCIe-based accelerator cards are still widely-
used.

In the GPU world, SVM has been used for a number
of years now. It has been included in CUDA 6 (as Unified
Memory) [22], OpenCL 2.0 [8] and HSA [23]. One main
benefit of GPUs is the huge memory bandwidth. However,
it can only be exploited if the data is actually located in GPU
memory. As a solution all required data must be copied or
migrated from host to GPU memory before starting the kernel
execution. When using SVM, this is done with physical page
migrations. Modern GPUs have advanced MMUs which on
their own are able to trigger page faults for missing memory
pages. The device driver is then responsible for migrating the
required pages to GPU memory, and also back to host memory
again after a CPU page fault has occurred. We adopt this
technique of Demand Paging in our framework for FPGAs.
While NVIDIA uses the generic NUMA migration functions
in its proprietary driver [24], we use the Linux Heterogeneous
Memory Management (HMM) API [25], similar to the Nou-
veau [26], AMD [27] and Intel drivers [28].

Current research in the field of SVM and page migrations
for GPUs focuses on advanced topics such as enhanced hard-
ware support [29], page placement in multi-GPU systems [30],
[31], different page sizes [32], partial page migrations [33],
and memory oversubscription and page eviction [34], [35].

Coyote [36] implements a basic version of page migrations
as an OS abstraction for FPGAs. However, the implementation
is solely for evaluation purposes and neither ensures data
consistency during concurrent accesses, nor supports auto-
matic back-migrations. Instead of using the Linux HMM API,
Coyote simply pins the corresponding memory page in host
memory, and copies it to device memory [37].



III. SYSTEM ARCHITECTURE

Our framework implements SVM support with physical on-
demand page migrations for the common system architecture
of a host CPU and a PCIe-attached FPGA accelerator card
with on-device memory, such as our evaluation platform the
VC709 [38]. Since the hardware accelerator operates on virtual
addresses as well, we provide a device IOMMU on the FPGA
itself, which takes over translating virtual to physical memory
addresses, and is able to trigger page faults on the host. A
device driver running on the host CPU is responsible for
migrating memory pages to on-device memory after page
faults, and managing the device IOMMU’s TLBs. Also, the
device driver needs to handle CPU page faults on migrated
pages, and moves them back to host memory.

A. Building Blocks for Shared Virtual Memory

While the actual address translations are handled in hard-
ware by the device IOMMU, the device driver running on the
host CPU performs SVM management functions. Due to the
growing importance of SVM, Linux provides platform and de-
vice support on the OS side in the form of the Heterogeneous
Memory Management (HMM) API [25]. Its basic idea is to
achieve a uniform view on all memories in a heterogeneous
system. For this purpose, the API provides generic helper
functions for device drivers. However, device specific tasks,
such as device memory management, data transfers or TLB
management, always need custom handling by the device
driver itself.

One feature of HMM are MMU notifiers. A driver can use
a MMU notifier to receive updates on the CPU page table
of a process to manage on-device TLBs, or maintain its own
page tables. We use this feature to invalidate TLB entries of
memory pages which are freed on the host side while being
physically located in device memory.

Furthermore, the HMM API supports page migrations to
memories other than the host memory, which is the more
important feature for us. Table I gives an overview of the
used function calls. A device driver can allocate the usual
struct pages in the common address space to represent
its device memory, but has to remap them as device private
pages. During the allocation the driver also has to register
functions to handle a back-migration to host memory. As the
first migration step, the driver uses the HMM API to perform
a PTW collecting the required memory pages. The driver
then allocates the device memory region, copies the actual
data, usually using an DMA engine, and adds TLB entries
to the device IOMMU. In case all TLB entries are in use,
our IOMMU decides which entries get replaced by applying
a pseudo-LRU strategy. Afterwards the HMM API updates
the CPU page table so that it points to the struct pages
representing the destination pages in device memory.

When the CPU tries to access a migrated page, the Linux
kernel knows, using the device private entries in the page
table, where the page is located at the moment. The page fault
handler then calls the registered functions of the device driver
to migrate the requested page back to host memory.

TABLE I
RELEVANT KERNEL AND HMM API FUNCTION CALLS FOR PAGE

MIGRATIONS.

Function call Description

request_free_mem_region Allocate memory region for device
private struct pages

memremap_pages Remap pages as device private
and register functions for back-
migration

migrate_vma_setup Perform PTW to collect pages to
be migrated

migrate_vma_pages Migrate struct page informa-
tion from source to destination
pages

migrate_vma_finalize Update CPU page table
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Fig. 1. Internal structure and data flow of the on-FPGA IOMMU. The
abbreviations used in the figure stand for request (req), response (rsp), add
entry (add), invalidate entry (inv), drop fault (drop), acknowledge (ack),
arbitrary length TLB (AL TLB), and interrupt request (IRQ).

B. Implementation

In the following, we will briefly describe implementation
details of our device IOMMU, device driver, and the feature
of user managed page migrations.

1) Memory Management Unit: Figure 1 shows the internal
structure of our on-FPGA IOMMU. It is written in Bluespec
SystemVerilog (BSV) and designed for a maximum frequency
of 200MHz on the VC709 board [38]. We use the AXI4
standard [39] for all interfaces to ensure compatibility with
many accelerators and other peripheral components. The de-
vice IOMMU handles up to 16 read and 16 write requests
in-flight, and tracks the state of every memory request until
its completion in a central Request Monitor. Every translation
response by one of the TLBs, or new entries added by the
driver, are compared with all pending requests and forwarded
immediately to avoid redundant translations. Also, the device
driver is able to check for active memory requests to a specific
page at any time before triggering a back-migration to prevent
potential data corruption or loss.

The device IOMMU uses a two-level TLB hierarchy. The
Level 1 TLB is a fully-associative design, and realized with



LUTs and Registers. It translates one request per cycle, which
leads to better performance in scenarios with many short
bursts of requests addressing the same memory pages. As
replacement strategy, we use a simple random replacement
in case that all TLB entries are in use.

Invoking the driver after each TLB miss would be very
costly. Our evaluation shows a 70% higher runtime in a
scenario where TLB entries get evicted (see Section IV-B).
Hence, the Level 2 TLB focuses on providing high capacity.
Here, we adopt the BRAM-based design from the work of
Vogel et al. [9], but with added pipelining. This increases the
TLB’s maximum frequency to match our design frequency
of 200 MHz and avoids the need for clock domain-crossing
logic. Saving virtual and physical addresses in BRAMs leads
to variable look-up times and lower throughput, since the
BRAMs have to be searched sequentially for a matching entry
due to the limited number of access ports. Also, the TLB
cannot accept a new translation request, until the search for an
entry of the previous request is finished. However, spreading
the sets of virtual addresses over multiple BRAMs allows
to recover some parallelism. In many applications, though,
the limited throughput has no impact, since burst accesses to
memory, allowing multiple data transfers with a single request,
are used anyway. In contrast to the Level 1 TLB, the Level 2
TLB uses a pseudo-LRU replacement strategy. The TLB tracks
which BRAM has been used least recently in the respective
set, but evicts a random entry within this BRAM.

If neither TLB contains a matching entry, the device
IOMMU raises an interrupt on the host to signal a page
fault. It gathers up to 16 page faults in the Fault Monitor. In
the case of concurrent faults on the same memory page, the
Fault Monitor already removes the duplicates, and hands the
respective page fault only once to the driver. After successful
page fault handling, the driver adds new TLB entries directly
to the Level 2 TLB. The Level 1 TLB is solely filled with hits
from the Level 2 TLB.

2) Device Driver: The device driver is the central hub of
the framework. It is the interface between the user space
program, the OS kernel, and the hardware accelerator. It
manages the device memory allocations and page migrations.
Parts of the driver are inspired by the Nouveau driver [26] and
the HMM test module [40] in the Linux kernel, since the use
of the HMM API [25] imposes a basic common structure.

The device driver allocates the required struct page
entries in chunks of 128MB. It saves the physical base address
of the chunk in device memory to be able to compute the
actual page addresses based on chunk base address and page
offset within the chunk later. A linked list contains all free
pages and the driver allocates pages always in ascending order.
In this manner, virtually contiguous buffers can be placed in
physically contiguous memory as well, which allows some
optimizations for migrations of large buffers. If a page is freed,
the driver simply enqueues it again to the end of the linked list.
Of course, TLB mappings for this page must be invalidated
as well.

Similar to Vogel et al. [9], we handle page faults by the
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Fig. 2. Flow diagram of the worker thread handling device page faults. The
thread is scheduled after an interrupt by the device IOMMU, and stays alive
as long as further faults are pending. If the migration of a page fails, the
thread takes a second try before dropping the fault.

device IOMMU after an interrupt in a worker thread of the
concurrency managed workqueue [41]. Figure 2 contains a
flow diagram of the fault handling process. Like the IOMMU,
the driver handles up to 16 faults in-flight. First, it checks
with a PTW whether the pages are already present in device
memory, and only the TLB mappings got evicted, since the
device IOMMU has no means to differentiate between missing
TLB entries and pages. As stated in Section V, future exten-
sions to the IOMMU could include means to perform address
translations without invoking the driver. Next, the driver sorts
the faulting addresses to be able to coalesce adjacent pages in
the following migration steps. It collects the pages to migrate
with help of the HMM API [25], allocates pages in device
memory, and transfers the actual data. As a DMA engine,
we use our custom PageDMA core, which has a very simple
structure, since it only copies or clears entire pages with a
single AXI burst transfer each. Afterwards, the driver adds
respective TLB entries to the IOMMU, and again uses the
HMM API to update the CPU page table with the entries of
the destination pages in device memory. It might occur that a
CPU thread and the device try to access the same zero or as-
yet unallocated page concurrently, and the migration fails [25].
In this case, the driver tries to migrate the page a second
time, which is usually successful then. If the second attempt
fails nonetheless, the fault is dropped, and the device IOMMU



returns an error response to the accelerator. After finishing
handling the current page faults, the thread checks for new
pending faults in the device IOMMU before exiting. In this
manner, we reduce the number of interrupts, and avoid the
overhead of immediately re-scheduling a new worker thread
just after exiting the prior one.

Although the migration steps stay the same, the situation
after a CPU page fault is slightly different. In this case,
the Linux kernel handles the page fault, and only calls the
migration functions the driver has to provide. Due to this, the
driver has no chance to coalesce multiple faults, or postpone
handling a fault. Every CPU page fault, and the resulting back-
migration of the memory page, must be handled separately,
and should be handled immediately, since the fault blocks
the user thread. Additionally, the driver has to invalidate the
corresponding TLB mappings in the IOMMU, and potentially
wait for in-flight device-side accesses to the respective page
to complete. Otherwise, the data of an in-flight write to a
migrated-away page would get lost, and an in-flight read would
incorrectly retrieve data from the new virtual page which
replaced the formerly migrated page in this page frame.

3) User-Managed Page Migrations: Working with buffers
in the range of many megabytes requires thousands of pages
to be migrated to device memory and back. Doing this just
with page fault triggered on-demand migrations can be very
inefficient, especially the one-by-one migration back to host
memory. Hence, we offer directives to the programmer to
explicitly trigger the efficient migration of a memory region
to or from device memory in advance, and not rely just on on-
demand migrations. The device driver is able to significantly
decrease the migration overhead by coalescing the migration
of all pages containing the buffer.

Furthermore, the device IOMMU contains a third 8-entry
TLB in parallel to the other two TLBs. It holds mappings with
a flexible length of up to 4096 contiguous pages, similar to the
Level 1 TLB by Vogel et al. [9]. Since our allocation system
maps virtually contiguous buffers to physically contiguous
pages, a single TLB entry may suffice to map an entire
buffer. However, this type of TLB needs much more hardware
resources, as simple comparators like in our other TLBs are
not sufficient to find a matching entry. In multiple steps, the
TLB calculates the offset of a request to every entry, checks
afterwards whether the request is in the range of any mapping,
and finally calculates the physical address based on this offset
as well. Hence, it does not pay off to use this TLB for
mappings with a length of less than or equal to 16 pages
during on-demand migrations.

IV. EVALUATION

Although performance is not the main objective of SVM, it
is important to examine how our SVM framework performs in
comparison to a conventional FPGA execution framework. In
the following, we compare the runtime of our SVM framework
when using page fault triggered On-Demand Page Migrations
(ODPMs), User Managed Page Migrations (UMPMs) in both

directions and UMPMs for back-migrations to host mem-
ory only, to the runtime when using the existing TaPaSCo
framework [2]. TaPaSCo uses conventional DMA copy-based
memory management, and operates with physical addresses.
We use a VC709 evaluation board [38] connected via PCIe 3.0
with eight lanes and 16Gbit/s bandwidth to an AMD Athlon
X4 845 Quad Core with 16GB host memory. The Level 1
TLB of our on-FPGA IOMMU is in 32-entry configuration,
while the Level 2 TLB provides 1024 entries, which are split
in 32 sets of 32 ways each, and spread over four BRAMs.

Our evaluated benchmarks represent different common
memory access scenarios. However, the performance measure-
ment taken here does not reflect the much reduced program-
ming complexity due to the use of SVM. Especially applica-
tions with pointer-rich data structures benefit from SVM, as it
potentially reduces code size, complexity, and error-proneness.
Hence, even a runtime similar to using conventional memory
management schemes is generally already a success when
taking the other advantages of SVM into account.

A. ArraySum

The ArraySum benchmark calculates the sum over 64 bit
values in an array, and represents scenarios where an acceler-
ator iterates once over an array with high data throughput.
Figure 3 shows the measured runtimes normalized to the
runtime when using TaPaSCo for different array sizes. All
runtimes are the mean of 10,000 measurements.

It is not surprising that SVM cannot reach the runtimes of
TaPaSCo, since in this scenario, most of the time is spent
for migrating the data to device memory. SVM with page
migrations introduces additional overhead during the migration
process for a number of reasons:

• A PTW is performed to collect the pages to be migrated.
• Page tables and TLBs in the system must be updated.
• The pages are often distributed in memory at host side,

and sometimes at device side as well when using ODPMs.
This requires scatter-gather DMA transfers and decreases
the PCIe throughput.

For small buffer sizes, ODPMs perform worst. In the case
of a 4 kB buffer, which we assume is not page aligned and
thus crosses page boundaries, this requires two pages to be
migrated due to the misalignment of the buffer. Here, ODPMs
take more than 2.5 times the runtime of TaPaSCo. ODPMs
are also significantly slower than UMPMs, although UMPMs
cannot reduce overhead much in this case, since the two
page faults are handled together by the same worker thread
as well. However, it takes some time until the IOMMU
interrupt arrives after launching the accelerator (∼2.5 µs), and
the worker thread is eventually scheduled (∼5.5 µs). Also, the
fault handling thread performs an additional PTW to check
whether the page is already located in device memory. With
increasing buffer size, the performance of ODPMs improves,
and reaches an only 25% higher runtime than TaPaSCo for
32MB buffers. In contrast, the performance of UMPMs has its
maximum for a 32 kB buffer with only 1.1 times the runtime of
TaPaSCo. UMPMs can reduce overhead compared to ODPMs
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Fig. 3. Runtime of ArraySum with TaPaSCo and SVM. All results are
normalized to the mean runtime when using just TaPaSCo without any SVM
support.

by migrating all pages of a buffer together. However, with
increasing buffer size, the less efficient scatter-gather DMA
transfer has more impact on the runtime in comparison to
TaPaSCo. On the other hand, ODPMs have the advantage
over UMPMs and TaPaSCo that the accelerator can start
its computation immediately after the first page has been
migrated, instead of waiting to be launched only after all data
is located in device memory. Hence, ODPMs achieve lower
runtimes than UMPMs for larger buffer sizes in this scenario.

B. MemCopy

In the MemCopy scenario, the accelerator simply copies data
from one buffer to another. In order to get more insights, we
vary not only the array size, but also the number of copy
iterations. This simulates scenarios in which an accelerator
has to iterate over its input data more than once. Again,
the maximum data throughput is limited by the memory
bandwidth rather than the accelerator’s throughput.

The normalized runtimes of MemCopy are shown for three
different array sizes in Figure 4. Due to long total runtimes, we
use the mean of 100 runs, which leads to slightly larger 95%
confidence intervals. The unusually wide confidence interval
for the case of 32 kB buffer size and four copy iterations is
due to a single of the 100 executions having a runtime 20
times longer than usual. The reasons for this outlier are still
unknown to us.

A direct comparison to the ArraySum scenario shows longer
runtimes for all SVM variants in the MemCopy scenario.
TaPaSCo only copies the input buffer to device memory, and
the output buffer back to host memory. When using SVM, the
output buffer is allocated with malloc() in host memory,
and must be migrated to device memory as well, since the
framework cannot know that the buffer is uninitialized, and
will in the end only be written to. As MemCopy also requires
a back-migration, we differentiate in the graphs between
runtimes with UMPMs in both directions, and back to host
memory only.

The overall picture is similar for all array sizes in this
scenario. For a low number of copy iterations, TaPaSCo

TABLE II
RATIO BETWEEN ACCELERATOR-ONLY RUNTIME AND TOTAL RUNTIME IN

THE MEMCOPY SCENARIO WHEN USING TAPASCO.

Array size Iterations Accelerator-only Total runtime Ratio

32 kB 1 0.013ms 0.103ms 12.6%
32kB 128 1.625ms 1.765ms 92.1%
1MB 1 0.406ms 2.259ms 17.9%
1MB 128 51.990ms 53.780ms 96.7%
32MB 1 12.997ms 59.086ms 22.0%
32MB 128 1663.670ms 1709.910ms 97.3%

outperforms SVM. Using UMPMs for at least back-migrations
already shortens runtimes significantly. When increasing the
number of copy iterations, however, the runtimes of all SVM
variants converge to the runtime of TaPaSCo for the array sizes
of 32 kB and 1MB. With 1MB array size, 128 copy iterations
and UMPMs, we even achieve an about 15% faster runtime.
The reason is the ratio between accelerator-only and total run-
time, which is shown for the TaPaSCo case in Table II. When
using few copy iterations, the data migration time clearly
dominates the runtime, but in the case of 128 iterations, the
accelerator computes for more than 90% of the total runtime.
The impact of the additional overhead for page migrations
is negligible then. In fact, our framework achieves an even
higher maximum memory bandwidth than TaPaSCo. Hence,
the additional address translations in our device IOMMU do
not affect the maximum achievable bandwidth at all.

The results for 32MB array size differ in one detail. Here,
the runtimes of both SVM variants using ODPMs in host-
to-device direction settle at around 1.7 times the TaPaSCo
runtime for large numbers of copy iterations. In this case, the
capacity of the Level 2 TLB is not sufficient to hold mappings
for all memory pages in this scenario. Hence, the TLB entries
get evicted, and the device IOMMU must issue new page
faults in every copy iteration to ask the driver for address
translations and re-adding the TLB mappings. However, when
using UMPMs for host-to-device transfers as well, we are
able to use the specialized TLB for arbitrary length mappings
(see Section III-B3), which has a higher capacity, and achieve
similar runtimes as with TaPaSCo.

The MemCopy scenario shows that with increasing data re-
use overhead due to SVM decreases, and SVM can compete
with conventional memory management schemes.

C. Sobel Filter

The Sobel Filter is an image processing filter used for edge
detection algorithms. In contrast to the previous benchmarks,
the data throughput of the accelerator is the limiting factor
for the overall throughput in this case. In our evaluation, we
compare an IP core generated with Vitis HLS [42] to a custom
core written in Bluespec SystemVerilog (BSV). The HLS core
has a fixed image size of 512x512 px, while our custom
accelerator works on different image sizes from 512x512 to
1920x1080 px.

The runtimes with TaPaSCo and the different SVM variants
are shown in absolute numbers in Figure 5. When looking at
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Fig. 4. Runtime of MemCopy with different array sizes and numbers of copy
iterations. The results using SVM are normalized to the mean runtime when
using just TaPaSCo without SVM support.

the BSV core, ODPMs perform better than UMPMs for all
image sizes, in contrast to the MemCopy scenario. Due to
the moderate data throughput of 200MB/s, the framework
has sufficient time to migrate pages in the background during
the computation, and ODPMs benefit from the fact that the
computation can start immediately after the first page is
present in device memory. When using UMPMs, all pages are
migrated before launching the accelerator, and we encounter
the same slowdown compared to TaPaSCo as we have seen
in the previous benchmarks. If we combine ODPMs in host-
to-device migration with UMPMs in device-to-host direction
after the computation, SVM achieves almost the same runtime
as TaPaSCo, despite the additional migration overhead.

The results for the HLS core show another picture. The
TaPaSCo and UMPMs runtimes are similar to the BSV core.
However, the other two SVM variants need more than double
the runtime, and the explicit back-migration does not give
a significant performance boost. This discrepancy is caused
by the different memory access patterns of both cores. Our
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Fig. 5. Runtime of the Sobel Filter HLS and BSV cores with TaPaSCo and
SVM.

custom BSV core utilizes the maximum AXI4 burst length
[39], and covers an entire 4 kB memory page with a single read
or write request. Also, it issues requests to memory as early
as possible. Hence, the device IOMMU is able to prefetch
up to 16 pages in advance, and the SVM framework has
sufficient time to migrate pages in the background until the
accelerator actually requires the respective data. In contrast,
the HLS core uses shorter bursts with 64B of length, and only
issues a few requests in advance. This has limited impact if
the data is already located in device memory, but in the SVM
case the device IOMMU is only able to fault-in one page in
advance. In addition, the HLS core requires the data shortly
after requesting it, and thus has to stall and wait until the
requested page is migrated.

The Sobel Filter scenario shows that in scenarios with
moderate data throughput, SVM achieves similar runtimes to
conventional memory management schemes, since the frame-
work has sufficient time to migrate data while the accelerator
is already running. However, it is important that the accelerator
issues memory requests sufficient far in advance to give the
SVM framework a chance to react. Additionally, we see in the
Sobel Filter results that UMPMs in device-to-host direction are
favorable in most cases, since the chance to benefit from the
one-by-one back-migration performed on-demand is very low.

D. Overhead Evaluation

In order to evaluate where the already described overhead
occurs, we split the migration into four steps:

• Setup: The HMM API collects the pages and invalidates
the system TLBs, the driver invalidates the IOMMU TLB,
and checks for ongoing memory accesses (device-to-host
migration only)

• Allocate: The driver allocates pages in destination mem-
ory and prepares the DMA transfer

• DMA: The DMA engine copies the data from source to
destination memory

• Finalize: The driver frees the pages in source memory,
the HMM API updates the page table, the driver adds
IOMMU TLB entries (host-to-device migration only)



TABLE III
RUNTIMES OF THE DIFFERENT MIGRATION STEPS IN HOST-TO-DEVICE

AND DEVICE-TO-HOST DIRECTION FOR DIFFERENT BUFFER SIZES.

Buffer 32 kB 1MB 32MB

Host-to-device buffer migration

Setup 6.52 µs 11.4% 0.10ms 8.8% 2.12ms 6.3%
Allocate 3.43 µs 6.0% 0.07ms 6.0% 2.06ms 6.2%
DMA 38.14 µs 66.4% 0.76ms 68.4% 23.32ms 70.0%
Finalize 9.33 µs 16.2% 0.19ms 16.7% 5.83ms 17.5%

Device-to-host buffer migration

Setup 18.75 µs 27.8% 0.40ms 30.3% 12.55ms 31.2%
Allocate 4.49 µs 6.6% 0.09ms 6.6% 2.68ms 6.7%
DMA 34.29 µs 50.7% 0.65ms 49.1% 19.63ms 48.7%
Finalize 10.03 µs 14.8% 0.18ms 14.0% 5.41ms 13.4%

Table III states the times of the different migration steps
for different buffer sizes. In host-to-device direction, the DMA
transfer is clearly the most time consuming step with a fraction
of up to 70%. While the efforts for Allocate and Finalize do
not vary significantly with a changing buffer size, the part of
the Setup phase decreases with increasing buffer size. A reason
may be that the PTW for collecting the pages to be migrated
becomes more efficient when iterating over more page entries.

In device-to-host direction, the DMA transfer still requires
the longest time. However, it takes only about half of the total
migration time. In contrast to host-to-device migrations, the
fraction of the Setup phase is significantly higher and ranges
between 27% and 31%. The driver has two additional tasks
during back-migrations: (1) invalidating the respective TLB
entries, and (2) checking or even waiting for active memory
requests to the desired page. Currently, the driver checks for
memory accesses to every page separately. However, this could
be optimized in future versions to save some time, especially
when migrating larger buffers.

The DMA transfer takes not only the largest fraction,
but also needs more absolute time compared to conventional
memory management schemes. A conventional driver usually
places all data in a single large buffer, and the DMA engine
can copy it in one go to device memory or back. In our
SVM case however, the source and destination pages may
be scattered across different memory regions. Hence, multiple
small transfers are often required, and decrease the overall
efficiency. However, we achieve more than the double perfor-
mance with our custom PageDMA IP core in comparison to
Xilinx’s XDMA [43] engine during ODPMs.

V. CONCLUSION AND FUTURE WORK

Our SVM framework with physical page migrations can
considerably simplify the use of hardware accelerators from
software programs. The programmer may not only pass vir-
tual addresses directly to the accelerator, but the page fault
capabilities of our device IOMMU also alleviate the need for
explicitly moving the data. In contrast to related work, our
framework targets standard PCIe-attached FPGA cards while
using their on-device memory, and does not require dedicated
hardware support on host side.

However, SVM carries an overhead during data migration to
and from device memory. The driver has to perform a PTW
to collect the pages to be migrated, and update page table
entries to indicate their new physical location. Furthermore,
source and destination pages may be scattered across different
memory regions, which leads to many small DMA transfers.
In host-to-device direction, the driver reduces the migration
overhead by coalescing up to 16 page faults. However, device-
to-host migrations are triggered by the OS kernel for single
pages, and must be performed page by page. The feature
of UMPMs helps in many scenarios. Here, the programmer
explicitly manages the migration of an entire buffer to or from
device memory.

Our evaluation in Section IV shows that scenarios with
high data throughput, but limited data re-use are unfavorable
for SVM. The runtimes of these scenarios are dominated by
the time required to migrate the data, which is the weakness
of SVM due to the described, additional overhead. However,
if data re-use becomes more pronounced, the impact of the
migration overhead shrinks, and SVM achieves comparable
runtimes to conventional memory management schemes. In
some cases, we even achieve a higher maximum bandwidth
than the reference framework TaPaSCo [2], which clearly
shows that the address translations in our device IOMMU
do not affect the memory bandwidth itself. Applications with
moderate data throughput benefit from the fact that the ac-
celerator can start its computation immediately after the first
page has been migrated. The following memory pages can
then be migrated in the background while the accelerator is
already running. Here, it is beneficial if the accelerator issues
memory requests far in advance of the data uses to give the
SVM framework sufficient time to migrate the requested data.

Much of overhead is caused by the default small 4 kB page
size. The use of 2MB huge pages would reduce the overall
number of page faults, and increase the efficiency during
migrations significantly. Additionally, the TLB capacity would
be much higher, since every entry would map 2MB instead
of 4 kB. However, the HMM API [25] does not support huge
pages currently. Implementing a workaround for huge pages
without the HMM API would not be practical, since that would
create two parallel solutions in one framework, leading to
much duplicated implementation effort.

The evaluation also shows that TLB evictions when han-
dling large data structures are costly, since currently the device
driver has to be asked for translating the virtual addresses with
help of the CPU page tables. A way for the device IOMMU
to perform address translations on its own would relieve the
pressure on the TLBs. One solution would be the use of the
Address Translation Service of PCIe. An even faster solution
could be a private page table in device memory. In this manner,
the IOMMU could perform PTWs autonomously, such as
in [5], [7], [13], and TLB evictions would be significantly
less costly.

We will integrate this work as an additional feature into the
open-source framework TaPaSCo, and publish all source code
in the Github repository [44].
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