SPNC: Fast Sum-Product Network Inference

Lukas Sommer![0000—-0003—1918=3911] " Cpigtian Axenie?, and Andreas

KOChl [0000—0002—1164—3082]

! Embedded Systems and Applications Group*
Technical University Darmstadt, Germany
{sommer, koch}@esa.tu-darmstadt.de
2 Intelligent Cloud Technologies Laboratory
Huawei Munich Research Center, Germany
cristian.axenie@huawei.com

Abstract. Sum-Product Networks have received increasing attention
from academia and industry alike, but the software ecosystem is com-
parably sparse. In this work, we enhance the ecosystem with an open-
source, domain-specific compiler that allows to easily and efficiently tar-
get CPUs and GPUs for Sum-Product Network inference. The imple-
mentation of the compiler is based on the open-source MLIR framework.
Using a real-world application of Sum-Product Networks, a robust speaker
identification model, we showcase the performance improvements our
compiler can achieve for SPN inference on CPUs and GPUs.

Keywords: Sum-Product Networks - Compiler - MLIR - LLVM

1 Introduction

Probabilistic models are receiving increasing attention from both academia and
industry, being a complementary alternative to more widespread machine learn-
ing approaches such as (deep) neural networks (NN). Probabilistic models can
handle the uncertainty found in real-world scenarios better, and are also, in
contrast to NNs, able to express uncertainty over their output.

However, in contrast to neural networks, for which a rich ecosystem with
a variety of frameworks, libraries and compilers, such as Tensorflow’s XLA, or
Facebook’s Glow, is available, the ecosystem for probabilistic models such as
Sum-Product Networks (SPN) is comparatively sparse, due to them being a
relatively young class of models.

One of the most popular libraries for research with Sum-Product Networks
is SPFlow by Molina et al. [3], which provides a programmatic representation of
Sum-Product Network models and allows to learn their structure and parameters
from data. SPFlow also allows to perform inference on the models obtained
through learning, but is implemented in pure Python and can therefore not

* Calculations for this research were conducted on the Lichtenberg high performance
computer of TU Darmstadt. This research was funded by the German Federal Min-
istry for Education and Research (BMBF) with the funding ID ZN 01]|S17050.

2 L. Sommer et al.

leverage the full feature set of CPUs or GPUs. However, exploiting all available
hardware features is crucial for the deployment of SPN models on embedded-
grade devices and for efficient inference in real-world applications, e.g., to fulfill
real-time requirements.

Therefore, in this work, we enhance the SPN ecosystem by developing SPNC,
an open-source domain-specific, multi-platform compiler for performing fast Sum-
Product Network inference on CPUs and GPUs, and present the following con-
tributions:

— Based on the MLIR framework [2], we develop custom high-level intermediate
representations capturing the semantics of Sum-Product Networks in the
compiler (Section 3.1).

— We define efficient strategies to map Sum-Product Network inference to
CPUs with vector extensions and CUDA GPUs. The mapping strategies
make use of the underlying hardware’s specific features for efficient inference
(Section 3.2 & Section 3.3).

— Using a real-world application of Sum-Product Networks, we evaluate our
approach in detail, and compare it to the currently available framework
(Section 5).

— We develop a Python interface to our compiler, which seamlessly integrates
with SPFlow [3] and allows to target CPUs and GPUs with ease (Section 4).

Furthermore, we provide necessary background information on Sum-Product
Networks and the open-source MLIR, framework in the next section, and discuss
related works in Section 6.

2 Background

2.1 Sum-Product Networks

SPNs [7] are a relatively young class of probabilistic graphical models (PGM). In
principle, such class of models can be considered a unified approach combining
Bayesian network representation formalism and Markov random field compu-
tation. Such a computational configuration enables SPNs to efficiently reason
under incompleteness and uncertainty, which is a challenging task in many real-
world scenarios [11]. Unfortunately, inference requires intense computation that
introduces a long delay. This is a core motivation of our work.

Additionally, in contrast to most neural network architectures, SPNs are
also able to quantify uncertainty over the output. An example for this property
can be found in [6], where SPNs, when confronted with out-of-domain images,
indicate this through a low likelihood for the output class, in contrast to the
multi-layer perceptron undergoing the same test. An overview of other practical
usage examples of SPNs can be found in the survey by Paris et al. [5].

Sum-Product Networks capture the joint probability of a set of variables
(i.e., features) in the form of a directed acyclic graph (DAG). Regardless of the
application and the underlying data, the DAG is always composed from three

SPNC: Fast Sum-Product Network Inference 3
+
+ + +
wy A Wy w3 AR W4 ‘/\' ws AR We

N VMOV DY) N NN NN

W

H

Fig. 1. Example of a Sum-Product Network graph.

different types of nodes. At the bottom of the DAG, so-called leaf nodes capture
the univariate probability distribution of a single variable/feature. Depending on
the type of data (e.g., continuous vs. discrete), and underlying distribution of the
data, different probability distributions can be used, e.g., Gaussian distribution
for continuous variables, or a categorical distribution for discrete values. The
so-called scope of a leaf node is the single variable associated with it. Further up
in the graph, a combination of product nodes and weighted sum nodes is used to
capture the joint probability distribution. Product nodes represent factorizations
of independent variables. For the SPN to be valid, the scopes of the different child
nodes of a product node must be disjoint. Weighted sum nodes, on the other
hand, represent a mixture of distributions and the scopes of all child nodes
must be identical in a valid SPN. The structure of the SPN depends on the
distribution of the underlying data, and can either be learned from data, or be
hand-crafted, just followed by parameter learning. An overview of SPN learning
algorithms can be found in [5]. A small example of an SPN graph is shown in
Fig. 1. As a core functional principle, the SPN decomposes complex multivariate
“global” functions by exploiting the way in which the global function factors into
a product of simpler “local” functions of a subset of the variables [1]. SPN can
be used to solve machine learning tasks, such as classification, by performing
inference on the underlying DAG. In general, SPNs support multiple different
types of inference. In this study, we are focusing on two of these types, namely
joint probability inference and marginal inference. Joint probability inference is
used to obtain the joint probability given full evidence (i.e., a value for each
variable). To this end, the evaluation of the SPN DAG starts by evaluating the
distribution of the leaf nodes, given the value of the variable associated with
each of them. After that, the values are propagated upwards through the DAG,
performing multiplication or weighted addition at the product and sum nodes,
until a final probability value is obtained at the root node of the SPN. Marginal
inference, on the other hand, is used when only partial evidence is available.
Leaf nodes for which no evidence is available are set to 1, the remaining ones
are evaluated just as in joint inference, and the propagation of values through
the SPN is performed analogously to the description above.

The compiler developed in this study aims to accelerate the inference in Sum-
Product Networks by efficiently mapping them to different hardware targets.

4 L. Sommer et al.

Learning of the SPN is assumed to have taken place beforehand, using a standard
Sum-Product Network framework such as SPFlow [3].

2.2 MLIR

The implementation of SPNC in this work is heavily based on the open-source
MLIR framework [2]3. Therefore this section presents a brief overview of MLIR.

MLIR aims to facilitate the implementation of compilers by providing an
extensible framework for the implementation of multi-level IRs. The main reason
for adding multiple levels of abstractions into compilers is that an early lowering
to a low-level intermediate representation such as LLVM IR loses too much of
the high-level structure of the program, which later on must be reconstructed
using often fragile approaches based on the low-level IR in order to perform
transformations, e.g., on loops. Capturing additional information and potentially
domain-specific semantics in one or multiple high-level IRs enables the compiler
to perform more powerful program transformations.

Because MLIR provides common components for the implementation of IRs,
such as pass managers and common transformations, users can focus on the
design of the IR itself.

In order to not impose too many constraints on the semantics of different IRs,
MLIR defines a minimal set of generic abstractions that must be used by all IRs.
Similar to most modern compilers, MLIR, uses the static single assigment (SSA)
form, with operations (short: Ops) consuming and producing values. All values
are typed, with the type system being extensible, while also defining a number
of common types. So-called attributes, which are also typed, can additionally be
used to attach compile-time information to operations.

Operations, types, and attributes are organized in so-called dialects, which
do not add any semantics, but are a mere logical unit for the organization of
the IR. Dialects can be mixed in the same logical unit, and so-called lowerings
translate between different dialects, with intra-dialect transformations also being
available. Typically, a progressive, step-wise lowering from a high-level dialect
to lower-level dialects is used to compile for a specific target, e.g., a CPU. To
enable the implementation of common transformations, MLIR uses the notion
of traits and interfaces that can be attached to operations, and provides generic
interfaces for transformations such as constant folding.

MLIR’s extensible nature allows us to design custom high-level IRs. We use
these to represent Sum-Product Networks in the compiler developed in this work,
while we can rely on the common infrastructure and dialects provided with MLIR
to efficiently target different hardware platforms.

3 Approach

The aim of SPNC is to automatically compile Sum-Product Networks and prob-
abilistic queries operating on them to executable kernels. Compiling individual

% https://mlir.llvm.org

SPNC: Fast Sum-Product Network Inference 5

SPNs allows to employ all hardware features available on the target platform
for fast inference, for example vector extensions present on most modern CPUs.
Currently, SPNC supports two main targets:

— CPUs: Being based on MLIR and LLVM, SPNC can target any CPU for
which a backend is present in LLVM. Vector extensions are currently sup-
ported on x86 (AVX, AVX2 AVX-512) and Arm (Neon Advanced SIMD)
CPUs.

— GPUs: The flow currently supports Nvidia CUDA GPUs, but the generic
GPU abstractions of MLIR would allow to target other GPUs with compa-
rably few changes.

The compilation flow for both targets is based on MLIR. To this end, two SPN-
specific MLIR dialects have been designed and implemented, which will be de-
scribed in Section 3.1. Starting from these dialects, the target-specific lowerings
will create an executable, using the flows described in Section 3.2 and Section 3.3.
The user interface and some implementation details are described in Section 4.

3.1 MLIR Dialect Design

The first of the two SPN-specific dialects that SPNC employs during compilation,
called HiSPN, captures the DAG structure of a Sum-Product Network and
the information about the query to perform on a high level of abstraction. It
was designed to closely match the representation used internally by the SPFlow
framework [3], similar to how an abstract syntax tree captures a general-purpose
programming language on a high level of abstraction.

In the HiSPN dialect, an abstract probability type is used for values inside
the SPN DAG, allowing SPNC to delay the decision on the actual data type
used for computation and take graph characteristics into account.

The second SPN-specific dialect, called LoSPN, represents the actual com-
putation that needs to be performed to process the requested query on the SPN.
The top-level unit in this dialect is a Kernel, comprising one or multiple Tasks.
A Task does not only represent (parts of) the SPN DAG structure, including
weighted sum, product, and leaf nodes, but also contains information about
which inputs values will need to be accessed and which outputs will be produced
as intermediate or final result. In contrast to HISPN, LoSPN uses a concrete type
for the values. To represent the computation in log-space, which commonly used
to avoid arithmetic underflow in Sum-Product Network inference, a SPN-specific
data type was added to the LoSPN dialect.

The lowering from HiSPN to LoSPN is currently identical for both flows,
targeting CPU and GPU. In this step, the necessary computation for the query is
derived from the SPN DAG structure and query information captured by HiSPN
and is the lowered into the operations of the LoSPN dialect. After lowering, the
LoSPN representation undergoes a number of transformations, including steps
such as common subexpression elimination (CSE), followed by the target-specific
lowerings to dialects provided by the MLIR framework described in the next two
sections.

6 L. Sommer et al.

Python MLIR LLVM

Standard,
Math,
HiSPN
dialect

LoSPN
dialect

SCF,
Vector,
MemRef
dialects

LLVM

dialect LLVM IR —>=CCNERIE

Lowering
Lowering
Lowering

SPFlow

Serialization
Translation

Fig. 2. CPU Compilation Flow.

3.2 CPU Compilation Flow

The compilation flow for the CPU starts with the serialized SPN model (cf.
Section 4), an overview is shown in Fig. 2. After deserialization to the HiSPN
dialect, lowering to LoSPN, and the transformations on the LoSPN dialect have
been performed, the IR is again lowered to dialects provided as part of the
MLIR framework. The Kernel and the Tasks in the LoSPN dialect are lowered
to functions, with the Kernel function calling the functions for the individual
Tasks and the Task functions iterating multiple inputs for batch processing.

The operations contained inside each Task are lowered to a combination
of different dialects (Note that MLIR allows to mix operations from different
dialects in the same function/module):

— Standard dialect: Contains operations such as simple addition or multi-
plication on arbitrary data-types, including vectors.

— Math dialect: Elementary math functions, such as the exp and log func-
tion, are represented by operations from this dialect.

— SCF dialect: Operations from this dialect represent structured control flow,
e.g. for-loops.

— MemRef dialect: Contains facilities to handle memory, e.g., allocation or
store/load operations.

— Vector dialect: Vector specific operations, e.g., vector lane shuffling.

The combination of the Vector dialect and the Standard operation’s ability to
handle vector data-types lets the compiler exploit the CPU’s SIMD extensions,
if present, for maximum efficiency. In contrast to a generic loop vectorization,
a domain-specific compiler such as SPNC can, thanks to the MLIR framework,
leverage high-level information to generate more efficient code, e.g., by employing
a combination of simple vector loads and shuffles instead of expensive gather
loads.

After some transformation passes provided by the MLIR framework, all di-
alects are lowered to the LLVM dialect and then translated to LLVM IR, so
LLVM can produce the final executable. As part of this process, the executable
is also linked with vector libraries, providing optimized implementations of el-
ementary math functions (e.g., exp) for vector code. The currently supported
vector libraries are Intel SVML and Libmvec for x86 CPUs, and ARM Optimized
Routines for ARM Neon.

SPNC: Fast Sum-Product Network Inference 7

Python MLIR LLVM

LLVM |
Standard, dialect
Math,

HiSPN LoSPN SCF,

dialect dialect GPU,
MemRef NVVM
dialects dialect

Fig. 3. GPU Compilation Flow.

ion

LLVM IR ——— >3 CWIELIE

Lowering
Lowering

SPFlow
GPU

NVVM IR —» PTXAS Binary

(CUBIN)

c
k)
T
N
8
3
)

Lowering,
Translation Translati

CUDA

Although it is technically possible to perform within the MLIR framework,
we have decided to implement multi-threading in the runtime-component (cf.
Section 4) rather than directly in the generated code. This allows to adopt the
threading behavior dynamically, e.g., when executing multiple compiled kernels
concurrently.

3.3 GPU Compilation Flow

Similar to the CPU compilation flow, the GPU compilation flow also starts from
the serialized SPN model and performs the same steps up to the lowering of
LoSPN to dialects from the MLIR framework. Here, for the GPU, the Kernel
is lowered into a function, which will remain on the host CPU and will be
responsible for GPU/CPU data transfers and the invocation of the Tasks, which,
in contrast to the CPU flow, are lowered into device functions executing on the
GPU.

For the operations inside the Tasks, a similar combination of MLIR-provided
dialects is used, with one notable difference: Instead of the Vector dialect, the
GPU dialect is used to represent the SIMT execution model, with operations
for access to block and thread identifiers and for representation of GPU device
functions and runtime functions for memory & execution management.

After that step, the GPU- and host portion of the IR are separated into two
compilation units. While the flow for the host portion via LLVM is very similar
to the CPU flow, eventually resulting in an executable, the GPU portion of the
code is translated in multiple steps to NVVM IR, PTX assembly and a GPU
binary (CUBIN format). This GPU binary is then loaded at runtime by the host
function to execute inference on the GPU.

An overview of the overall compilation flow for the GPU is shown in Fig. 3.

4 Python Interface & Implementation

In order to make the compiler and the execution of the compiled binaries via
the runtime component accessible to machine learning experts working with
the SPFlow library, SPNC offers a Python-based interface to the compiler and
runtime. In this manner, machine learning experts can create the SPNs using
their familiar tools from the SPFlow library and feed their results to the compiler.

8 L. Sommer et al.

import numpy as np

from spn.structure... import ...

Create an example SPN
pO = Product(children=[Categorical(p=[0.3, 0.7], scope=1), Categorical(p=[0.4, 0.6], scope=2)1)

spn = Sum(weights=[0.4, 0.6], children=[p2, p4])
Create some random test data
test_data = np.c_[a, b, c].astype("float32")

Perform inference using SPFlow
from spn.algorithms.Inference import log_likelihood
spflow_results = log_likelihood(spn, test_data) # Location (1)

Compile for CPU and perform inference
from spnc.cpu import CPUCompiler
cpu_results = CPUCompiler().log_likelihood(spn, test_data) # Location (2)

Comptile for CUDA GPU and perform inference
from spnc.gpu import CUDACompiler
gpu_results = CUDACompiler().log_likelihood(spn, test_data) # Location (3)

Fig. 4. Python interface usage example.

Fig. 4 shows an usage example of the Python interface, the example SPN
is taken from SPFlow’s documentation. Location (1) in the code shows how
inference is usually performed in SPFlow, by invoking log_likelihood.

The other two locations show the invocation of SPNC for compilation and
execution on the CPU (2) or CUDA GPU (3). In both cases, the invocation of
log_likelihood on the compiler will first compile the SPN using the respective
flow described in Section 3.2 and Section 3.3 and then execute inference using
the compiled kernel. A small runtime component part of SPNC is responsible for
loading the compiled kernel and executing inference. In case of CPU execution,
the runtime is also responsible for multi-threaded execution using OpenMP. The
Python interface also supports separate compilation and execution, so an SPN
only needs to be compiled once to repeatedly perform inference.

Similar to SPFlow, the compiled kernels also support marginalized inference
by passing NaN as input value for marginalized variables.

The Python interface is implemented using Pybind114. As Pybind11 has full
support for numpy arrays, input data for execution can simply be provided as
numpy arrays, and the result data will likewise be returned as a numpy array.
For efficient exchange of SPN models between the Python interface and the
compiler, implemented in C++, a binary serialization based on the open-source
Cap’n Proto® library was implemented.

4 https://github.com/pybind /pybind11

® https://capnproto.org/

SPNC: Fast Sum-Product Network Inference 9

5 Evaluation

To demonstrate SPNC’s ability to target different heterogeneous systems, we
are evaluating it on two different systems: As an example of an embedded-grade
device, a Nvidia Jetson AGX Xavier device with 6-core ARM v8 CPU and Volta
GPU will be used. As a non-embedded device, a machine with an AMD Ryzen
9 3900XT CPU equipped with 32 GB RAM and an Nvidia RTX 2070 Super
GPU with 8 GB RAM will be used. As the Ryzen processor does not support
AVX-512, experiments for AVX-512 will be performed on a dual-socket system
with two Intel Xeon Platinum 9242 CPUs and 384 GB RAM.

As a real-world application of SPNs, an SPN-based automatic speaker iden-
tification from [4] is used as example application. Based on the open-source
release by Nicolson et al.®, we evaluate two different scenarios, namely the clean
speech samples (245567 samples) and noisy speech samples with marginaliza-
tion (1227835 samples). A sample comprises 26 features, each encoded as single-
precision floating point value. We use computation in log-space to avoid deviation
from the original result, using single-precision floats as the underlying data type.
The implementation by Nicolson et al. contains an SPN per speaker, so a set of
628 different SPNs is used for evaluation.

In all experiments using our compiler, we measure the execution time from
Python, i.e., the execution time always also includes the invocation overhead of
the Python interface in addition to the actual execution time. We track com-
pilation time and execution time separately (also for Tensorflow). The average
compilation time across all platforms for CPU is 7 seconds (max. 33s) and for
GPU 2s (max. 5s). The translation of the SPFlow graph to a Tensorflow graph,
which is provided by the SPFlow framework, takes 18 seconds on average (max.
61s).

5.1 Non-Embedded Systems

Fig. 5 shows the performance comparison for the non-embedded systems, the
numbers are given as speedup over the inference execution with SPFlow.

The speedup achieved by translating the SPFlow graph to a Tensorflow graph
is relatively low on both CPU (geo.-mean 1.5x) and GPU (1.38x), as the graph is
still broken down into individual operations that are launched through the Ten-
sorflow runtime. Marginalization is currently not supported by the Tensorflow
translation in SPFlow, therefore no bars are shown for Tensorflow in Fig. 5b.

SPNC on the other hand achieves speedups of 564x and 482x by compiling
for the CPU and multithreaded execution, without employing vector extensions.
If the vector extensions and vector libraries for elementary functions (Libmvec
for AVX-2 and Intel SVML for AVX-512) are used additionally, the speedup
increases to 801/814x and 976/935x, respectively. The compilation for the GPU
also achieves a significant speedup of 352x and 524x, but data movements be-
tween host and device in both cases make up for more than 60% of the execution

5 https://github.com/anicolson/SPN-ASI

10 L. Sommer et al.

CPU, No Vec.

AVX2 + LIBMVEC
AVX-512 + SVML AVX2 + LIBMVEC
’ + Shuffle

+ Shuffle

482.3x

814.8x

Tensorflow - CPU - 1.5x

GPU - RTX2070 524.7x

Tensorflow |
RTx2070 < 1

o

200 400 600 800 1000 200 400 600 800 1000
Speedup over SPFlow Speedup over SPFlow

0

(a) Clean Speech (b) Noisy Speech with Marginalization

Fig. 5. Performance comparison on non-embedded systems, given as speedup over ex-
ecution in SPFlow.

time, so even though the execution on the GPU itself is very fast, the data move-
ment overhead, which is not present when compiling for CPU, limits the speedup.

5.2 Embedded System

Fig. 6 shows the same comparison for the embedded-grade Jetson Xavier plat-
form. As there are fewer CPU cores available than on the Ryzen/Xeon CPU,
the speedup achieved by compilation for CPU is smaller compared to Fig. 5,
but still reaches 124x (clean) and 58x (noisy) compared to SPFlow. When us-
ing the Neon Advanced SIMD extensions, the speedup increases by 2.9x/2.3x
to 369x and 133x. In contrast to Fig. 5, the GPU compilation on the Xavier
platform provides better performance than the CPU compilation. This is due to
the fact that GPU and CPU physically share the same memory and no memory
transfers between host CPU and GPU are necessary. With the memory transfers
eliminated, our GPU compilation achieves speedups of 1004x and 784x.

Another important aspect on embedded systems is memory usage: For the
noisy speech samples, it is not possible to process all samples in one batch with
SPFlow, as the SPFlow inference runs out of memory (16 GB) and the input has
to be processed in multiple blocks sequentially. The compiled kernels are much
more memory-efficient and allow to process all samples in a single invocation.

For the Tensorflow comparison on this platform, the Tensorflow package of-
ficially provided by Nvidia for Jetson platforms is used. Similar to Fig. 5, the
translation provides a speedup over SPFlow (2.36x), but is still significantly
slower than the compiled executables.

6 Related Work

To the best of our knowledge, the compiler presented in this work is the first com-
piler for Sum-Product Networks, enabling efficient inference on multiple hard-
ware platforms.

ARM CPU

SPNC: Fast Sum-Product Network Inference 11
ARM CPU

123.9x
ARM CPU 57.7x
+ Neon SIMD

369.3x
ARM CPU
+ Neon SIMD . SEElE
GPU 784.2x
Tensariow | 2 _

0 200 400 600 800 1000 1200 0 200 400 600 800
Speedup over SPFlow Speedup over SPFlow
(a) Clean Speech (b) Noisy Speech with Marginalization

Fig. 6. Performance comparison on embedded systems, given as speedup over execution
in SPFlow.

For creation, training, inference, and experimentation with Sum-Product
Networks, a number of libraries have been proposed over the years. The two
most popular ones, according to the survey conducted by Paris et al. [5], are
SPFlow [3] and libspn [8].

SPFlow allows users to either programmatically create an SPN or learn it,
including its structure, from data. It also supports inference on the obtained
SPN, either in pure Python, or, for a limited number of cases, through a trans-
lation to a Tensorflow graph and execution of that graph. As our evaluation has
shown, our compiler significantly outperforms both variants.

Libspn also allows to perform parameter learning and inference for SPNs,
again through translation to a Tensorflow graph, which has yielded suboptimal
performance in our evaluation in Section 5.

Another interesting approach to efficient training and inference for SPNs is
through tensorization of the SPN graph, as shown in [6] or [12]. However, these
implementations are limited to weight learning, with the structure of the SPNs
being subject to additional constraints, whereas our compiler can process SPNs
with arbitrary DAG structure.

In previous work [9, 10], we have developed a custom, FPGA-based inference
accelerator for Sum-Product Networks. However, as the automatically generated
accelerator uses a fully spatial hardware layout, the maximum size of SPNs that
can be mapped to the FPGA is limited by the available hardware resources to
sizes significantly smaller than the SPNs evaluated in this work, and the flow
currently does not support Gaussian distributions.

7 Conclusion

In this work, we have presented SPNC, a domain-specific compiler for fast infer-
ence in Sum-Product Networks. The implementation of SPNC is based on the
open-source MLIR framework, which facilitates the implementation of domain-
specific compilers.

12 L. Sommer et al.

SPNC was designed to seamlessly integrate with SPFlow, a popular open-
source library for SPN construction, learning, and representation, through its
Python interface.

In our evaluation, using an SPN-based robust automatic speaker identifica-
tion as a real-world example of Sum-Product Networks, we have demonstrated
how SPNC can target different heterogeneous systems and can achieve a speedup
over SPFlow of a factor of up to 978x when compiling for CPUs with vector ex-
tensions, and up to a factor of 1003x when targeting CUDA GPUs.

Availability

SPNC is available as open-source software under the Apache v2 License on
Github”. In the releases section on Github, pre-built packages for Linux sys-
tems can be found for download and installation via Python pip.

References

1. Kschischang, F.R., Frey, B.J., Loeliger, H.A.: Factor graphs and the sum-product
algorithm. IEEE Transactions on information theory 47(2), 498-519 (2001)

2. Lattner, C., Amini, M., Bondhugula, U., Cohen, A., Davis, A., Pienaar, J.A.,
Riddle, R., Shpeisman, T., Vasilache, N., Zinenko, O.: Mlir: Scaling compiler in-
frastructure for domain specific computation. In: CGO 2021 (2021)

3. Molina, A., Vergari, A., Stelzner, K., Peharz, R., Subramani, P., Mauro, N.D.,
Poupart, P., Kersting, K.: Spflow: An easy and extensible library for deep proba-
bilistic learning using sum-product networks (2019)

4. Nicolson, A., Paliwal, K.K.: Sum-product networks for robust automatic speaker

identification (2020)

Paris, I., Sanchez-Cauce, R., Diez, F.J.: Sum-product networks: A survey (2020)

6. Peharz, R., Vergari, A., Stelzner, K., Molina, A., Shao, X., Trapp, M., Kersting, K.,
Ghahramani, Z.: Random sum-product networks: A simple but effective approach
to probabilistic deep learning. In: Proceedings of UAI (2019)

7. Poon, H., Domingos, P.: Sum-product networks: A new deep architecture. In: 2011
IEEE Intl. Conf. on Computer Vision Workshops (ICCV Workshops) (2011)

8. Pronobis, A., Ranganath, A., Rao, R.P.: Libspn: A library for learning and in-
ference with sum-product networks and tensorflow. In: Principled Approaches to
Deep Learning Workshop (2017)

9. Sommer, L., Oppermann, J., Molina, A., Binnig, C., Kersting, K., Koch, A.: Au-
tomatic mapping of the sum-product network inference problem to fpga-based
accelerators. In: IEEE Intl. Conf. on Computer Design (ICCD). IEEE (2018)

10. Sommer, L., Weber, L., Kumm, M., Koch, A.: Comparison of arithmetic number
formats for inference in sum-product networks on fpgas. In: 2020 IEEE 28th Annual
Intl. Symp. on Field-Programmable Custom Computing Machines (FCCM) (2020)

11. Sugiarto, I., Axenie, C., Conradt, J.: Fpga-based hardware accelerator for an em-
bedded factor graph with configurable optimization. Journal of Circuits, Systems
and Computers 28(02), 1950031 (2019)

12. van de Wolfshaar, J., Pronobis, A.: Deep Generalized Convolutional Sum-Product
Networks for Probabilistic Image Representations. arXiv:1902.06155 (Sep 2019)

o

7 https://github.com/esa-tu-darmstadt /spn-compiler

