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Abstract. The open-source hardware / software framework TaPaSCo
aims to make reconfigurable computing on FPGAs more accessible to
non-experts. To this end, it provides an easily usable task-based pro-
gramming abstraction, and combines this with powerful tool support to
automatically implement the individual hardware accelerators and inte-
grate them into usable system-on-chips.
Currently, TaPaSCo relies on the host to manage task parallelism and
perform the actual task launches. However, for more expressive parallel
programming patterns, such as pipelines of task farms, the round trips
from the hardware accelerators back to the host for launching child tasks,
especially when exploiting data-dependent execution times, quickly add
up.
The major contribution of this work is the addition of on-chip task
scheduling and launching capabilities to TaPaSCo. This enables not only
low-latency dynamic task parallelism, it also encompasses the efficient
on-chip exchange of parameter values and task results between parent
and child accelerator tasks.
Our solution is able to handle recursive task structures and is shown to
have latency reductions of over 35x compared to the prior approaches.
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1 Introduction

FPGAs have become widely available as accelerators in computing systems. As
more and larger applications are being offloaded to FPGAs, the required hard-
ware designs are getting more complex. However, applying typical approaches
from software engineering, such as divide-and-conquer, or code-reuse, to reduce
complexity, is still a challenge. For example, splitting a large application into
multiple cooperating smaller accelerators, such as in the well-known farm par-
allel pattern [4], often results in increased communication overhead between the
host and the FPGA.

Our work addresses these challenges by adding fine-grained on-chip task
scheduling to the TaPaSCo framework for reconfigurable computing [6]. This
new feature enables low-latency interactions directly between processing ele-
ments, without the need for host involvement. It significantly reduces the number
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Fig. 1. Host and PE interactions, with (a) the existing host-centric model, and (b) the
new on-chip dynamic parallelism.

of host/accelerator interactions, as shown in Figure 1. Furthermore, the new ca-
pability reduces development effort and the required time for implementing het-
erogeneous computing systems without sacrificing performance. Our approach
also enables the use of more expressive computing structures, such as recursion,
across resource-shared accelerators.

2 Heterogeneous Computing Architecture

The open-source TaPaSCo framework [6] is a solution to integrate FPGA-based
accelerators into a heterogeneous computing system. It addresses the entire
development flow by providing an automated toolflow to generate FPGA bit-
streams, and a runtime and API for the interaction of a host application with
the accelerators on the FPGA. The resulting SoC design consists of the Pro-
cessing Elements (PE) and the required infrastructure, such as interconnect and
off-chip interfaces (e.g., host, memory, network). The PEs are instances of the ac-
tual hardware accelerators, and can be provided to the system either in an HDL
or as C/C++ code for High-Level Synthesis (HLS). TaPaSCo realizes hardware
thread pools, each having a set number of PEs to perform the same task. Thus,
a human designer or an automated design-space-exploration tool can optimize
how many PEs are to be provided for a specific function, optimizing, e.g., for
maximum task throughput.

A key feature of TaPaSCo is its support for many different hardware plat-
forms. The first category of platforms are reconfigurable system-on-chips with an
attached FPGA region. In these architectures, the CPU and the FPGA region
share the same address space and both parts have various communication chan-
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Fig. 2. Cascabel 2 hardware dispatcher/launcher and its AXI Stream connections to
the PEs for accepting task requests and distributing task results.

nels for a tight coupling. TaPaSCo supports the older Xilinx Zynq-7000 series
and the more recent Zynq UltraScale+ MPSoC (PYNQ-Z1, Ultra96, . . . ).

The second category are PCIe-based accelerator cards for compute systems
(Xilinx VC709, Alveo U280, . . . ). Direct communication between CPU and
FPGA uses the PCIe-bus. The cards have their own off-chip / on-board memory,
thus, a DMA engine handles all memory transfers. This wide range of supported
platforms, ranging from small, low-cost FPGAs to high-performance data-center
cards, allows a user to select the suitable platform for a given application and
enables quickly scaling-up or -down the platform in the development stage or
later during deployment. Without any changes to software or the PE implemen-
tations, all supported platforms can be utilized. The extension presented in this
work also maintains the high portability and thus can be used with all existing
platforms.

In its initial version, TaPaSCo employed a software runtime to dispatch a task
to a suitable, currently idle PE. Recently, TaPaSCo was sped-up by moving part
of this dispatching process from software to hardware. The resulting Cascabel
extension [5] employs a hardware queue, which accepts the task requests from
the host. The task dispatch (finding a suitable idle PE) and the launch, including
the transfer of task parameters and the collection of results to/from the selected
PE, is now handled on-chip. This off-loading of the task dispatch decouples the
software application on the host side from the PEs on the FPGA. The evaluation
has shown that a higher job throughput is achievable, however, with the penalty
of an increased latency.

In this work, we present Cascabel 2, which extends the prior version by now
allowing the PEs themselves to autonomously launch new tasks without the need
for host interaction. This capability is often called dynamic parallelism, e.g., in
context of GPUs, where threads are able to launch new child threads themselves.
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The main goal of direct on-chip task launches is to reduce the latency, resulting
in task launches with both low latency and high throughput.

3 Implementation

3.1 Control and Data Flows

The on-chip dispatch/launch functionality should be as powerful as the original
software solution. Thus, it encompasses not only the actual dispatch/launching
of child tasks, but also the passing of parameters from the parent to the child as
well as the retrieval of the child result back to the parent task. We thus require
bi-directional communication to perform this exchange.

The architecture is shown in Figure 2. In addition to the regular TaPaSCo
interfaces for PE control and interrupt-based signalling, two AXI4 streams are
used to enable dynamic parallelism: A 512 bit stream, shown in green, flows
from the PEs to the Cascabel 2 unit, and carries new launch requests, including
child task parameters. A second 64 bit stream, shown in red, flows from the the
Cascabel 2 unit back to the PEs and transports the task result, which is generally
a single scalar value. Note that these widths are configurable, and can be matched
to the application domains, such as a result consisting of a two-element vector
of single-precision floats. Also, the Cascabel 2-interface is completely optional.
If PEs do not require the dynamic parallelism, no superfluous hardware will be
generated.

Cascabel 2 supports the two existing methods of transferring data in TaPaSCo:
pass-by-value and pass-by-reference. The former is a parameter with a scalar
value, the latter is a parameter containing a reference to a memory location for
larger data sizes. The software runtime is responsible for memory management.

3.2 On-Chip Dispatch and Launch

Cascabel relies on internal queues for managing incoming tasks and idle/busy
PEs and also provides advanced inter-task scheduling operations such as bar-
riers. Adding the dynamic parallelism requires only very few changes here for
Cascabel 2. Mainly, the existing memory-mapped interface used by the host to
submit tasks for execution into the relevant queues is extended with the stream-
based interface used by the PEs to submit task launch requests. For launches,
the rest of the operations proceeds as in the initial Cascabel [5].

3.3 Handling Child-Task Return Values

Since tasks in TaPaSCo generally have return values, Cascabel 2 must be able to
handle these as well. Compared to the dispatch/launching mechanisms described
in the previous section, this requires greater changes in the Cascabel unit and
the SoC architecture, especially since different execution paradigms need to be
covered by the mechanisms. As shown in Figure 3, Cascabel 2 supports four
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ways of handling child task return values, which will be discussed next. Note
that for the methods 2) to 4), the launches can occur synchronously (parent
task waits for child result to arrive) or asynchronously (parent tasks continues
after launching child task).

Discard child result Not all PEs actually make use of the return values of
child tasks, or require them for synchronization purposes. An example for this
would be a PE whose child tasks provide their results elsewhere (e.g., as outgoing
packets on a network port).

Return-to-parent In general though, parent tasks will be interested in the
return values of their child tasks, if only for synchronization purposes (“child
task has finished and updated shared state”). As TaPaSCo supports out-of-
order completion of tasks, we want to retain this capability for the dynamic
inter-PE parallelism. In this mode, the child task’s return value is sent back
to the PE executing the parent task. As shown in Figure 4, the return value
can be configured to be sent alone (a), accompanied by the producing child’s
task ID, either in the same (b), or a separate bus transfer beat (c), to support
out-of-order completion of child tasks.

Merge/Reduce-to-parent For some parallel patterns, such as a task farm,
the results of multiple worker PEs must be collected, e.g., in preparation of a
reduce operation. To this end, Cascabel 2 provides infrastructure to perform
this merging in dedicated hardware. When configured, the child task results
produced in parallel by multiple worker PEs in the farm will be buffered in
BlockRAM, which in turn is then provided to dedicated PEs for performing the
reduction/collection operations. Once all merge/reduce tasks have completed,
their final result is passed back to the parent task, which in itself may be another
merge/reduce PE task.

Return-to-grandparent For some parallel patterns, results are not required
in the parent of a child task, but higher up in the task hierarchy. Cascabel 2 sup-
ports this by allowing a child task to skip its parent task when returning results,

x

(1) (2)

merge/reduce

(3)

x

(4)

Fig. 3. Return value handling: (1) Discard, (2) return-to-parent, (3) merge/reduce-to-
parent, (4) return-to-grandparent. x indicates a discarded result.
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Fig. 4. Stream data formats for child task return values

and instead provide its result to its grandparent task. Note that if the grandpar-
ent task was also launched in this mode, which can be cascaded in Cascabel 2,
yet another level in the task hierarchy will be skipped, quickly propagating the
child task’s result up even further in the task hierarchy. A practical use for this
capability will be demonstrated in Section 4.2.

The logic for realizing the different return actions is implemented in the Re-
turn Ctrl block (shown in Figure 2). As new tasks are launched, the Launcher
block forwards the associated return action to the Return Ctrl block, to be per-
formed later upon task completion. When the Cascabel 2 unit receives interrupts
from the PEs indicating the completion of a task, it internally looks-up the as-
sociated return action provided earlier. In all cases, except for the discard child
result action, the first step is to read the result value from the PE. Further pro-
cessing is dependent on the selected action: it either forwards the result to the
(grand-)parent, waits for additional return values, or issues a new merge task
using the Cascabel 2 unit. Optionally, a task can specify that an interrupt should
be raised and sent to the host. This will generally be done only after an entire
set of tasks has been successfully completed in hardware.

3.4 Limitations

Cascabel 2 is realized as a custom hardware module and optimized for perfor-
mance. Thus, even with the provided customization options for each specific
PE layout, Cascabel 2 does not reach the complete flexibility of the host-side
software-only dispatcher. This section discusses the design decisions and the re-
sulting restrictions.

In terms of arguments, Cascabel 2 by default supports values of 64 bit. This
can either be a scalar value, or a pointer to a memory location. Memory manage-
ment is handled in the TaPaSCo software API on the host side. At this stage,
it is thus not possible to dynamically allocate PE-shared memory for on-chip
launched tasks. Instead, memory pre-allocated on the host-side could be used.
The number of task arguments is currently limited to up to four arguments,
which is sufficient for typical applications. Due to the latency optimization, all
four arguments are passed in parallel in a single beat over the 512 bit-wide launch
request interconnect. If more arguments are required, this would either require



Supporting On-Chip Dynamic Parallelism for Task-based Hardware Acc. 7

widening the bus, issuing multiple beats, or passing the arguments via external
PE-shared memory, such as on-chip HBM or on-board DDR-SDRAM.

As in all practical implementations (hardware or software), the achievable
recursion depth in Cascabel 2 is limited by the capacity of the memory holding
the “call stack”. Cascabel 2 relies on on-chip BlockRAM to hold the call stack,
again aiming for low latencies. The memory capacity used for this purpose can
be configured, but will by necessity be much smaller than the DRAM-based main
memory call stacks used in software recursion.

In addition, as TaPaSCo PEs are generally not multi-threaded or even re-
entrant, a recursive call will always be executed on another PE, blocking the
calling PE for the duration of the sub-task execution. For example, with recursive
task launches following the Return-to-parent pattern, each recursion level will
lead to one PE becoming blocked, thus limiting the recursion depth to the total
number of PEs available on the SoC to execute this task.

4 Evaluation

Our evaluation system is a Xilinx Alveo U280 FPGA card in a server with
an AMD Epyc Rome 7302P 16-core CPU with 128 GB of memory. All FPGA
bitstreams have a 300 MHz design clock and are synthesized in Vivado 2020.1.

4.1 Latency

The key property when performing on-chip task launches is a low latency. For
evaluating this, we use the on-chip launch interface and measure the required
clock cycles from writing the task launch command for an immediately returning
(NOP) task to the Cascabel 2 launch-command stream, up to when the parent
task receives the result value from the child task. This approach follows the con-
ventions established in the HPC community for benchmarking task-scheduling
systems, e.g., in [3]. This operation takes 62 clock cycles in total, which at the
design frequency yields a time of 207 ns for a complete launch-and-return. When
performing the same operation with using the host-based software-only sched-
uler, it takes 7.41 µs. Using the hardware-assisted software scheduler [5], which
is optimized for task throughput instead of task latency, requires 8.96 µs. Thus,
Cascabel 2 yields a latency gain of 35x compared to the software-only scheduler,
and a gain of 43x compared to the hardware-assisted Cascabel 1 scheduler. Fig-
ure 5 summarizes the measured latencies. In addition to the reduced latency, the
on-chip scheduling of tasks avoids the high jitter of both of the software-in-the-
loop solutions, caused by the PCIe connection between the host and the FPGA
board.

4.2 Recursion

To stress-test the advanced task management capabilities described in Sec-
tion 3.3 on a simple example, we show a recursion-intensive approach of com-
puting the Fibonacci sequence, which is defined as



8 C. Heinz and A. Koch

Software Cascabel 1 Cascabel 2 (on-chip)

0

2

4

6

8
L
at
en
cy

[µ
s]

Fig. 5. Comparison of launch latencies: host-side software-only, throughput-oriented
hardware-assisted software with Cascabel 1, latency-oriented hardware-only with Cas-
cabel 2

f (n) = f (n− 1) + f (n− 2)

f (1) = f (2) = 1

When implementing this computation naively without the merge/reduce sup-
port of Cascabel 2, as shown in Figure 6.a, the performance and area efficiency
will be very poor, as each of the recursive tasks would wait for a result from their
child tasks, which in turn would lead to many occupied, but waiting hardware
PEs, and will not scale beyond very small values for n. See Section 3.4 for a
discussion of this problem.

Using the Reduce-to-parent scheme of Section 3.3 in a transitive manner,
combined with asynchronous (non-blocking) launches of the child tasks, enables
the far more efficient execution sketched in Figure 6.b. Here, each task completes
immediately after spawning its child tasks with the updated parameters n − 1
and n − 2. Note that a parent task does not wait for the child tasks’ results.
Instead, by having all of these tasks execute in Return-to-grandparent mode, the
results of all of the child tasks will propagate up to the outer reduce tasks, which
actually perform the summing over all of the partial results. That computation
has been moved out of the inner nodes of the call graph of Figure 6.b, to the
outer reduce nodes. In this manner, the recursion depth is not limited by the
PEs available on the chip. The implementation can scale from a single Fibonacci
PE, and a single reduce PE for summing, up to many PEs running in parallel.
The recursion depth is only limited by the size of the BlockRAM storage used
for buffering the recursion results in a call-stack-like manner.

When using two PEs for executing Fibonacci computation tasks, and four
PEs for the merge/reduce tasks, computing f(11) as a highly task-intensive
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Fig. 6. Recursive Fibonacci computation: (a) naive synchronous execution, (b) asyn-
chronous mode with transitive return-to-grandparent value passing and merge/reduce

stress-test requires just 63.13 µs, with the bulk of the execution time required for
task dispatching/launching (as the computation itself is trivial). When perform-
ing host-side scheduling, instead, managing the same parallel structure would
require 1.29 ms, more than 20x longer. Note again that we have chosen this ex-
ample to demonstrate the scheduling capabilities and speed of the Cascabel 2
system, it is not intended to show high-performance computations of Fibonacci
numbers.

4.3 Near-Data Processing for Databases

Our second use-case realizes an accelerator for near-data processing, e.g., for
use in computational storage [9]. It will examine the performance of Cascabel 2
for less launch-intensive workloads than the previous Fibonacci example. Here,
we assume that a database is stored in persistent memory directly attached to
the FPGA, and we process aggregation queries on the FPGA near the data
(NDP), instead of transferring the data from persistent memory to the host for
processing. The sample query we use for this example could be expressed as

SELECT avg(age), max(salary), sum(hours)

FROM employees;

The database is stored in a format with fixed record size, which allows the use
of simple strided offset-based accesses to retrieve the required columns in sub-
sequent rows. On the processing side, we have PEs for the different aggregation
tasks (avg, max, sum, etc.) available on the FPGA.

Both the software-scheduled and Cascabel 2 implementations will use these
hardware PEs as NDP operations, which compute their results within a single
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Fig. 7. NDP query runtimes for increasing record numbers

task each over an increasing number of records. For each of the aggregations, a
separate task will be launched (three in total, for avg/max/sum), either by the
TaPaSCo software scheduler, or using Cascabel 2 on-chip. The results are shown
in Figure 7. Obviously, with a larger number of records being processed in each
task, the launch overhead per query becomes smaller. However, using Cascabel
2, hardware-accelerated processing remains profitable even for smaller numbers
of records (e.g., after a narrow selection by a tight WHERE clause). It is faster
than software scheduling for fewer than 512 records.

4.4 Resource Utilization and Frequency

The dynamic parallelism features of Cascabel 2 require additional chip resources
compared to the initial Cascabel version of [5]. As Cascabel 2 is highly config-
urable for the needs of a specific application, the actual hardware costs depend
on the features enabled. However we can describe some design points here: For
the two examples, the merge/reduce buffer was configured to use an extra 32
RAMB36 blocks for buffering intermediate child task results. Also, the Cascabel
2 task launch and result interconnects required just 0.27% extra CLBs compared
to the original. In all of our experiments, the absolute resource cost of the Cas-
cabel 2 system was below 2% of the available resources, across all resource types
on the Alveo U280 board.

All evaluated designs meet timing closure at the design frequency of 300 MHz.
Frequencies of over 500 MHz are achievable [10], but would require increasing the
BlockRAM access latency, which we have not done for the examples shown here.
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5 Related Work

In contrast to much prior work on HLS that focuses on parallelism within a PE
[1] [8], our focus is parallelism across PEs and the required infrastructure to sup-
port this. Here, the field of related work is much narrower. One recent example
is ParallelXL [2], which also aims for dynamic on-chip parallelism: Their PEs
are grouped into tiles, which are attached to two NoCs to perform work-stealing
scheduling and argument/task routing. The result is a more distributed system,
compared to our centralized Cascabel 2 unit. However, the evaluation of Par-
allelXL was limited to just a small-scale prototype on a Zynq-7000 device and
gem5-based simulations. We believe that our simple n-to-1 and 1-to-n stream-
ing interconnects will scale better than ParallelXL’s more expensive NoCs, and
still allow performance gains even for highly scheduling intensive workloads, as
demonstrated by our task-excessive Fibonacci example. In addition, ParallelXL
lacks advanced features such as hardware support for merge/reduce operations
and has more limited customizability (e.g., omitting the result interconnect on
PEs for void child tasks).

6 Conclusion and Future Work

Our Cascabel 2 system provides high-performance on-chip dynamic parallelism
at low resource costs. It extends the scheduling capabilities of prior work (e.g.,
barriers) with new mechanisms for performing inter-task reduction operations
and optimized result passing.

With its short launch latencies, Cascabel 2 could also be employed for hard-
ware-accelerated network processing close to the interface, e.g., as performed in
[7] for network security.

Despite its proven advantages, for some applications, the task-based pro-
gramming model currently at the heart of TaPaSCo is not the optimal one.
We are currently working to combine task-based reconfigurable computing with
self-scheduling streaming operations for use in data-flow applications.

Future performance improvements can be achieved by further enhancing the
underlying scheduling method used in Cascabel 2. In particular, for systems with
many different PE types, the current “FIFO” scheduling may in many cases not
reach optimal PE utilization.

Another interesting addition could be the support for communication across
single FPGA boundaries to scale to larger applications. Specifically, the cur-
rently on-chip-only launch/parameter/result interconnects could be extended
using direct FPGA-FPGA links in a single server or rack, or even over switch-
able/routable network protocols in an entire datacenter setting. While such con-
nections carry an additional latency penalty of ≈ 1 µs, inter-device launch latency
would still remain shorter than in the host-based software-only solution initially
used for TaPaSCo.
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