
Optimizing a Hardware Network Stack to Realize
an In-Network ML Inference Application

Marco Hartmann, Lukas Weber, Johannes Wirth, Lukas Sommer, Andreas Koch
Embedded Systems and Applications Group, TU Darmstadt, Germany
{hartmann, weber, wirth, sommer, koch}@esa.tu-darmstadt.de

Abstract—FPGAs are an interesting platform for the imple-
mentation of network-attached accelerators, either in the form
of smart network interface cards or as In-Network Processing
accelerators.

Both application scenarios require a high-throughput hard-
ware network stack. In this work, we integrate such a stack into
the open-source TaPaSCo framework and implement a library of
easy-to-use design primitives for network functionality in modern
HDLs. To further facilitate the development of network-attached
FPGA accelerators, the library is complemented by a handy
simulation framework.

In our evaluation, we demonstrate that the integrated and ex-
tended stack can operate at or close to the theoretical maximum,
both for the stack itself as well as an network-attached machine
learning inference appliance.

Index Terms—In-Network Processing, 100G, Network, TCP/IP

I. INTRODUCTION

Numerous previous works have demonstrated the huge
potential for acceleration that can result from attaching FPGAs
directly to the network. In such scenarios, FPGAs can not
only be used to implement smart network interface cards
(SmartNIC) [1] and accelerate the network protocol stack, but
they can also be employed to additionally offload parts of the
application itself, e.g., machine learning inference in the case
of Microsoft’s Brainwave project [2], or network security [3].

While these approaches already demonstrate significant
speedup, even more potential can be unlocked by moving
the computation into the network, as so-called In-Network
Processing (INP) [4]–[6]. This does not only allow moving
computation closer to the origin of the data, but also facilitates
distributed processing across the network.

However, with the network hardware available today, In-
Network Processing is still severely limited. On the one hand,
platforms such as Barefoot’s Tofino provide high performance,
but are limited with regard to programmability and the avail-
able memory on the device [7]. On the other hand, platforms
providing full programmability, e.g., through Micro-C, provide
only limited performance. FPGAs with high-speed network
interfaces can provide both, high flexibility for the design and
high performance.

Independent of whether FPGAs should be used as INP
accelerator or SmartNIC, the availability of a high-throughput
hardware network stack is crucial for successful deployment,
and such a stack was presented by Ruiz et al. in [8].

In order to make this particular stack more accessible
to researchers and designers, and to facilitate and automate

the design of network-attached, FPGA-based accelerators,
we integrate this stack with the open-source [9] TaPaSCo
framework. This integration not only makes the network stack
available in highly complex heterogeneous System-on-Chip
(SoC) designs, but also allows using TaPaSCo’s automatic
design-space exploration for automatic and efficient traversal
of large design spaces for network-attached accelerators.

After providing details on some modifications to the orig-
inal stack (Section IV-A), making the stack more flexible,
and describing the integration with TaPaSCo (Section IV-B),
we present a library of easy-to-use design primitives (Sec-
tion IV-C) that allow accelerators to communicate with the
network stack on multiple protocol levels. As testing and
verification through simulation are important steps of any
design process, we also present a fast hardware/software-co-
simulation for network-attached accelerators (Section IV-E).

To demonstrate how the design primitives and
hardware/software-co-simulation facilitate the design of
accelerators, we present a case study, transforming a
host-attached FPGA-based accelerator for Sum-Product
Network inference [10] into a network-attached accelerator
(Section VI). Before that, we evaluate the raw performance
of the network stack and various configurations in Section V.

We also provide related work in Section II, necessary
background information in Section III, and a conclusion and
outlook to future development in Section VII.

II. RELATED WORK

FPGA-based network stacks are well established in the aca-
demic and commercial domain with several implementations
that provide differing feature sets, connection speeds, and
latencies. Compared to traditional software stacks, most of
them lack more complex features like IP segmentation and
only support particular default configurations without optional
protocol extensions.

The availability of commercial TCP Offload Engines (TOE)
that are capable of 100 Gigabit (100G) is still limited. One of
them is developed by the Fraunhofer Heinrich-Hertz-Institute
and Missing Link Electronics [11], which supports a single
TCP session and can typically implement send and receive
buffers in BRAM due to their low memory space requirements.

Most commercial TOEs support sub-100G connection
speeds and are optimized for low latency [12]–[15]. A typical
application field is High-Frequency Trading (HFT), where any



reduction in latency may increase the profitability of a financial
trading algorithm.

Notably, ultra-low latency stacks generally tend to support
fewer concurrent sessions, because FPGAs only offer a limited
amount of low-latency on-chip memory, which is required for
the per-connection TCP buffers.

In addition, there are various FPGA-based network stacks
pursuing different design goals in the academic space: For
example, the authors in [16] describe a hybrid approach where
only the most data-intensive parts of the TOE are implemented
in hardware, while the more control-intensive parts are handled
by firmware running on a CPU.

The work in [17] presents a TOE that can achieve 4Gbit/s
of throughput from up to 2048 receive sessions, and 40Gbit/s
of throughput to up to 20480 transmit sessions, targeting
asymmetric workloads such as video on demand. It does not
support jumbo frames, and the maximum segment size (MSS)
is fixed to 1460B. The memory architecture uses external
SRAM for storing per-session state information and DRAM
for the send and receive buffers.

The authors of a 100G-capable intrusion-prevention system
in [18] observed that a per-session receive buffer with a
fixed size is often unnecessary, since only 0.3% of network
packets arrive out of order and require buffering for reordering.
A more memory-dense buffer architecture based on linked
lists and dynamic allocation that supports as many as 100k
concurrent sessions while still fitting into BRAM is developed.
Packets that arrive in order are handled on a constant-time
fast path without being buffered, whereas out-of-order packets
are handled on a slow path that requires non-deterministic
amounts of time.

A 10G-capable TCP/UDP network stack is presented in [19]
which was designed to scale well in the number of sessions,
verifiably achieving 10k open connections, however, at the
cost of increased latencies. Unlike most published TOEs, this
project handles the complexities of the TCP protocol through
the use of high-level synthesis (HLS). By designing the stack
in C++, the entire implementation comprises less than 8k
lines of code and is thus significantly more compact than
comparable implementations in HDL.

Several other research projects are based on this stack: For
example IBM’s cloudFPGA [20], which seeks to deploy large-
scale datacenter applications on network-attached FPGAs, or
the HLS-based HFT application in [21], which builds on top
of the UDP stack and achieves a round-trip latency of 869 ns.

The Limago network stack published in [8] used the 10G
stack from [19] as a basis, which was then upgraded for 100G
support. The authors added several new features in order to
achieve this higher link speed, such as TCP window scaling
and a hash table based on cuckoo-hashing, which replaces
the previous slower session lookup mechanism. During this
upgrade process, methods to improve checksum calculation
in hardware were investigated in [22]. The authors concluded
that an HLS-based approach does not perform satisfactorily
and consequently developed a solution in VHDL.

Most of Limago’s upgrades are also part of the 100G TOE
published by ETH Zurich in [23], which is the successor to
the 10G stack in [19]. It is also the hardware network stack
implementation used in this work.

III. BACKGROUND

This section presents necessary background information on
the employed TCP/IP stack and the TaPaSCo framework.

A. Hardware TCP/IP Stack

The design of a 100G hardware TCP/IP stack is a significant
undertaking that is off the scope of this paper. Instead, an
existing TCP/IP stack published by the Systems Group at
ETH Zurich is leveraged. An early 10G-capable variant of
the stack is presented in [19], which has been upgraded for
100G support in [8]. The TCP/IP stack sets itself apart from
other hardware TCP/IP stacks reviewed in Section II in several
ways.

Except for few SystemVerilog-based wrapper modules, the
entire project is implemented in C++ using Vivado HLS [24].
Designing the TCP/IP stack in a high-level language sacrifices
some control over the resulting circuity but also increases
productivity, in particular with regards to the highly control-
intensive TCP protocol implementation. In addition, an HLS-
based design methodology comes at the advantage of an easily
maintainable and extensible codebase.

The TCP/IP stack is designed to support a large number of
TCP sessions, which is demonstrated in experiments in [19]
with 10,000 concurrent connections. Each session requires
unique send and receive buffers, where the size of a single
buffer ranges from 64KiB to 256KiB, depending on the TCP
window scaling configuration. For 10,000 sessions, this yields
a total required buffer size between 1.3GB and 5.2GB, which
can only be implemented in off-chip memory like DRAM.
This is a deliberate tradeoff that chooses a higher number of
concurrent sessions at the cost of increased latency [19, p.42].

Per-session information, such as the connection status or
timer values of the retransmission mechanism, is kept in
BRAM-based tables indexed by a session ID. The session IDs
are stored in a hash table, which handles collisions and realizes
single-cycle lookups and deletions [8].

Hardware designs that use the TCP/IP stack are split into
three AXI-Stream-interconnected Xilinx Vitis kernels: the user
kernel containing the user logic of a network application,
the network kernel containing the TCP/IP stack itself, and
the CMAC kernel containing the Ethernet subsystem and
physical layer implementation. The network kernel internally
consists of multiple HLS-based IP cores that are wrapped by a
SystemVerilog top module. The host software uses an OpenCL
API provided by the Xilinx Runtime “XRT” to interact with
the FPGA design.

B. The TaPaSCo Framework

The Task Parallel System Composer (TaPaSCo) [25] is an
open-source framework providing a toolflow for the automated
generation of System-on-Chip FPGA designs with a particular



focus on task-parallel computation. TaPaSCo aims to increase
the portability and scalability of FPGA designs.

TaPaSCo includes base FPGA designs, referred to as plat-
forms, for multiple Xilinx FPGA families. The platform
typically contains platform-specific implementations of the
memory subsystem, interrupt subsystem, interface to the host
CPU, distribution networks for clock and reset signals, and
a status core containing descriptive information about the
design.

The platform acts as a hardware abstraction layer and pro-
vides a standardized interface to the architecture component of
TaPaSCo, which itself is decoupled from the underlying FPGA
technology. The architecture contains TaPaSCo Processing
Elements (PE), which are application-specific compute kernels
that can be implemented by the user either in an HDL or HLS
based design flow. Due to the separation between platform
and architecture, a PE needs to be designed only once and
can be used across all FPGAs supported by TaPaSCo without
any changes, which increases a design’s portability.

Different types of PEs can be instantiated in different
multiplicities, yielding what is called a composition. TaPaSCo
supports automated Design Space Exploration (DSE), which
can assist in finding a throughput-optimal composition. These
mechanisms allow to easily scale a design without changing
the actual user logic of the PEs.

Further to the hardware toolflow, TaPaSCo provides a
runtime with a C/C++ API that allows host software to
interact with the FPGA design. In particular, the API provides
functionality to schedule jobs onto PEs, handle data transfers
between host and FPGA, and monitor the execution state of
individual PEs.

TaPaSCo contains several plugins, referred to as features,
which add optional functionality that is not available across
all supported FPGAs but specific to a particular platform. The
Network feature adds an Ethernet subsystem to the FPGA
design and selectively connects PEs to it, effectively providing
them with link-level access to a network. The feature is
available on multiple TaPaSCo platforms in a 10G variant. On
the Xilinx Alveo U280 and the BittWare XUP-VVH platform,
the Network feature additionally supports the instantiation of
a 100G Ethernet backend. Three different operating modes
are supported by the Network feature: In singular mode, a
single PE is attached to the Ethernet subsystem, whereas
in both broadcast and round-robin mode, the subsystem is
shared by multiple PEs. We will use this feature in singular
mode to implement the CMAC portion of the network stack
architecture that was outlined in Section III-A.

IV. IMPLEMENTATION

This section describes the contributions with the goal of pro-
viding assisting tools and libraries for developing networked
applications on FPGAs with the TaPaSCo framework.

A. Modification and Extension of the Network Stack

In preparation of using the TCP/IP stack withing the
TaPaSCo ecosystem, we replaced the host software of [23],

which uses OpenCL and the Xilinx Runtime XRT, with an
implementation that makes use of the TaPaSCo runtime.

1) Parameterizable Data Width: While the TCP/IP stack’s
individual HLS cores are designed with parameterizable bit
width, several of the HDL modules instantiate fixed-width IP
cores.

The TaPaSCo Network feature supports both 10G and 100G
Ethernet subsystems that have data interfaces of different
bit widths. With the objective to attach to both subsystems
natively, we reworked the TCP/IP stack to be more flexible
and allow build-time configuration of the data bit width.

2) Issues with Buffer Memory Addresses: The TCP/IP stack
can bypass the TCP receive buffer and directly deliver received
data to the application layer. This is an optional configuration
aimed at reducing latency. By default, the bypass optimization
is enabled, such that the receive buffer is not used. In the
original release [23], both logical and arithmetical errors
existed in the calculation of buffer memory addresses, leading
to data corruption when buffer bypassing is disabled. Using the
simulation infrastructure presented in Section IV-E, we were
able to track down the issues and fix them.

B. Integration with the TaPaSCo Framework

With its Network feature, the TaPaSCo framework already
supports the automated instantiation of an Ethernet subsystem
within an FPGA design. We use this subsystem to complement
those parts implemented by the TCP/IP stack into a full
implementation of the internet protocol suite.

In preparation for protocol comparisons during the exper-
imental evaluation, we extended the Network feature with
support for the Xilinx Aurora 64B/66B [26] point-to-point
link-layer protocol, which can now optionally be used instead
of the Ethernet link-layer protocol. Both Ethernet and Aurora
can use the same physical layer implementation.

Since the AXI-Stream data interfaces of both Xilinx CMAC
[27], and Xilinx Aurora [28] IP are clocked at higher fre-
quencies (approx. 322MHz and 403MHz, respectively) than
the TCP/IP stack within the PE (250MHz), a clock domain
crossing is required on the data path between them. This is
implemented by an AXI-Stream interconnect that is optionally
instantiated by the TaPaSCo Network feature. To prevent a
continuous transaction coming from a slow clock domain from
being broken into multiple partial transfers within a faster
clock domain, the interconnect is configured to packet mode,
which buffers the entirety of a frame and forwards it in one
piece. As the Xilinx CMAC contains only minimal internal
buffering and implements cut through semantics on both RX
and TX data paths [27, p.11], disabling the packet mode may
result in a buffer-underrun in the CMAC and a corrupted
packet on the wire.

The 100G network bandwidth places high demands on the
bandwidth of the RX and TX buffer memories. In our case,
even when using the RX buffer bypass, a DRAM-based mem-
ory subsystem would limit the achievable network throughput.
To avoid being bound by memory performance, we instead
make use of the High-Bandwidth Memory (HBM) feature of



TaPaSCo, which allows a PE to attach to high-bandwidth on-
chip memory modules. In the resulting FPGA design, the
DRAM-based memory subsystem for TCP buffers is replaced
by an HBM-based subsystem. With this optimization, we
achieve a full saturation of the link bandwidth and are not
limited by memory bandwidth, as long as RX buffer bypassing
is enabled (a detailed evaluation follows in Section V-D).

C. Design Primitives for Network Access

The interface between the TCP/IP stack and the user kernel
comprises 16 AXI-Stream interfaces. Of those, 4 are used for
UDP-related functions and 12 for TCP-related functions. The
source code release of the TCP/IP stack in [23] contains a
basic C++ library that simplifies the design of HLS-based
user kernels by appropriately interacting with the 16 AXI-
Stream interfaces. This HLS toolflow is also available for
the TaPaSCo integration, but finer-grained control over the
generated circuity may be required for more sophisticated user
kernels. This is generally achieved by designing the user kernel
in a dedicated HDL. Because of its good integration with
TaPaSCo, the Bluespec [29] language is chosen as the target
HDL.

To facilitate the development of Bluespec-based user ker-
nels, we implemented a novel library that exposes all func-
tionality of the TCP/IP stack via an idiomatic Bluespec API.
Like the C++ library, the Bluespec library on the backend
attaches to the 16 AXI-Stream interfaces of the TCP/IP stack
and appropriately interacts with them.

The bit width of any data-carrying AXI-Stream interface
changes depending on the configured data width of the TCP/IP
stack. However, the user-visible bit width of the Bluespec li-
brary API is not determined by the TCP/IP stack configuration
but can be freely chosen by the user. The library contains
custom AXI-Stream width-converters that adapt the bit width
of the TCP/IP stack to the user-configured API bit width.
As a result, user kernels are portable across 10G and 100G
subsystems when using our Bluespec library.

The library’s TCP support is fully featured and supports
data transferring, the opening and closing of connections,
and putting a TCP port into listen state. Whenever a new
packet shall be transmitted by the user kernel, it must first be
announced to the TCP/IP stack. Data transmission can only
start once the TCP/IP stack confirms the announcement with
a status message. According to the authors, the duration of
this handshaking sequence varies between 10 and 30 clock
cycles [23], during which the stack must e.g. verify that
the TCP send buffer has enough free capacity for the new
packet. To maximize link utilization, the announcement of
new packets and the transfer of data words belonging to an
already announced packet are automatically pipelined by the
library. Furthermore, the interface exposed to the user kernel is
transfer-based rather than packet-based, meaning that the user
can simply supply a stream of payload data which is then split
into MSS-sized packets by the library automatically.

The user-facing UDP Bluespec interface is less complex
than the one for TCP. It consists of methods for getting and

User Kernel

TCP/IP Stack

Memory Subsystem 
(DRAM or HBM)

TaPaSCo PE

 Interrupt

100G Ethernet 
Subsystem

SPN 
Accelerator 

Control
Interface

SPN 
Accelerator 

SPN 
Accelerators 

AXI4 Lite

AXI4 Full

AXI4 Stream

SPN
Input/Output

App-level
API

Fig. 1. Architecture of a TCP/IP-capable PE with connections to TaPaSCo
subsystems.

putting data words and metadata of a new packet, where
metadata includes a packet’s length, the source and destination
port, and the destination IP address.

The Bluespec library is available as free and open-source
software [30].

D. Creating a TCP/IP-capable Design

This section describes how the individual parts, described
in previous sections, are combined into a complete design that
is capable of network communication via TCP/IP. A mapping
between the seven layers of the OSI Reference Model [31] and
the individual parts that implement those layers is provided
below.

• Layers 1, 2 (partially: MAC sublayer) are implemented
by the Ethernet subsystem instantiated by the TaPaSCo
Network feature that includes modifications as described
in Section IV-B. Depending on the TaPaSCo configura-
tion, a 10G or a 100G backend is used.

• Layers 2 (partially), 3, 4 are implemented by the TCP/IP
stack that includes modifications as described in Sec-
tion IV-A. The data width of the stack matches that of
the Ethernet backend.

• Layers 5, 6, 7 are implemented by the user kernel
using the Bluespec library introduced in Section IV-C.
Alternatively, HLS-based user kernels are also supported.

Fig. 1 shows a visualization of how a TCP/IP-capable
TaPaSCo PE, consisting of a user kernel using the Bluespec
library and a TCP/IP stack, integrates with the subsystems
of a TaPaSCo design. The figure also shows a set of SPN
accelerators attaching to the user kernel which are used in
the case study in Section VI. In addition to the AXI-Lite
control port, the PE module has two AXI-Full interfaces to the
memory subsystem, and an RX and TX AXI-Stream interfaces
to the TaPaSCo Ethernet subsystem. The dedicated memory
subsystem is needed for hosting TCP TX and RX buffers,
which generally are too large to be implemented in internal
memory such as BRAM (cf. Section III-A).

When creating a TCP/IP-capable design for either the XUP-
VVH or the AU280 board, which both use an FPGA of the
Xilinx UltraScale+ family, special care has to be taken when
placing the FPGA design. Internally, these particular FPGAs



are not one monolithic chip, but are divided into three separate
dies that are referred to as super logic regions (SLR). The
SLRs are mounted on a silicon interposer and interconnected
using a Stacked Silicon Interconnect. For designs where com-
ponents are spread over different SLRs, timing closure may
be hard to achieve because the connections between SLRs are
limited and induce a higher-than-normal delay. For instance,
the HBM ports are located in the bottommost SLR, whereas
the GTY transceivers that attach to the boards’s QSFP28
connector may be located in the uppermost SLR.

To remedy timing failures due to suboptimal placement onto
SLRs, manual placement hints or SLR crossing register slices,
which trade improvements in frequency for additional latency
and area, can be used.

E. Fast Hardware/Software-Co-Simulation of TCP/IP-capable
Applications

This section describes the approach of simulating the be-
havior of a user kernel and the TCP/IP stack in a way that is
not purely static and testbench-driven but dynamic in the sense
that the simulated model can interact with its environment by
exchanging Ethernet packets with the host operating system
running the simulator.

A TCP/IP-capable TaPaSCo PE consists of several compo-
nents implemented in different languages, with each offering
its own simulation infrastructure: HLS modules can be natively
compiled and tested, Bluespec modules can be simulated using
Bluesim, and SystemVerilog modules can be simulated using
an HDL-Simulator.

Seeing that both C++ and Bluespec can be compiled to
Verilog, the fully integrated design can be simulated at the
HDL level. While this HDL simulation is slower than a
simulation of individual Bluespec or C++ components, it is
the only way of assessing the behavior of the whole system.

The Vivado Simulator is a mixed-language (Verilog, Sys-
temVerilog, VHDL), event-driven HDL simulator that is part
of the Vivado software suite. It is chosen as the underlying
HDL simulator since it integrates well with the remainder of
the Vivado-based development flow of both TaPaSCo and the
TCP/IP stack and since it supports the simulation of encrypted
Xilinx IP cores. It contains the proprietary Xilinx Simulator
Interface, a C API that allows a C/C++-based testbench to
interact with a device under test (DUT) by reading and writing
its top-level signals. A testbench implemented in C/C++ can
use external libraries or operating system APIs, thus realizing
complex interactions with a DUT that would be challenging
to implement in an HDL-based testbench.

1) Architecture: To effectively simulate the behavior of
a TCP/IP-capable TaPaSCo PE, the testbench must model
the Ethernet layer to which the PE connects via its AXI-
Stream ports. While hard-coding several test Ethernet frames
into the testbench may be reasonable for stateless upper-
layer protocols, this quickly becomes infeasible for the TCP
protocol, where state information is attached to each TCP
session e.g. in the form of sequence and ACK numbers. This
implies that an effective testbench for TCP-based applications

User Kernel Python App etc.

Transport

IP

Ethernet

Transport

IP

Ethernet

FPGA 
Network 

Stack

Linux 
Network 

Stack

tap0 (virtual network device)

AXI-TAP Bridge TAP Driver

HDL Simulator

Ethernet Frames

Application Data

Fig. 2. Simulator architecture for TCP/IP-capable TaPaSCo PEs

needs to be capable of processing network packets by, at least
partially, implementing all involved network protocols.

Implementing any packet processing logic in Verilog seems
unproductive, considering that even basic software imple-
mentations of a TCP/IP stack in high-level languages span
several thousand lines of code (e.g., [32] and [33], both Linux
userspace stacks with roughly 4k resp. 6k lines of C, or [34],
a standalone embedded stack with roughly 24k lines of Rust).

Therefore, the complexity of the simulator architecture is
reduced by (1) implementing the testbench in a higher-level
language (C++) and (2) offloading packet processing itself to
the Linux TCP/IP stack.

2) High-level language for testbench: The Vivado Sim-
ulator can be instructed to compile an HDL design into a
C library that implements a behavioral simulation model of
the design. A testbench written in C/C++ can be linked with
this library and use the Xilinx Simulator Interface (XSI) for
communication with the top module. By appropriately calling
XSI functions, the testbench can write values to top-level HDL
ports, read current values from those ports, and advance the
simulation time.

3) Linux Stack Offloading: Since the testbench is C++-
based, it may leverage arbitrary APIs of the host operating
system. In this particular case, it hands over any packet parsing
and processing tasks to the fully-featured Linux TCP/IP stack,
such that the simulator itself does not need to include dedicated
logic for this.

The simulator interacts with the Linux TCP/IP stack via a
TAP device, which is a type of virtual network interface. A
TAP device behaves like a standard Linux network interface,
but rather than attaching to a physical network interface
controller that interacts with a transmission medium, the data
stream on the data link layer is exposed via a file descriptor.
This file descriptor is read and written by a simulator com-
ponent called AXI-TAP Bridge that translates between HDL
signals and Ethernet frames.

Like the TAP device, the FPGA TCP/IP stack implements
all upper-layer protocols down to the link layer, thus it is
possible to bridge the Linux TCP/IP stack and the FPGA
TCP/IP stack on this layer, effectively emulating the physical
layer. An overview of the simulator architecture in relation to
protocol layers and the positioning of the AXI-TAP Bridge is
shown in Fig. 2.



In more detail, after reassembling an Ethernet frame from
AXI-Stream beats, which are transmitted by the FPGA stack
via its TX AXI-Stream port, this frame is written to the TAP
device. The frame is then parsed and processed according
to its content by the Linux TCP/IP stack. Conversely, any
application data sent from a userspace process via the TAP
network interface is encoded by the Linux TCP/IP stack into
Ethernet frames that are translated by the AXI-TAP Bridge
into AXI-Stream beats which are written to the FPGA stack
via its RX AXI-Stream port.

F. FSM-based Simulator Architecture
A primary concern of the C++-based testbench is to interact

with the AXI-Stream ports of the TaPaSCo PE simulation
model for the exchange of Ethernet frames. In addition to
these two AXI-Stream ports, the TaPaSCo PE contains an
AXI-Lite control interface, which also needs to be driven by
the testbench to set the PE arguments or control its execution
state.

Seeing that AXI-Stream is unidirectional and AXI lite
supports full-duplex, there are a total of four independent
data streams to and from the TaPaSCo PE. While the AXI-
Lite control interface is not strictly performance-critical, the
AXI-Stream channels are. Waiting for a TVALID or TREADY
signal in one channel must not block the other from sending or
receiving data, as this would inaccurately model the underlying
full-duplex connection of a real-world application.

As a result, the testbench must be able to handle four
independent data streams to and from the PE simultaneously.
This is achieved by an architecture of four FSMs that execute
in parallel, where each FSM handles one data stream by
interacting with its associated HDL signals in each clock cycle.

Read and write operations on the AXI-Lite interface are
each implemented by an FSM that has a command queue for
the addresses and data to be read or written. They are used
e.g. to set an argument of the PE or to determine the return
value of the PE.

The TX and RX AXI-Stream interfaces are each imple-
mented by an FSM that is able to process one data word per
clock cycle. Ethernet frames coming from the TAP device are
split into individual AXI-Stream beats and transferred onto the
RX AXI-Stream interface. AXI-Stream beats coming from the
TX interface are buffered and reassembled into an Ethernet
frame, which is then forwarded to the TAP device.

G. “In Circuit” Emulation
The proposed architecture enables arbitrary userspace soft-

ware like wireshark, netcat or custom Python applications to
interact with the live simulation model. Using these high-level
tools significantly simplifies the development and debugging
of TCP/IP-capable TaPaSCo PEs. The simulator supports two
methods of interacting with the AXI-Lite control interface
of the PE. First, a simple UNIX signal handler can trigger
a predetermined AXI transaction, and second, arbitrary AXI
transactions can be triggered via a UDP control socket.

The simulator is available as free and open-source software
[35].

V. EVALUATION

In order to evaluate the achievable network performance of
TaPaSCo designs, throughput and latency measurements using
the network protocols TCP, UDP, plain Ethernet, and Aurora
are performed and compared with each other.

A. Experimental Setup

Multiple experiments are conducted using a setup consisting
of two FPGA boards, one BittWare XUP-VVH and one Xilinx
Alveo U280, connected via a 100 Gigabit network link.

Early experiments have shown that in setups consisting of
one FPGA and one commodity server, the server-side often
severely limits network performance. Achieving throughput
close to the line rate requires non-trivial optimizations on the
server-side, as demonstrated in [36]. Therefore, we do not
further consider this type of setup in the evaluation of this
work. Instead, we use one of the FPGAs as traffic generator
to test the true capabilities of the setup in a throughput test.

The FPGA designs for benchmarking different network
protocols are generated using TaPaSCo and contain exactly
one PE that operates at 250MHz. At this frequency, the
512 bit AXI-Stream interface between PE and Ethernet or
Aurora subsystem can provide a theoretical throughput of
128Gbit/s. A simulation of the TCP/IP stack using an MSS
of 4KiB shows that a link utilization of over 97% is reached
on this AXI-Stream interface. The resulting net data rate is
sufficient to saturate the 100Gbit/s line rate of the Ethernet
backend.

Since a TCP buffer implementation in DRAM was found to
bottleneck the system even when using RX buffer bypassing,
if not mentioned otherwise, the buffers are implemented in
HBM, which was found to not limit performance.

The benchmark PE implements both a throughput and a
latency test, in both cases using a server-client-architecture.
For the protocols TCP and UDP, it contains the TCP/IP
stack and uses the Bluespec networking library introduced in
Section IV-C as foundation for the test implementation.

The throughput achievable on the link between the two
FPGAs using a particular setup is measured by timing the
duration it takes to transfer 100GB of data. Network packets
are sent from the client to the server PE as fast as possible.
The amount of payload per packet is configurable and is
varied between 1KiB and 8KiB, depending on the specific
experiment.

For the case of TCP, splitting the 100GB transfer into MSS-
sized packets is handled by the Bluespec network library.
For UDP and Ethernet, this is implemented within the user
kernel itself. Depending on the specific network protocol,
different amounts and different kinds of packet headers are
prepended to the payload. While the payload size is kept
constant across protocols, this results in overall packets of
varying sizes. As Aurora is a packet-less protocol, splitting
the data is not required in the Aurora-based test. Instead, all
data is transmitted in a single headerless frame.

The latency of the link between the two FPGAs is measured
as the round-trip time (RTT) of a 32B-sized ping packet. UDP,



1024 2048 4096 8192

Payload size (B)

85.0

87.5

90.0

92.5

95.0

97.5

100.0
T

h
ro

u
gh

p
u

t
(G

b
it

/s
)

Ethernet

UDP

TCP

Fig. 3. Throughput of TCP, UDP, and Ethernet, for different payload sizes
per packet. Note that the y-axis does not start at zero.

Ethernet, and Aurora are connectionless protocols where the
ping packet can be sent to a server without any prerequisites.
The same is not true for a TCP-based latency test, where a
TCP connection has to be established prior to transmitting the
ping packet.

B. Throughput

In this experiment, the relationship between the choice
of network protocol, the payload size, and the measured
throughput is evaluated. The payload size affects the fraction
of protocol overhead, and thus places an upper bound on
the achievable throughput. The experiment is conducted using
receive buffer bypassing (see Section V-D for more details).
Furthermore, a TCP window size of 256KiB is used.

The usable throughput at the application layer (”goodput“)
is obviously lower than the bandwidth of the 100G network
link, and depends on the ratio between payload size and total
size of an Ethernet frame. For plain Ethernet using an MTU
of 4KiB, the theoretical goodput is equal to

100Gbit/s · 4KiB

4KiB + 8B + 14B + 4B + 12B
= 99.081Gbit/s. (1)

Using an MSS of 4KiB and assuming an IPv4 header
with no options (20B), a TCP header with no options (20B),
and taking into consideration the overhead from Eq. (1), the
theoretical goodput of a TCP connection is given by

100Gbit/s · 4KiB

4KiB + 38B + 20B + 20B
= 98.131Gbit/s. (2)

Assuming equivalent constraints as with TCP, the UDP
protocol achieves a theoretical goodput of

100Gbit/s · 4KiB

4KiB + 38B + 20B + 8B
= 98.414Gbit/s. (3)

Since Aurora is not a packet-based protocol, it does not
carry any packet header overhead. In its reference implemen-
tation, however, the clock compensation mechanism inhibits
data transmission for a maximum of 8 clock cycles every
4992 clock cycles [28, p.20], resulting in a different kind of

97

98

99

100

T
h

ro
u

gh
p

u
t

(G
b

it
/s

)

98.131 98.414

99.080

99.837

98.131 98.414

99.081

99.840Measured

Optimum

TCP UDP Ethernet Aurora

0

1

Fig. 4. Measured throughput and theoretical maximum for different protocols.
Except for Aurora, all protocols use a payload size of 4KiB

protocol overhead. Assuming an infinite data frame, the worst-
case goodput of Aurora 64B/66B amounts to

100Gbit/s · 4992B
5000B

= 99.840Gbit/s. (4)

Fig. 3 shows throughput measurements for payload sizes
between 1KiB and 8KiB. The payload size 1460B is signif-
icant, as it is the largest MSS that fits into an Ethernet frame
with default MTU of 1500B. As both UDP and TCP operate
on top of Ethernet, both carry a higher protocol overhead and
achieve strictly lower throughput. For the same reason, UDP
performs better than TCP, particularly for small payloads.

Fixing the packet based protocols to a payload size of 4KiB,
the measured throughput and calculated optimum for TCP,
UDP, Ethernet, and Aurora are shown in Fig. 4. With this
setup, the measured throughput of all protocols is virtually
equivalent to the theoretical optimum derived in Eqs. (1) to (4).

The achievable throughput of a protocol expectedly is
inversely proportional to the amount of overhead carried by it.
From this perspective, Aurora is of particular relevance since it
can be considered the limit case where packet header overhead
is reduced to zero. However, due to the clock compensation
overhead, Aurora cannot achieve perfect bandwidth utilization.

C. Latency

A comparison of RTT latency measurements for different
protocols is shown in Fig. 5. Naturally, both UDP and TCP
have a higher latency than Ethernet since these protocols are
constructed on top of Ethernet. Also expectedly, TCP has the
highest latency of all since its implementation is by far the
most control-intensive. All latency measurements for TCP are
executed within an established TCP session.

The average duration of a TCP handshake, which is neces-
sary for establishing a TCP connection, is 2579 ns, i.e. slightly
faster than the RTT of a ping packet. This is plausible because
the data-less handshake packets do not traverse the full TCP/IP
stack, such that the handshaking sequence is processed faster
than a data-carrying ping packet.



TCP UDP Ethernet Aurora

0

500

1000

1500

2000

2500
L

at
en

cy
(n

s)
2644

1812

927

448

Fig. 5. RTT latencies using different protocols. For TCP, the duration of the
handshake is not included.

D. RX Bypass

This section presents the examination of the configurable
receive buffer bypass of the TCP/IP stack for TCP connections.
For this, two variables are considered: (1) whether or not the
bypass is enabled in the FPGA design, (2) which memory
technology is used to implement the buffers. Memory sub-
systems based on HBM and BRAM are evaluated, resulting
in four possible configurations that are compared in terms of
throughput and latency.

1) Throughput: Fig. 6 shows the results of a throughput
test for all four configurations. The theoretical maximum is
calculated according to Eq. (2) and is marked in the figure.
The two configurations using receive buffer bypassing perform
extremely close to the theoretical maximum, regardless of the
memory technology used. The throughput of the HBM-based
system approximately halves if the bypass is disabled, whereas
the BRAM-based system achieves the same performance with
or without bypassing.

Regardless of the configuration, all transmitted data is
written to memory once. However, assuming there are no
retransmissions, this data is never read back. Disabling the
bypass further increases memory pressure, since all received
data is written to memory and read back shortly after when
the application requests new data from the receive buffer.
For HBM specifically, this access pattern yields suboptimal
performance due to bus turnaround times between write and
read operations [37, p.23].

The throughput result of the HBM-based configuration
without bypass is noticeably low, yet plausible, considering
that data must be written to and read from memory at
approximately 50Gbit/s (6.25GB/s). In [38], a sequential
combined read/write throughput of 12.9GB/s was measured
using a single HBM channel on an Alveo U280, which aligns
with the throughput result of the experiment in this work. It
is thus concluded that memory performance can impede the
achievable throughput performance, and that memory pressure
can be relieved by employing RX buffer bypassing.

2) Latency: For each of the four possible configurations,
Fig. 7 shows both the duration of a TCP handshake (HS) as

Bypass off Bypass on

0

20

40

60

80

100

T
h

ro
u

gh
p

u
t

(G
b

it
/s

)

50.297

98.13198.131 98.131

Optimum

HBM

BRAM

Fig. 6. TCP throughput with and without receive buffer bypass, for HBM
and BRAM based buffer implementations. The MSS is 4KiB, and the
corresponding theoretical maximum throughput is marked.

Memory BRAM HBM BRAM HBM
Bypass off off on on

0

1000

2000

3000

4000

5000

6000

L
at

en
cy

(n
s)

2576 2590 2570 2572

6200 6322

5213 5219

RTT

HS

Fig. 7. Latency results of a TCP ping test, with and without buffer bypass, for
HBM and BRAM based buffer implementations. The figure shows the duration
of the TCP handshake (HS) and the subsequent RTT of a ping packet.

well as the RTT of a ping packet that is sent immediately after
the handshake completes. It is noticeable that the duration of
the TCP handshake is largely unaffected across all different
configurations. This is expected because data-less TCP control
packets like SYN, SYN+ACK, and ACK are never buffered
and thus independent of the buffer architecture.

When enabling the buffer bypass, the RTT decreases by
approx. 27% for BRAM and by approx. 29% for HBM. This
decrease is caused by the fact that a received ping packet is
now directly delivered to the application, instead of being first
written to memory and then read back before being delivered
to the application. This bypassing takes place at the server,
when receiving the initial ping packet, and at the client, when
receiving the ping reply. Generally, the TCP receive buffer
is essential if the application layer cannot process bursts of
incoming packets at line rate or if packets regularly arrive
out-of-order and require buffering for reordering.



TABLE I
OVERVIEW OF RESOURCE UTILIZATION OF DIFFERENT TCP/IP STACK

CONFIGURATIONS.

Component CLB LUTS Registers Block RAMs
abs. % abs. % abs. %

TCP & UDP 121491 9.3 212599 8.2 463.0 23.0
TCP only 114966 8.8 185244 7.1 439.5 21.8
UDP only 32395 2.5 93886 3.6 120.0 6.0

E. Resource Utilization

In Table I, the stack’s resource utilization is summarized
for a configuration that implements both the TCP and the
UDP protocol, one that implements only UDP, and one that
implements only TCP. As expected, the implementation of the
TCP protocol proves to be the most resource-intensive. The
TCP-only configuration requires almost four times the number
of LUTs and BRAMs and almost twice the number of registers
compared to the UDP-only version. As a result, the TCP-only
configuration is similar in resource utilization to the combined
TCP and UDP configuration.

VI. CASE STUDY: IN-NETWORK ACCELERATION OF
SUM-PRODUCT NETWORK INFERENCE

In order to demonstrate how the design primitives described
Section IV-C can be used to realize a network-attached acceler-
ator for an actual application and which handy role simulation
(Section IV-E) can play in the design process, we will use an
existing FPGA-based accelerator [10], [39] for the inference
in so-called Sum-Product Networks (SPN) as an example.

A. Sum-Product Network Background

Similar to other probabilistic (graphical) models, Sum-
Product Networks [40] are recently receiving increasing at-
tention from industry and academia alike. Due to their true
probabilistic semantics, Sum-Product Networks can much bet-
ter cope with the uncertainties found in real-world applications
and are also able to quantify their uncertainty over their own
output by means of probabilities, which makes them an ap-
pealing complement and alternative to currently more widely
used machine learning techniques such as neural networks.

Sum-Product Networks capture the joint probability over a
set of variables in the form of a directed acyclic graph (DAG),
with three different types of nodes. Leaf nodes represent
univariate distributions (e.g., Gaussian) over a single variable.
Product nodes, on the other hand, represent a factorization
of independent subsets of variables, while the weighted sum
nodes indicate a mixture of multiple distributions. An example
is shown in Fig. 8.

The graph structure of an SPN can either be handcrafted,
complemented by weight learning, or automatically be learned
from training data. An overview of the various available
learning algorithms can be found in [41]. The survey also
provides a nice overview of a wide range of usage examples
for Sum-Product Networks, ranging from medical imaging
[42] to approximate query processing for databases [43].

+

× × × × × ×

+ +
× ×

+

w1 w2 w3 w4 w5 w6

w7 w8

Fig. 8. Example for the graph structure of a Sum-Product Network, capturing
the joint probability distribution over a set of variables.

After the graph structure has been obtained, inference can
be used to answer probabilistic queries. To this end, the
SPN DAG is traversed in a bottom-up fashion starting at
the leaf nodes, where the (partial) input evidence is used
to obtain probabilities. After propagating these probabilities
through the graph, performing the respective operations, the
final probability value is obtained at the single root node of
the SPN.

The existing SPN accelerator [39], which we use as an
example here, is designed to accelerate this inference step.
Training of the SPN is assumed to have taken place before-
hand.

B. Streaming-based Accelerator

In our prior work, we have employed SPN-accelerators to
accelerate batch-wise processing of SPN inference queries
[10], [39]. For the work presented here, due to the streaming-
based interfaces of the networking stack, we had to adapt the
corresponding accelerators to make them compatible. In prior
work, the accelerator uses four distinct sub-modules for the
SPN inference. 1) A control register allows configuration of
the accelerator. 2) A Load Unit is responsible for loading input
data from on-device DRAM. 3) The SPN-Datapath performs
the actual inference and is fed by the Load Unit. 4) Results
from the SPN-Datapath are passed to a Store Unit, which will
write back the data.

In this work, we have adapted the SPN-Datapath from prior
work to run as a free-running kernel. This means that no
configuration is necessary. Additionally, the Load- and Store
Unit have been stripped from the accelerator. Instead of using
AXI4 for loading and storing the input- and output-data, we
now rely on AXI-Stream to feed data directly into the SPN-
Datapath. The results are then passed on via a second AXI-
Stream interface. Overall, this makes the accelerators a lot
more light-weight and reduces the control- and configuration
overhead to zero. Data is pushed into the accelerator via
AXI-Stream and results can be received via a second AXI-
Stream interface. The bitwidths of both of those interfaces
may be varied depending on the underlying SPN. The AXI-
Stream slave interface (used for receiving input-vectors) is
sized according to the size of a single input-vector (in this
work, we use up to 640 bit wide input-vectors). The AXI-
Stream master interface (used for sending the inference results)
is 64 bit wide, due to the fact that the output is a single IEEE



TABLE II
DEGREE OF REPLICATION OF DIFFERENT NIPS-SPNS USED IN THE

EXPERIMENTAL EVALUATION.

NIPS Variant 10 20 30 40 50 60 70 80

Number of Instances 5 3 2 2 1 1 1 1

754 double precision float. The accelerator is able to accept a
complete input-vector every cycle. Due to its deeply pipelined
nature, the accelerator is able to processes a single input-vector
every cycle, assuming the the pipeline is kept full. The latency
of the accelerator depends on the underlying SPN, since the
SPN datapath varies in depth with the corresponding SPN.

C. Network Integration

The data path of the Xilinx CMAC is implemented by a 64-
byte-wide AXI-Stream interface. Since the AXI-Stream slave
interface of an SPN can have an arbitrary byte-width, a width-
conversion is necessary in the general case when connecting
the RX-path of the CMAC and slave-side of the SPN. The
same is required for connecting the master-side of the SPN
to the TX-path of the CMAC. In both cases, a Multiple-In
Multiple-Out (MIMO) module is employed for this purpose.

To leverage the full bandwidth of the network connection
while keeping the clock frequency of the SPN in an acceptable
range, it may be necessary to replicate the SPN accelerator
module several times in order to multiply the inference rate.
The architecture of the TaPaSCo PE we used during the
evaluation is equal to the one previously shown in Fig. 1.

D. Experimental Evaluation

In this section, we will discuss the results of the experi-
mental evaluation using the SPN-accelerators presented in the
prior sections. Each of the eight NIPS accelerator represents
a different benchmark from the NeurIPS corpus [44], and the
number indicates the number of inputs in the input-vector of
the corresponding SPN. For example, NIPS10 will use 10
input-values, with each input-value being 8 bits wide. Thus
the overall size of the input vector is 10 bytes or 80 bits.

Since all of the used NIPS-SPNs are able to run at 250MHz,
we have to use replication, to ensure that the full available
network bandwidth can be exploited. At 250MHz, we have
to make sure that the SPNs can accept at least 50B of data
per cycle. Thus, for NIPS10, we need to replicate it five times
to achieve this. Larger SPNs (like NIPS80) do not need to
be replicated. The specific degree of replication that we used
during evaluation is listed in Table II.

The resulting throughputs are depicted in Fig. 9. It is
important to note, that due to the point-to-point nature of the
Aurora protocol, it did not make sense to include it in the
evaluation. This is due to the fact that it would be incompatible
with the concept of replicating accelerators to exploit the
available bandwidth. Instead, the results are limited to the
comparison of TCP, UDP and plain Ethernet.

Apart from that, Fig. 9 shows that the throughput is very
close to the theoretical limit of 100Gbit/s for all different

protocols. This shows that the presented networking stack does
not only work with synthetic benchmarks, but also with more
real-world applications, like SPN inference. Additionally, the
peak throughput was achieved for many different accelerators
using different input-widths, which also highlights the flexi-
bility of the stack.

90.0

92.5

95.0

97.5

100.0

T
h

ro
u

gh
p

u
t

(G
b

it
/s

)

9
9

.0
7

8

9
9

.0
7

8

9
9

.0
7

8

9
9

.0
7

8

9
9

.0
5

9

9
9

.0
7

8

9
9

.0
7

3

9
9

.0
7

8

9
8

.4
0

8

9
8

.4
0

8

9
8

.4
0

8

9
8

.4
0

8

9
8

.3
9

7

9
8

.4
0

8

9
8

.4
0

1

9
8

.4
0

8

9
7

.0
2

4

9
6

.5
2

8

9
7

.0
9

5

9
6

.1
5

1

9
6

.4
2

6

9
6

.7
2

9

9
5

.6
5

4

9
6

.8
0

3

Ethernet

UDP

TCP

NIPS10 NIPS20 NIPS30 NIPS40 NIPS50 NIPS60 NIPS70 NIPS80

0.0

2.5

Fig. 9. Throughput of different SPN variants using different network protocols
for input and output data transfer.

VII. CONCLUSION & OUTLOOK

In this work, we have integrated a high-throughput hardware
network stack into the open-source TaPaSCo framework. Dur-
ing the integration process, several limitation of the existing
stack have been removed and a combination with faster HBM
memory was developed to allow for flexible configuration of
the stack and better performance.

Next to that, we also developed a library of easy-to-use de-
sign primitives for network-attached accelerators in a modern
HDL. The library is complemented by a simulation framework
which leverages the Linux TCP stack to allow implementing
testbenches for accelerators in high-level languages such as
C/C++ or Python. The combination of the design primi-
tives, the new simulation framework and TaPaSCo’s auto-
matic design-exploration framework make network-attached
SoC-designs more accessible for researches and significantly
facilitate the design process.

Our evaluation demonstrates that the integrated stack is able
to achieve the maximum theoretical possible throughput. This
finding has been confirmed in the case study, using a machine
learning inference accelerator for Sum-Product Networks as an
example, which also demonstrates how the design primitives
can be used to attach existing accelerators to the network.

ACKNOWLEDGEMENTS

This work has been co-funded by the German Research
Foundation (DFG) as part of project D2 within the Collabora-
tive Research Center (CRC) 1053 MAKI and by the German
Federal Ministry for Education and Research (BMBF) with the
funding ID ZN 01|S17050. The authors would like to thank
Xilinx Inc. for supporting their work by donations of hard-
and software.



REFERENCES

[1] D. Firestone, A. Putnam, S. Mundkur, D. Chiou, A. Dabagh,
M. Andrewartha, H. Angepat, V. Bhanu, A. Caulfield, E. Chung, H. K.
Chandrappa, S. Chaturmohta, M. Humphrey, J. Lavier, N. Lam, F. Liu,
K. Ovtcharov, J. Padhye, G. Popuri, S. Raindel, T. Sapre, M. Shaw,
G. Silva, M. Sivakumar, N. Srivastava, A. Verma, Q. Zuhair, D. Bansal,
D. Burger, K. Vaid, D. A. Maltz, and A. Greenberg, “Azure accelerated
networking: Smartnics in the public cloud,” in 15th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 18). Renton,
WA: USENIX Association, Apr. 2018, pp. 51–66. [Online]. Available:
https://www.usenix.org/conference/nsdi18/presentation/firestone

[2] E. Chung, J. Fowers, K. Ovtcharov, M. Papamichael, A. Caulfield,
T. Massengill, M. Liu, D. Lo, S. Alkalay, M. Haselman, M. Abeydeera,
L. Adams, H. Angepat, C. Boehn, D. Chiou, O. Firestein, A. Forin,
K. S. Gatlin, M. Ghandi, S. Heil, K. Holohan, A. El Husseini, T. Juhasz,
K. Kagi, R. K. Kovvuri, S. Lanka, F. van Megen, D. Mukhortov, P. Patel,
B. Perez, A. Rapsang, S. Reinhardt, B. Rouhani, A. Sapek, R. Seera,
S. Shekar, B. Sridharan, G. Weisz, L. Woods, P. Yi Xiao, D. Zhang,
R. Zhao, and D. Burger, “Serving dnns in real time at datacenter scale
with project brainwave,” IEEE Micro, vol. 38, no. 2, pp. 8–20, 2018.

[3] S. Mühlbach, M. Brunner, C. Roblee, and A. Koch, “Malcobox: De-
signing a 10 gb/s malware collection honeypot using reconfigurable
technology,” in IEEE Proc. Intl. Conf. on Field Programmable Logic
and Applications (FPL). IEEE, 2010.

[4] A. Sapio, I. Abdelaziz, A. Aldilaijan, M. Canini, and P. Kalnis,
“In-network computation is a dumb idea whose time has come,”
in Proceedings of the 16th ACM Workshop on Hot Topics in
Networks, ser. HotNets-XVI. New York, NY, USA: Association
for Computing Machinery, 2017, p. 150–156. [Online]. Available:
https://doi.org/10.1145/3152434.3152461

[5] Y. Tokusashi, H. T. Dang, F. Pedone, R. Soulé, and N. Zilberman,
“The case for in-network computing on demand,” in Proceedings of
the Fourteenth EuroSys Conference 2019, ser. EuroSys ’19. New
York, NY, USA: Association for Computing Machinery, 2019. [Online].
Available: https://doi.org/10.1145/3302424.3303979

[6] J. Hofmann, L. Thostrup, T. Ziegler, C. Binnig, and A. Koch, “High-
performance in-network data processing,” in International Workshop on
Accelerating Analytics and Data Management Systems Using Modern
Processor and Storage Architectures, ADMS@VLDB 2019, Los Angeles,
United States., 2019.

[7] J. Wirth, J. A. Hofmann, L. Thostrup, A. Koch, and C. Binnig,
“Exploiting 3d memory for accelerated in-network processing of hash
joins in distributed databases,” in Applied Reconfigurable Computing.
Architectures, Tools, and Applications, S. Derrien, F. Hannig, P. C. Diniz,
and D. Chillet, Eds. Cham: Springer International Publishing, 2021,
pp. 18–32.

[8] M. Ruiz, D. Sidler, G. Sutter, G. Alonso, and S. López-Buedo, “Limago:
an FPGA-based Open-source 100 GbE TCP/IP Stack,” in 2019 29th In-
ternational Conference on Field Programmable Logic and Applications
(FPL). IEEE, Sep 2019, pp. 286–292.

[9] “Tapasco,” https://github.com/esa-tu-darmstadt/tapasco.
[10] L. Sommer, J. Oppermann, A. Molina, C. Binnig, K. Kersting, and

A. Koch, “Automatic mapping of the sum-product network inference
problem to fpga-based accelerators,” in IEEE International Conference
on Computer Design (ICCD). IEEE, 2018.

[11] “Tcp/ip & udp network protocol acceleration platform (npap),”
https://www.missinglinkelectronics.com/index.php/menu-products/
menu-network-protocol-accelerator, [Online, accessed June 2021].

[12] “25g bit tcp offload engine (toe),” https://intilop.com/resources/
product briefs/25G 1K-Sess TCP+UDP Offload+MAC+Host
IFUltra-LowLatency(INT-25011).pdf, [Online, accessed June 2021].

[13] “Enyx ip cores,” https://www.enyx.com/ip-cores, [Online, accessed June
2021].

[14] “Algo-logic: Ultra-low-latency 10g tcp endpoint,” https:
//www.algo-logic.com/10g-tcp-endpoint, [Online, accessed June
2021].

[15] “Tcp offload engine: Lightspeed tcp,” https://ldatech.com/Solutions/
LightSpeedTCP, [Online, accessed June 2021].

[16] Z.-Z. Wu and H.-C. Chen, “Design and implementation of tcp/ip
offload engine system over gigabit ethernet,” in Proceedings of 15th
International Conference on Computer Communications and Networks.
IEEE, 2006, pp. 245–250.

[17] Y. Ji and Q.-S. Hu, “40gbps multi-connection tcp/ip offload engine,” in
2011 International Conference on Wireless Communications and Signal
Processing (WCSP). IEEE, 2011, pp. 1–5.

[18] Z. Zhao, H. Sadok, N. Atre, J. C. Hoe, V. Sekar, and J. Sherry,
“Achieving 100gbps intrusion prevention on a single server,” in
14th {USENIX} Symposium on Operating Systems Design and
Implementation ({OSDI} 20). USENIX Association, 2020, pp. 1083–
1100. [Online]. Available: https://www.usenix.org/conference/osdi20/
presentation/zhao-zhipeng

[19] D. Sidler, G. Alonso, M. Blott, K. Karras, K. Vissers, and R. Carley,
“Scalable 10gbps tcp/ip stack architecture for reconfigurable hard-
ware,” in 2015 IEEE 23rd Annual International Symposium on Field-
Programmable Custom Computing Machines, 2015, pp. 36–43.

[20] J. Weerasinghe, R. Polig, F. Abel, and C. Hagleitner, “Network-attached
fpgas for data center applications,” in 2016 International Conference on
Field-Programmable Technology (FPT). IEEE, 2016, pp. 36–43.

[21] A. Boutros, B. Grady, M. Abbas, and P. Chow, “Build fast, trade fast:
Fpga-based high-frequency trading using high-level synthesis,” in 2017
International Conference on ReConFigurable Computing and FPGAs
(ReConFig). IEEE, 2017, pp. 1–6.

[22] G. Sutter, M. Ruiz, S. Lopez-Buedo, and G. Alonso, “Fpga-based
tcp/ip checksum offloading engine for 100 gbps networks,” in 2018
International Conference on ReConFigurable Computing and FPGAs
(ReConFig). IEEE, 2018, pp. 1–6.

[23] “Vitis with 100 gbps tcp/ip network stack,” https://github.com/
fpgasystems/Vitis with 100Gbps TCP-IP, [Online, accessed June
2021].

[24] “Vivado design suite user guide: High-level synthesis (ug902 (v2020.1)
may 4, 2021),” https://www.xilinx.com/support/documentation/sw
manuals/xilinx2020 1/ug902-vivado-high-level-synthesis.pdf.

[25] J. Korinth, J. Hofmann, C. Heinz, and A. Koch, “The tapasco open-
source toolflow for the automated composition of task-based parallel
reconfigurable computing systems,” in International Symposium on
Applied Reconfigurable Computing. Springer, 2019, pp. 214–229.

[26] “Aurora 64b/66b protocol specification (sp011 (v1.3) october 1, 2014),”
https://www.xilinx.com/support/documentation/ip documentation/
aurora 64b66b protocol spec sp011.pdf.

[27] “Ultrascale+ devices integrated 100g ethernet subsystem v2.4 (pg203
april 4, 2018),” https://www.xilinx.com/support/documentation/ip
documentation/cmac usplus/v2 4/pg203-cmac-usplus.pdf.

[28] “Aurora 64b/66b v12.0 (pg074 december 4, 2020),” https:
//www.xilinx.com/support/documentation/ip documentation/aurora
64b66b/v12 0/pg074-aurora-64b66b.pdf.

[29] “Bsv documentation,” http://wiki.bluespec.com/Home/
BSV-Documentation, [Online, accessed June 2021].

[30] “Bluenet,” https://git.esa.informatik.tu-darmstadt.de/net/bluenet.
[31] H. Zimmermann, “Osi reference model - the iso model of architecture for

open systems interconnection,” IEEE Transactions on Communications,
vol. 28, no. 4, pp. 425–432, 1980.

[32] “nstack,” https://github.com/jserv/nstack, [Online, accessed May 2021].
[33] “tapip,” https://github.com/chobits/tapip, [Online, accessed May 2021].
[34] “smoltcp,” https://github.com/smoltcp-rs/smoltcp, [Online, accessed

May 2021].
[35] “net-sim,” https://git.esa.informatik.tu-darmstadt.de/net/net-sim.
[36] M. Hock, M. Veit, F. Neumeister, R. Bless, and M. Zitterbart, “Tcp at

100 gbit/s–tuning, limitations, congestion control,” in 2019 IEEE 44th
Conference on Local Computer Networks (LCN). IEEE, 2019, pp. 1–9.

[37] “Axi high bandwidthmemory controller v1.0 (pg276 (v1.0) jan-
uary 21, 2021),” https://www.xilinx.com/support/documentation/ip
documentation/hbm/v1 0/pg276-axi-hbm.pdf.

[38] Y.-k. Choi, Y. Chi, J. Wang, L. Guo, and J. Cong, “When hls meets fpga
hbm: Benchmarking and bandwidth optimization,” 2020.

[39] L. Sommer, L. Weber, M. Kumm, and A. Koch, “Comparison of
arithmetic number formats for inference in sum-product networks on
fpgas,” in 2020 IEEE 28th Annual International Symposium on Field-
Programmable Custom Computing Machines (FCCM), 2020, pp. 1–10.

[40] H. Poon and P. Domingos, “Sum-product networks: A new deep archi-
tecture,” in 2011 IEEE International Conference on Computer Vision
Workshops (ICCV Workshops), 2011.

[41] R. Sánchez-Cauce, I. Parı́s, and F. J. Dı́ez, “Sum-product networks: A
survey,” IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 2021.

https://www.usenix.org/conference/nsdi18/presentation/firestone
https://doi.org/10.1145/3152434.3152461
https://doi.org/10.1145/3302424.3303979
https://github.com/esa-tu-darmstadt/tapasco
https://www.missinglinkelectronics.com/index.php/menu-products/menu-network-protocol-accelerator
https://www.missinglinkelectronics.com/index.php/menu-products/menu-network-protocol-accelerator
https://intilop.com/resources/product_briefs/25G_1K-Sess_TCP+UDP_Offload+MAC+Host_IFUltra-LowLatency(INT-25011).pdf
https://intilop.com/resources/product_briefs/25G_1K-Sess_TCP+UDP_Offload+MAC+Host_IFUltra-LowLatency(INT-25011).pdf
https://intilop.com/resources/product_briefs/25G_1K-Sess_TCP+UDP_Offload+MAC+Host_IFUltra-LowLatency(INT-25011).pdf
https://www.enyx.com/ip-cores
https://www.algo-logic.com/10g-tcp-endpoint
https://www.algo-logic.com/10g-tcp-endpoint
https://ldatech.com/Solutions/LightSpeedTCP
https://ldatech.com/Solutions/LightSpeedTCP
https://www.usenix.org/conference/osdi20/presentation/zhao-zhipeng
https://www.usenix.org/conference/osdi20/presentation/zhao-zhipeng
https://github.com/fpgasystems/Vitis_with_100Gbps_TCP-IP
https://github.com/fpgasystems/Vitis_with_100Gbps_TCP-IP
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2020_1/ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2020_1/ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com/support/documentation/ip_documentation/aurora_64b66b_protocol_spec_sp011.pdf
https://www.xilinx.com/support/documentation/ip_documentation/aurora_64b66b_protocol_spec_sp011.pdf
https://www.xilinx.com/support/documentation/ip_documentation/cmac_usplus/v2_4/pg203-cmac-usplus.pdf
https://www.xilinx.com/support/documentation/ip_documentation/cmac_usplus/v2_4/pg203-cmac-usplus.pdf
https://www.xilinx.com/support/documentation/ip_documentation/aurora_64b66b/v12_0/pg074-aurora-64b66b.pdf
https://www.xilinx.com/support/documentation/ip_documentation/aurora_64b66b/v12_0/pg074-aurora-64b66b.pdf
https://www.xilinx.com/support/documentation/ip_documentation/aurora_64b66b/v12_0/pg074-aurora-64b66b.pdf
http://wiki.bluespec.com/Home/BSV-Documentation
http://wiki.bluespec.com/Home/BSV-Documentation
https://git.esa.informatik.tu-darmstadt.de/net/bluenet
https://github.com/jserv/nstack
https://github.com/chobits/tapip
https://github.com/smoltcp-rs/smoltcp
https://git.esa.informatik.tu-darmstadt.de/net/net-sim
https://www.xilinx.com/support/documentation/ip_documentation/hbm/v1_0/pg276-axi-hbm.pdf
https://www.xilinx.com/support/documentation/ip_documentation/hbm/v1_0/pg276-axi-hbm.pdf


[42] F. Rathke, M. Desana, and C. Schnörr, “Locally adaptive probabilistic
models for global segmentation of pathological oct scans,” in Interna-
tional Conference on Medical Image Computing and Computer-Assisted
Intervention. Springer, 2017, pp. 177–184.

[43] B. Hilprecht, A. Schmidt, M. Kulessa, A. Molina, K. Kersting, and
C. Binnig, “Deepdb: Learn from data, not from queries!” CoRR, vol.
abs/1909.00607, 2019. [Online]. Available: http://arxiv.org/abs/1909.
00607

[44] D. Dua and C. Graff, “UCI machine learning repository,” 2017.
[Online]. Available: http://archive.ics.uci.edu/ml

http://arxiv.org/abs/1909.00607
http://arxiv.org/abs/1909.00607
http://archive.ics.uci.edu/ml

	Introduction
	Related Work
	Background
	Hardware TCP/IP Stack
	The TaPaSCo Framework

	Implementation
	Modification and Extension of the Network Stack
	Parameterizable Data Width
	Issues with Buffer Memory Addresses

	Integration with the TaPaSCo Framework
	Design Primitives for Network Access
	Creating a TCP/IP-capable Design
	Fast Hardware/Software-Co-Simulation of TCP/IP-capable Applications
	Architecture
	High-level language for testbench
	Linux Stack Offloading

	FSM-based Simulator Architecture
	``In Circuit'' Emulation

	Evaluation
	Experimental Setup
	Throughput
	Latency
	RX Bypass
	Throughput
	Latency

	Resource Utilization

	Case Study: In-Network Acceleration of Sum-Product Network Inference
	Sum-Product Network Background
	Streaming-based Accelerator
	Network Integration
	Experimental Evaluation

	Conclusion & Outlook
	References

