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Abstract. Probabilistic models are receiving increasing attention as a
complementary alternative to more widespread machine learning ap-
proaches such as neural networks. One particularly interesting class of
models, so-called Sum-Product Networks (SPNs), combine the expres-
siveness of probabilistic models with tractable inference, making them
an interesting candidate for use in real-world applications.
Previously, inference in SPNs has successfully been accelerated by fully
pipelined FPGA-based hardware. However, with these approaches, the
maximum size of the SPN for FPGA acceleration has effectively been
limited by the fully spatial mapping of arithmetic operations into hard-
ware and the number of available resources in the FPGA.
In this work, we present an extended and specialized modulo schedul-
ing algorithm based on Integer Linear Programming (ILP) for time-
multiplexed sharing of hardware arithmetic operators in the SPN in-
ference accelerator. In addition and in order to scale the scheduling to
large SPN graphs, we combine the scheduling algorithm with a graph-
partitioning heuristic, exploiting the graph structure of SPNs.
The combination of heuristic graph partitioning and ILP-based schedul-
ing allows generating pipelined accelerators with the best possible initi-
ation interval, while limiting the resource utilization to pre-set bounds.
The evaluation discusses the effect different parameters have on conver-
gence time and solution quality. A performance comparison shows that
the FPGA improves the inference throughput over a comparable CPU-
and GPU platform by a factor (geo.-mean) of 4.4x and 1.7x, respectively.

Keywords: FPGA · Machine Learning · Probabilistic Model · Sum-
Product Network · Modulo Scheduling · Graph Partitioning
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1 Introduction

Probabilistic models are receiving increasing attention from both academia and
industry, as a complementary alternative to more widespread machine learn-
ing approaches such as (deep) neural networks (NNs). Probabilistic models can
handle the uncertainty found in real-world scenarios better [17] and are also, in
contrast to NNs, able to express uncertainty over their output.

While many probabilistic models quickly become intractable for larger use
cases, so-called Sum-Product Networks (SPNs) provide efficient inference for a
wide range of probabilistic queries in different real-world use cases. Similar to
neural networks, for which both accelerated inference and training have been im-
plemented on reconfigurable architectures, SPNs lend themselves to accelerated
inference on FPGAs [11, 19]. Key to the efficient computation of probabilistic
queries in prior work was the pipelining of batches of queries. This task is fur-
ther complicated by the fact that the probability values computed in the SPN
require expensive floating-point arithmetic and in general cannot be quantized
to integer values as it is done for neural network inference. So, despite successful
efforts to realize the necessary probabilistic arithmetic efficiently with specialized
hardware operators [20,23], prior approaches are constrained by the fully spatial
mapping of operations and the available FPGA resources, effectively limiting
the maximum size of the SPN that can be mapped to the physical resources
on the target FPGA. A possible solution to overcome this limitation is to map
multiple operations to the same hardware arithmetic operator, so that operators
are time-shared. In order to retain as much performance as possible, this time-
sharing of operators needs to be combined with efficient pipelining, requiring a
resource-aware modulo scheduler [12].

Our main contribution is a scheduling algorithm specialized for the automatic
mapping of SPNs to a pipelined FPGA accelerator. Our approach extends an
existing Integer Linear Programming (ILP) formulation [21] to also optimize the
size of the multiplexers used to realize the time-sharing of operators, a crucial
factor for the operating frequency of the whole accelerator. Beyond that and in
order to be able to handle large SPN graphs during scheduling, a divide-and-
conquer heuristic leveraging the special graph structure of SPNs is presented.

2 Background

SPNs [15,17] are a relatively young class of probabilistic models. Similar to other
probabilistic graphical models (PGM), SPNs are able to efficiently handle real-
world uncertainties, such as missing feature values, and express uncertainty over
their output. They are used in several domains [17] including, but not limited
to, image classification and reconstruction, image segmentation, robotics, and
natural language processing.

Sum-Product Networks capture the joint probability distribution over a num-
ber of variables as a directed acyclic graph. As shown in the example in Fig. 1,
the graph consists of three different types of nodes, namely weighted sum-nodes
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(red), product nodes (green) and nodes representing univariate distributions (or-
ange), where the latter can only occur as leaf nodes.

The graph structure of Sum-Product Networks, including the parameters
such as weights and distribution parameters, can either be hand-crafted, com-
pletely learned from data (e.g., [10]) or can be generated and refined through
learning of parameters (e.g., [14]).

Semantically, the product nodes in the graph correspond to factorizations of
independent variables. As variables in a joint probability distribution are not
independent in general, the weighted sum nodes come into play. They represent
mixtures of distributions and, through clustering, expose independencies for fac-
torization. If, after repeated mixture and factorization, only a single variable
remains, the univariate distributions of these variables are captured by the leaf
nodes. In this work, based on the approach for Mixed Sum-Product Networks by
Molina et al. [10], univariate distributions of discrete variables are represented
as histograms.

In contrast to many other probabilistic graphical models, inference in Sum-
Product Networks is tractable, even for large graphs with many variables [13].
Enabled by the graph structure capturing the joint probability, a wide range
of probabilistic queries, including conditional probability and most-probable ex-
planation (MPE), can be computed efficiently by evaluating the SPN graph
bottom-up (starting at the univariate distributions at the leaf nodes) one or
multiple times (linear w.r.t. to the graph size). This work focuses on the efficient
evaluation of a batch of queries and generation of pipelined FPGA accelerators
under resource constraints.

+
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+ +
× ×

+
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Fig. 1. Example of a Sum-Product Network graph.

3 Modulo Scheduling of SPN Inference

The core of our work is a resource-aware modulo scheduler tailored for SPN infer-
ence computations, which are described as acyclic data-flow graphs (DFGs). Op-
erations in these data flow graphs include additions, multiplications, histogram
evaluations, and constant weights. Among the operators realizing these opera-
tions, only adders and multipliers are subject to operator sharing. Other oper-
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ations require only very few resources to realize in hardware and there are few
opportunities to share these operators.

The throughput of a shared, modulo-scheduled datapath is chiefly deter-
mined by the initiation interval (II), the duration between starting successive
overlapped computations in the datapath. As recurrences in the DFG signifi-
cantly constrain the achievable II, the fact that we only need to support acyclic
DFGs simplifies some typical challenges of modulo scheduling: without recur-
rences, the resource-constrained minimum II [16] is not just a lower bound on
feasible IIs, but always equals the minimal feasible II. This allows us to determine
the smallest II and smallest number of operators for a given hardware resource
budget and SPN up-front before scheduling begins, rather than repeatedly at-
tempting scheduling with different candidate IIs, as in most other applications
of modulo scheduling.

To illustrate why the resource-constrained minimum II is always feasible,
consider a variant of ASAP scheduling that starts operations once all their inputs
are ready, but delays these start times as necessary to avoid over-subscription of
operators. The resulting schedule will most likely be sub-optimal, but without
recurrences that would impose additional upper limits on the start times of
operations, such a schedule will always exist.

Based on similar considerations, we developed a divide-and-conquer heuristic
for scheduling and binding, detailed in Section 3.2. Once II and available opera-
tors have been determined, this heuristic partitions the DFG and the available
operators to produce a set of smaller scheduling and binding problems, whose
solutions can be combined into a solution for the whole problem.

These sub-problems are then translated to ILP instances with an objective
that attempts to reduce multiplexing overhead, detailed in Section 3.1. The
bindings – the mapping of each DFG operation to a specific physical operator –
heavily influence the amount of multiplexing necessary to realize the sharing of
the operators, and this multiplexing can, in turn, limit the maximum operating
frequency of the accelerator. As schedule and bindings influence and constrain
each other, we consider them together in a joint optimization problem, rather
than computing one before the other. After schedules and bindings for each sub-
problem have been found by an off-the-shelf ILP solver, the results are combined
into overall schedule and bindings by the heuristic component.

The heuristic combination of solutions for sub-graphs obtained by expensive,
high-quality scheduling algorithms has been proposed before [5,6]. In our context,
it provides a simple way to trade scheduling effort for solution quality, and
offers a practical way of optimizing for a different objective than usual (reducing
multiplexing overhead) without having to develop new heuristics specifically for
this purpose.

3.1 ILP Extension for Multiplexer Reduction

We extended an ILP formulation of modulo scheduling and binding proposed
by Š̊ucha and Hanzálek [21]. Out of the several variants presented there, we
use the formulation for general processing time and multiple operator types (see
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sections 4 and 5 there). This formulation prohibits over-subscription of shared
operators by encoding the bindings in binary decision variables ẑiv which are
constrained such that ẑiv = 1 if and only if the operation identified by i should
be bound to the vth suitable operator (assuming some arbitrary but consistent
numbering of the operator instances). We reuse these decision variables to also
model connections between operators, as a proxy for multiplexing overhead.

Formally, each operation i ∈ O is associated with a type of operator q such
as adders, multipliers, histograms, and constant weights. For those operator
types subject to sharing (in our case, adders and multipliers), there is a limited
number mq of operator instances, while the other types are unlimited – they are
instantiated once per operation requiring them.

The baseline ILP formulation as presented by Š̊ucha and Hanzálek assumes
all operator types are subject to sharing. It is simple to adapt the formulation to
support unlimited operators: we can just omit decision variables and constraints
related to bindings of operations implemented by unlimited operators3 and leave
only start time constraints in place. Due to space limitations, we do not show
the ILP formulation here with these minor modifications applied.

The multiplexer at input port p of a shared operator v needs to select among
all the physical locations in the datapath which produce the pth input operand
to any of the operations bound to v. In our accelerator’s datapath, these val-
ues can be sourced from the output ports of other operators – whether they
are themselves shared or not – as well as from shift registers inserted to buffer
intermediate results for several cycles between being produced and consumed.
Modeling the latter in the ILP formulation requires significant additional com-
plexity: Sittel et al. [18] measured the register area by the maximum lifetime of
intermediate results that can share registers, while multiplexer width is deter-
mined by the number of distinct lifetimes among intermediate results that could
share a connection, which is far more difficult to linearize. This extra complexity
is likely not justified in our context, as we combine the ILP formulation with a
heuristic and thus will not obtain globally optimal solutions in any case.

Instead, we model only the presence or absence of connections between op-
erator output ports and the input ports of shared operators. These connections
are induced by the data flow edges (i → j) ∈ E and the bindings, encoded in
the ILP by binary decision variables ẑiv and ẑjv. The shared operators are iden-
tified by their type q and an index v from 1 to mq. We also need to distinguish
the different input ports p of the operators (typically, the operators are binary
and thus p ∈ {1, 2}). Thus, for all q′, v′, p identifying a shared operator input
port, there are binary variables crq′v′p for r ranging over the possible sources of
a connection. These sources are the shared operator instances (q, v) as well as
the operations i ∈ O which are unlimited, i.e., not subject to operator sharing.
Each such variable should be 1 if the result of operator r needs to be connected
to port p of the shared operator (q′, v′).

Note that a single connection suffices for multiple edges (i1 → j1), . . . , (in →
jn) ∈ E if all the i1 . . . in are mapped to the same shared operator, all the

3 Specifically, variables x̂ij , ŷij , ẑiv and all constraints mentioning them.
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Fig. 2. Dataflow graph (a) and the impact of binding two operations to the same (b)
or different (c) shared operator. When operations are not subject to operator sharing
(d), multiple connections are necessary regardless of bindings.

j1 . . . jn are mapped to the same shared operator, and each value is routed to
the same input port of that shared operator. This is shown in Fig. 2 (b), while (c)
shows different bindings that prevent sharing. When the sources of the data flow
edges are not subject to operator sharing (d), separate connections are always
required.

To encode these considerations into the ILP, we add constraints for every
data flow edge (i → j) ∈ E whose destination j is subject to operator sharing,
as those edges are the cause of the connections we model. Let q be the operator
type of i and q′ of j. When i is also subject to operator sharing, then it is bound
to some shared operator (q, v) which will be connected to the input port p of
the operator (q′, v′) which j is bound to. Hence, we add the following set of
constraints:

cqvq′v′p ≥ ẑiv + ẑjv′ − 1
∀v = 1, . . . ,mq

∀v′ = 1, . . . ,mq′
(1)

Otherwise, if j requires an unlimited operator type, we simply have a connection
from i to whatever operator (q′, v′) the operation j is bound to. In that case, we
add the following set of constraints:

ciq′v′p ≥ ẑjv′ ∀v′ = 1, . . . ,mq′ (2)

Constraints (1) and (2) only ensure that a connection indicator is set to 1 if
the corresponding connection is required, but not the inverse implication. This
modeling is correct within our formulation: we only use the values of these deci-
sion variables for the objective function (unlike other decision variables, which
yield the schedule and bindings), and objective functions suitable for our pur-
pose (reducing multiplexers or connection density) cannot be improved by setting
more crq′v′p to 1 than necessary.

For the objective function, we first and foremost minimize the total connec-
tions between operators:

min
∑

r,q′,v′,p

crq′v′p (3)
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This objective was proposed by Cong and Xu [4] in the context of choosing op-
erator and register bindings for an already-determined schedule. As they noted,
this objective is only an approximation of the real (non-linear) hardware cost,
but minimizing it correlates with minimizing the number of multiplexer inputs,
so it is a reasonable way to address the need for a linear objective function. They
could only evaluate it on relatively small examples, but found it to be effective
at least in those cases.

Objective (3) is combined with the classical sum-of-start-times objective (as
in [21]) in a strictly hierarchical multi-objective optimization problem. In our
throughput-oriented accelerator, the schedule length – the overall latency from
inputs to final result of a single computation in the shared datapath – only has a
small effect on the number and size of the aforementioned shift registers buffering
intermediate results. The hardware resource cost of these registers is negligible,
while large multiplexers can negatively affect the maximum frequency, so we
prioritize multiplexer reduction over schedule length reduction.

Overall, our proposed ILP formulation consists of these two objectives and
the constraints of the formulation by Š̊ucha and Hanzálek [21] – not repeated
here due to the page limit – plus our constraints (1) and (2).

3.2 Divide-and-Conquer Heuristic

In this section, we present an algorithm for decomposing a modulo scheduling
and binding problem on an acyclic DFG into smaller sub-problems whose so-
lutions can be combined into a solution for the original problem. As presented
here, the algorithm works for any acyclic DFG and any partitioning, although
our implementation (Section 4) and evaluation is limited to DFGs that are trees,
since most SPN learning algorithms only produce trees.

For now, assume some arbitrary partitioning of the DFG is given. We first
partition the modulo reservation table (MRT) [8] – a data structure organizing
the operations by the operator they are bound to and the time step modulo II in
which they are scheduled – to match the DFG partitioning. Each available time
step (modulo the II) on each available operator is exclusively assigned to one of
the DFG partitions: only operations from that part of the DFG will be permitted
to use that operator in that time step. By assigning each partition at least as
many operator time slices as there are operations requiring such an operator in
the partition, we ensure that each of the sub-problems is feasible in isolation.
In addition, the exclusive assignment avoids conflicting bindings between the
solutions of each sub-problem: no two operations from different partitions can
use the same operator at the same time.

Fig. 3 shows such a partitioning of DFG and MRT, along with a solution
for each partition. Note that the two available adders are each fully assigned
to one or the other partition, while the multiplier is split up: node C can only
be scheduled in even cycles while node D can only be scheduled in odd cycles.
Although the schedules are correct with respect to each partition, the data flow
edge C→ E was ignored: the result of C is only available by cycle 10 (start time
six plus latency of four), while E was scheduled to start in cycle five.
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Fig. 3. Example of scheduling with graph partitioning (II=2, all operators have a la-
tency of four cycles). Left: partitioning and partial solutions (MRT, operation start
times). Right: overall solution after merging the partial solutions, including the adap-
tation of E’s schedule to preserve dependencies.

To repair such inconsistencies arising from data flow between partitions, we
delay the start time of affected operations when we combine partial schedules.
Specifically, we inspect all edges between the different partitions, and if the
destination operation starts before the source operation finishes, we increase
the start time of the destination operation by the smallest multiple of the II
that fixes this problem. After the adjustment has been made, successors of the
delayed operation may face a similar problem and we also delay their start times
as necessary until all start time constraints are satisfied.

Note that a smaller delay may work sometimes, but would place the operation
in a different MRT cell, which may not be available. For simplicity, we always
use a multiple of the II, as shown in Fig. 3: while all inputs to operation E are
ready by cycle 10, our algorithm schedules it for time step 11 since that is the
earliest start time compatible with the MRT chosen previously.

After repairing the start time constraints, the start times and bindings of
each partial solutions can be combined without further changes to produce a
valid schedule and bindings for the entire DFG. As each operation belongs to
exactly one partition, the start time and binding of each operation is uniquely
determined, start time constraints are now satisfied, and the up-front partition-
ing of the MRT ensures no operator is over-subscribed in the combined solution.
As the bindings are combined without changes, the effort expended by the ILP
solver trying to optimize the bindings within each partition carries over into the
overall solution.

To ensure that each partition only uses the parts of the MRT assigned to it,
we need to modify the ILP construction slightly. We create virtual operations
that occupy partially-available operators in the time steps assigned to other
partitions, substituting constants for the ILP decision variables relating to the
virtual operations. This increases the size of the ILP, which is quadratic in
the number of operations even without our extensions. We limit this increase
by partitioning the MRT such that every partition has at most two operators
partially assigned to it, and where possible prefer to exclusively assign operators
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to a single partition. This is the case for Adder 2 in Fig. 3, which is assigned
entirely to Partition 2 even though there is only one addition in that partition.

4 Implementation

We extended an existing toolflow for generating SPN inference accelerators [20]
implemented in Chisel, replacing the fully spatial datapath and ASAP scheduling
used there with a modulo-scheduled, operator-shared datapath. To realize the
schedule-dependent sharing of operators in the new datapath, we use a local state
machine per operator, which tracks the current cycle modulo II, and translates
this local state to the control signals of multiplexers for selecting the current
inputs to the operator. Due to space constraints, we must leave the presentation
of the overall accelerator architecture to the prior work [20].

During scheduling, the multiple sub-problems generated by the divide-and-
conquer approach are solved in parallel by launching multiple single-threaded
ILP solver instances in a thread pool.

Graph partitioning is performed recursively, applying balanced 1-cuts repeat-
edly until the number of operations subject to operator sharing (which influences
the size and difficulty of the ILP) falls below a user-specified threshold. We call
this parameter the split threshold S and will evaluate its impact in Section 5.
This approach works well in our domain, because most algorithms for learning
SPNs produce trees rather than general directed acyclic graphs, but the latter
could also be supported by using a more general graph partitioning method.

As in prior work, the open-source TaPaSCo framework [7] is used to inte-
grate the core accelerator (load unit, store unit, data path, and controller) into
a platform-specific SoC design, and provides a software API for interacting with
the accelerator from the host CPU. In contrast to prior work [20], we also target
MPSoC systems with shared memory between the host CPU and FPGA. How-
ever, the current version of TaPaSCo does not yet support cache-coherent shared
memory between host and accelerator. To avoid the costs of copying input and
output buffers, we use a custom user-space mappable memory buffer to make
the input and output data available to both CPU and FPGA, rather than using
the TaPaSCo-provided APIs for host-accelerator data transfers. This buffer is
marked as cacheable, and the CPU cache is flushed explicitly and invalidated
before launching inference jobs on the accelerator.

5 Evaluation

Our evaluation comprises two parts: an evaluation of the proposed ILP formu-
lation and graph partitioning-based heuristic on a range of SPNs, FPGA plat-
forms, IIs and resource constraints; and a case study on real hardware platforms
suitable for embedded computing, comparing operator-shared accelerators on a
Xilinx UltraScale+ MPSoC device to an Nvidia Jetson Xavier device.

In both parts of the evaluation, we use the customized floating-point formats
and operators developed for SPN inference in prior work [20], which represent the
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probabilities on a linear scale, and were found to be more resource-efficient than
a log-scale representation of probabilities in most cases. For the SPNs already
investigated in the prior work, we use the format parameters as reported there.
For the other SPNs, we use a format with 10 exponent bits and 26 mantissa bits,
as it has the largest exponent range, and therefore is least vulnerable to overflow
and underflow out of the currently implemented formats.

5.1 Scheduler Evaluation

For the scheduler evaluation, we target Digilent PYNQ-Z1, AVNET Ultra96-V2,
and Xilinx VC709 boards. We used 14 out of 16 SPNs used in prior work [20],
excluding NIPS5 and MSNBC 300 for being too small to benefit from operator
sharing on any of the target platforms. To these, we add another SPN over
binary data (DNA) and three large-scale artificial examples that were randomly
generated to serve as stress tests: fully spatial realizations of these SPNs would
require 1499, 2249 and 2699 floating-point adders and multipliers respectively,
far larger than practical for ILP-based modulo scheduling.

Experimental Setup Each of these 18 SPNs is tested against the resource
model of each target platform to determine the resource-constrained minimum
II. In many cases, this results in an accelerator design that would be severely
memory-bound and could use a larger II – allowing more sharing and thus re-
quiring fewer FPGA resources – without loss of performance. Thus, we also
compute an alternative II (per SPN and platform) that would balance computa-
tional throughput with memory bandwidth requirement. Out of these 18× 3× 2
candidate {SPN, Platform, II} triples, the 35 unique combinations with II from
two to seven (inclusive) are used.

For each of the 35 {SPN, Platform, II} combinations, we perform scheduling
and binding for three different resource constraints: the minimum number of
operators possible, that minimum scaled up by a factor of 1.25 (rounded), and
the largest number of operators that will fit on the device. These 105 scheduling
tasks capture a wide range of DFG sizes and available number of operators.

Each scheduling task is solved by constructing a single large ILP instance
as well as by our proposed divide-and-conquer heuristic with varying granular-
ity for the graph partitioning step. In each case, we compare the baseline ILP
formulation [21] to our proposed extension (Section 3.1).

Experiments were performed with Gurobi 8.1 as ILP solver, on systems
equipped with two 12-core Intel Xeon E5-2680 v3 CPUs and 64 GiB of RAM.
Each scheduler run was given access to four cores and 16 GiB of RAM, and
wall clock running time was limited to two hours each. For each individual sub-
problem generated by graph partitioning, the ILP solver was given a time limit
of 15 minutes.

For the split threshold S controlling the granularity of the graph partitioning,
we evaluate S ∈ {1, 5, 10, 14, 18, 22, 26, 30} – using 1 as naive baseline, 5 and 10
as very fast but low-quality variants, and equidistant values from 10 to 30 to
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(a) Baseline ILP Formulation (b) Proposed ILP Formulation

Fig. 4. Scheduler runtime profile for different split thresholds (S) with the baseline
and proposed ILP formulation, plotting scheduler run time against the cumulative
percentage of instances solved within that time frame.

explore the trade off between running time and solution quality as sub-graphs
become more complex.

Scheduler Runtime Attempting to schedule the entire DFG by a single ILP is
impractical on many of the instances in our benchmark suite. With the baseline
ILP formulation, the solver finds a solution for just 57 out of 105 instances,
of which only 30 are proven to be optimal solutions, while the other instances
run out of time or memory while solving the ILP, or already while creating the
constraints. Results are even worse with our proposed extension of the ILP: only
31 solutions are found, and none of them could be proven optimal.

In contrast, fine-granular graph partitioning (S ≤ 10) enables heuristic
scheduling within a minute on almost all examples, with only a few exceptions
taking slightly longer. As Fig. 4 shows, run times rapidly increase as the graph
partition gets more coarse. Curiously, although a significant number of instances
are solved almost instantaneously with the baseline ILP formulation, with the
extended ILP formulation, we observe fewer outliers that take exceptionally long
to schedule. With the extended ILP formulation, the configuration S = 14 sched-
ules most examples in 15 minutes, and all within 30 minutes. Even with S = 30,
the majority of instances are successfully scheduled within one hour, but too
many exceed the two hour time limit (especially with the baseline ILP formula-
tion) to claim that larger values of S are always beneficial.

Solution Quality For lack of a clear baseline to compare the scheduling algo-
rithms against, we resort to scoring the different scheduler variants by how well
their solutions for each instance score relative to the best solution found by all of
the variants evaluated. We compare both the schedule length (datapath latency)
achieved and the multiplexer size (as encoded in the ILP objective) achieved by
each variant. We record this ratio for every instance and report the distribu-
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(a) Schedule length objective (b) Multiplexer size objective

Fig. 5. Solution quality of different scheduler variants w.r.t. to schedule length (5a)
and multiplexer size (5b) objective. Split threshold = ∞ is the case of a single ILP for
the whole graph. Values closer to 1 are better.

Table 1. Number of solutions found by each scheduler variant.

ILP- Split Threshold
Form. 1 5 10 14 18 22 26 30 ∞

Baseline 105 105 105 105 103 101 99 99 57
Proposed 105 105 105 105 104 101 98 98 31

tion of these ratios in Fig. 5a and Fig. 5b (standard box plots with whiskers at
Q1 − 1.5 · IQR and Q3 + 1.5 · IQR).

Note that many variants, especially those with a single large ILP for the
entire problem, did not find solutions for all of the 105 scheduling tasks. The
number of solutions found within two hours is listed in Table 1.

Generally, coarser partitioning (larger S) yields better results – at the cost of
longer running time, as seen above. The divide-and-conquer heuristic combined
with our proposed ILP formulation improves multiplexer sizes, and prioritizing
this objective does not have a negative impact on the schedule length. How-
ever, the improvements beyond S = 14 are marginal and may not justify the
significantly longer running times.

While the baseline ILP without graph partitioning (S =∞) achieves best-in-
class schedule lengths on most instances where the ILP solver finds any solution,
the third quartiles show that the heuristic schedulers with S ≥ 14 get within
10% of the schedule length achieved by the ILP solver in the majority of cases,
and occasionally obtain even better results.

5.2 Hardware Evaluation

Out of the 35 {SPN, Platform, II} combinations used in the scheduler evaluation,
13 target the AVNET Ultra96-V2 device. We generate accelerators for these con-
figurations, using the heuristic scheduler with our proposed ILP formulation and
S = 14. This configuration gives acceptable results, while also reliably finishing
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Table 2. SPN graph properties, scheduling results, FPGA resource utilization on
Ultra96-v2 platform and comparison of inference throughput. FPGA utilization is given
as percent of the overall available resources. Best throughput results highlighted bold.

Freq. Resource Util. [%] Throughput [samples/µs]
Benchmark II SL Add Mult. [MHz] LUT Reg. CLB DSP Xavier CPU Xavier GPU FPGA

Accidents 2 81 27 217 275 61.30 38.04 92.23 60.56 7.53 17.61 39.85
Audio 4 88 12 275 280 51.94 30.91 77.65 76.67 4.05 16.82 35.01
DNA 3 73 2 363 260 66.09 38.49 96.92 67.22 1.51 15.22 25.95
Netflix 2 73 11 231 260 62.07 37.82 92.85 64.44 3.44 26.63 44.31
Plants 3 140 14 256 280 53.58 35.85 86.63 95.56 4.21 30.23 48.98
NIPS20 2 47 7 56 350 38.00 20.33 57.03 15.56 27.55 19.42 30.01
NIPS30 2 65 10 87 345 49.57 24.94 71.52 24.44 15.95 15.82 24.67
NIPS40 3 74 16 122 350 51.52 26.62 76.17 22.78 10.27 12.61 21.39
NIPS50 4 80 16 143 340 57.95 26.29 78.72 20.00 7.79 11.59 17.74
NIPS60 4 77 13 156 350 57.85 27.74 81.89 21.67 5.23 10.28 14.86
NIPS70 5 88 14 180 205 62.52 28.36 84.17 20.83 3.09 9.36 14.00
NIPS80 2 85 32 265 245 83.16 43.53 99.34 74.72 3.20 6.41 12.48
NIPS80 5 93 32 265 245 68.49 34.18 93.84 30.28 3.20 6.41 12.39

in half an hour, which is a typical time frame for FPGA implementation of the
entire accelerator for the target device.

We performed a design space exploration using the development version of
the open-source framework TaPaSCo4 and Vivado version 2019.2 to determine
the highest possible frequency and corresponding FPGA resource utilization.
Results are reported in Table 2, with resource utilization given as percentage of
the total number of available resources (70,560 LUT, 141,120 Reg., 8,820 CLB,
360 DSP).

With these maximum frequencies, we compare the performance of the FPGA
accelerators with the CPU and GPU implementations of the same inference com-
putations running on another SoC suitable for embedded and edge AI computa-
tion, namely an Nvidia Jetson AGX Xavier SoC, having ARM CPU cores and an
integrated 512-core Volta-class GPU. Similar to prior work [20], optimized C++
(single-threaded) or CUDA code is generated from the SPN description using an
automated toolflow and then compiled by the respective compiler available on
the Jetson Xavier System (NVCC version 10.0, GCC version 7.5.0). Just as in
the Ultra96 used for FPGA performance measurements, CPU and GPU on the
Jetson AGX Xavier share the same physical memory, which removes the need
for expensive host-accelerator data transfers.

Table 2 lists the throughput achieved by the CPU, GPU and FPGA im-
plementations. Each measurement is averaged over five runs. Our accelerators
achieve better throughput than the implementations on CPU (geo.-mean speedup
4.4x) and GPU (geo.-mean speedup 1.7x) on the Xavier device.

Avoiding data transfers between CPU and GPU, respectively CPU and FPGA,
has significant impact: it allows these embedded SoCs to achieve performance

4 https://github.com/esa-tu-darmstadt/tapasco

https://github.com/esa-tu-darmstadt/tapasco
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much closer to the more powerful workstations evaluated in prior work [20]
than one would expect from comparing hardware specifications. On several
benchmarks, the Xavier GPU implementation even achieves significantly higher
throughput than the discrete Nvidia 1080Ti GPU used in prior work, primarily
because the latter needs to transfer all input data and results over PCIe.

Note that the two FPGA accelerators for NIPS80 have vastly different datap-
ath throughput (II = 2 versus 5) and resource (DSP) requirements. They achieve
essentially the same end-to-end performance because the larger II = 2 configu-
ration is limited by memory bandwidth, while the smaller II = 5 configuration
was selected to match the memory bandwidth.

6 Related Work

Two key components of our work are the use of graph partitioning to accelerate
modulo scheduling and the optimization of operator bindings. The discussion in
this section focuses on works related to these aspects. Please note that many
other approaches to heuristic modulo scheduling exist [1, 3, 24].

Compared to scheduling in compilation flows for neural networks on FPGAs,
our approach works on a much finer level of granularity. As outlined in the
survey by Venieris et al. [22], scheduling in compilation flows for neural networks
typically happens on the granularity of coarse-grained neural network operations,
such as matrix multiplication, convolution, or even entire layers, whereas our
scheduler operates on individual arithmetic operations.

6.1 Graph Transformations For Modulo Scheduling

Fan et al. [6] previously used graph partitioning to decompose large modulo
scheduling tasks into multiple sub-problems. Due to recurrences, solutions to the
sub-problems can not necessarily be combined into a valid solution to the whole
problem. To address this, they perform scheduling of sub-graphs sequentially and
back-track when later sub-graphs cannot be scheduled due to conflicts arising
from previous decisions. As a consequence, this approach fails to schedule some
examples even with a relatively fine-grained partitioning (ca. eight operations
per sub-graph).

Dai and Zhang [5] used strongly connected components (SCCs) to partition
the graph. As this partitioning does not split recurrences, partial solutions can
always be combined into a full schedule. They demonstrate that this often ac-
celerates scheduling significantly, though it is less effective when a single SCC
encompasses most of the graph.

6.2 Optimization of Bindings

There are numerous works optimizing the bindings alongside the schedule as one
of the key factors affecting the physical realization of operator sharing. Cong and
Xu [4] perform this in a separate step after scheduling using a heuristic based
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on min-cost network flows. LegUp [2] is a more recent example of binding as a
separate phase after scheduling, focusing on balancing multiplexer sizes.

Other works are more closely related to our approach of integrated scheduling
and binding. The aforementioned work by Fan et al. [6] focuses on ASIC imple-
mentations, while Memik et al. [9] target FPGA architectures. More recently
and most closely related to our ILP formulation, Sittel et al. [18] incorporated
the operator bindings into an ILP-based modulo scheduler to optimize the area
required for registers holding intermediate values.

7 Conclusion & Outlook

In this paper, we presented an ILP formulation for modulo scheduling and bind-
ing of SPN inference computations, and a divide-and-conquer heuristic that
makes the ILP-based approach practical for use on large SPNs by graph parti-
tioning and combination of partial solutions.

This heuristic can schedule very large examples in minutes, while finding
the optimal II by construction and making only minor sacrifices in schedule
length – within 10% of the best known solution for most instances. In addition,
our extended ILP formulation also reduces datapath multiplexing significantly,
compared to scheduling approaches that only target the schedule length.

Using this scheduling algorithm, we generate SPN inference accelerators on
an embedded FPGA-CPU hybrid SoC, where a fully spatial realization of the
datapath would exceed the available hardware resources. These FPGA acceler-
ators achieve higher throughput than CPU and GPU implementations on an
Nvidia Jetson Xavier SoC in our benchmarks, with geometric mean speed-up of
4.4x over CPU and 1.7x over GPU.

The properties of acyclic data flow graphs that enable our divide-and-conquer
heuristic also suggest other approaches to heuristic scheduling that hold promise
for improving the running time and/or solution quality further. Since a feasible
suboptimal solution is easy to find, local search approaches such as simulated
annealing could be used as well, which allow specifying non-linear constraints
and objectives directly.
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