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Abstract. With growing FPGA capacities, the complexity of realiz-
able systems-on-chip grows as well. State-of-the-art FPGA accelerators
encompass many heterogeneous processing elements that often require
efficient Inter-PE communication, as well as with external interfaces,
e.g., to the host or memory. While the toolflows and languages to create
individual processing elements have improved considerably in recent years,
the composition of multi-PE SoCs on FPGAs, including the required
custom interconnects and the creation of powerful APIs for a host to
interact with these complex accelerators, has been a largely manual and
error-prone ad-hoc process. The IPEC system described here aims to
automate much of this effort by offering the system architect selected
powerful primitives to easily describe even advanced SoC compositions.
Compared to traditional manual approaches, the length of the required
descriptions has been reduced by up to two orders of magnitude for the
real-world designs examined here. For easy usability, the open-source
IPEC system employs a domain-specific language embedded in Python.

Keywords: Automated On-Chip Interconnect - Task Parallelism - Processing
Elements - TaPaSCo - FPGA Design Automation.

1 Introduction

Reconfigurable logic devices such as FPGAs have been less affected by Moore’s
Law slowing down, and continue to offer larger capacities with each new generation.
However, apart from specialized applications such as ASIC emulation, actually
putting all of that reconfigurable space to good use, e.g., for improved computing
performance, remains challenging.

Construction of individual Processing Elements (PEs) improved significantly
due to advances in High-Level Synthesis (HLS) and new hardware construction
languages, but the assembly of a complete System on Chip (SoC) leveraging
many heterogeneous PEs and distributed memory still takes considerable effort.

Some aspects of this complexity have been addressed by abstraction frame-
works such as TaPaSCo [9] and others, as discussed in Section 3. These systems
can automate much of the lower-level aspects of the SoC construction process,
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and provide concise and efficient APIs for interacting with the host, hiding many
intricacies of the underlying mechanisms.

What is still lacking is support for more easily describing systems of many
parallel interacting PEs. While the connections can be created using tools such
as Xilinx IP Integrator, this is a laborious process when using the GUIL It is
possible to automate that process with Tcl scripts, but manually creating these
scripts is similarly tedious and highly error-prone, especially for complex designs.

As an alternative to existing work, we contribute the Inter Processing Ele-
ment Communication (IPEC) framework, for automatically synthesizing complex
systems of interacting PEs. IPEC descriptions are formulated at higher ab-
straction levels than IP Integrator and described in a concise Domain-specific
Language (DSL) embedded into Python. The toolflow then leverages the existing
TaPaSCo framework to create the lower-levels of the SoC, and also provides
automated hardware/software integration.

These high-level descriptions allow an easy scaling of architectures, and thus
enhance the portability of the same base-architecture across different device sizes.
By creating custom interconnect structures, the area and performance overheads
of using a general-purpose Network on Chip (NoC) can be optimized.

Even in its initial form described here, IPEC already enables higher produc-
tivity hardware designs by raising the abstraction level and degree of automation
over existing solutions. But its underlying technologies, such as the IPEC Interme-
diate Representation (IIR) used to internally represent entire accelerator-heavy
SoCs with their communication and synchronization mechanisms, forms the basis
for more advanced SoC-level optimization steps in further development.

Section 2 describes the fundamental ideas, protocols, and components IPEC
builds upon. Section 3 gives an overview over related work. Section 4 discusses the
primitives provided by IPEC, while Section 5 shows how the user can integrate
them into a design. Section 6 demonstrates IPEC for two different use-cases.
Section 7 concludes with future work.

2 Fundamentals and Terminology

PEs, in the context of IPEC, describe a computing unit that can be instantiated
multiple times. Depending on the individual use-case, a design may either consist
of homogeneous or varying purpose heterogeneous PEs. A PE may have access
to local and global memories and may be interconnected to other PEs. For use
with TaPaSCo, PEs are packaged as IP-XACT blocks [8].

Task Parallel System Composer (TaPaSCo) provides a toolflow to auto-
matically integrate user provided PEs into a composition, a set of interconnected
PEs, which in the next step can be synthesized onto an FPGA [9]. TaPaSCo uses
the notion of a task from the heterogeneous computing model, which decomposes
large computations into smaller tasks that can run concurrently. Tasks can be
started on a PE from the host using the TaPaSCo API, or from other PEs [10].

The Advanced eXtensible Interface (AXI) is part of the AMBA (Ad-
vanced Microcontroller Bus Architecture) specification and is a freely-available,
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Fig. 1: IPEC Toolflow: User-provided Python-based interconnect descriptions are
converted into an IPEC Intermediate Representation (IIR), compiled into Tcl,
and packed as IP-XACT core. TaPaSCo gets this core definition and creates the
composition, which is synthesized onto FPGA.

open standard for the connection and management of functional blocks in a
system-on-chip (SoC) [1]. It is available in older and newer versions and also
includes a lightweight and streaming option.

On-Chip Interconnect Topology Existing on-chip Interconnect Topologies
are often regular structures such as a ring, star, or fully meshed interconnect.
As part of this work, we will focus on user-defined and potentially irregular
topologies, with direct connections between PEs.

IPEC’s Toolflow is outlined in Figure 1. The user first provides the de-
sign’s PEs and a high-level Python IPEC interconnect description to the IPEC
framework, which then auto-generates the interconnects in Tcl and packages the
multi-PE design as a single transparent IP-XACT core. This IPEC core is then
supplied to the existing TaPaSCo toolflow, which builds, synthesizes, and loads
the bitstream onto an FPGA.

3 Related Work

Different existing tools assist the user in generating FPGA designs comprised
from multiple accelerators. As part of this section, we will focus on those tools,
which also include active support for inter-PE communication.

TaPa follows a Task Parallel approach like TaPaSCo, but focusses more on
HLS [3]. It generates PEs by applying HLS to the compute kernels of an OpenCL
program. The PEs are placed on the SoC and connected to a shared ring network.
Each PE can put data onto the network and peek at or pull from other PEs. TaPa
provides C++ structs to describe data exchanges between PEs. Using them from
within a kernel will result in the corresponding ring network accesses at runtime.
Since all communication takes place on the shared ring network, this can pose a
bottleneck if many PEs are active at the same time and try to communicate.

ESP generates a system from HW tiles [7]. A tile can be a processor, memory,
accelerator or auxiliary function. The processor and accelerator tiles include
a first level cache and a DMA engine for accessing the caches of other tiles,
while memory tiles only include a last level cache. DMAs are routed over a
mesh network connecting all tiles. However, a potentially more efficient direct
communication between accelerators is not supported.
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GENIE (GENeric Interconnect Engine) enables the user to connect compute
elements (CEs) according to user defined connection tables [16]. Hardware for
splitting and merging connections is generated automatically. It uses a custom
routed streaming protocol, which includes addressing by giving each slave an
ID. However, it only generates interconnect structures for its own protocol and
requires that CEs support it.

Archborn provides a Tcl abstraction layer, which enables the user to concisely
create PEs and Memories, then connect them using busses [14]. The user can
attach PEs to a bus, which in turn can be connected to create an NoC. However,
the user has to manually create these structures and the framework does not
include conversion between protocols.

Cascabel is a TaPaSCo extension, which enables on-device dynamic dispatch
[10]. It replaces the default TaPaSCo scheduler with one that can process launch
requests from host and PEs. However, it can only launch one task at a time,
each with a limited number of task parameters. Already running PEs cannot
communicate directly.

A key limitation of the provided frameworks is that they mostly rely on fixed
protocols and interconnect topologies (e.g., mesh, star, ring). While this does
make sense for ASICs, the large multiplexers are often slow on FPGAs. In contrast,
IPEC generates custom interconnect structures matching the communication
patterns of a specific application.

4 Capabilities

With TaPaSCo and other task parallel frameworks, the fundamental abstraction
is that of a task, which is submitted to one PE and processed in its entirety.
IPEC, on the other hand, uses task groups as the fundamental abstraction. A task
group comprises multiple tasks, which can exchange data using shared memory
or connections. Figure 2a shows such a task group as a Data-Flow Graph (DFG).

Each of the PE A to F represent one task of the entire group. Each task, in
turn, runs on a PE optimized for it. The host launches a task group together
with the necessary input parameters and is notified of its completion by using
the interrupt signal of a designated PE, usually either the first or last one in
the DFG. PEs can share data only along the edges of the DFG, this means that,
e.g., PE D has no means of communicating with PE C. Note that the DFG is a
directed graph, but which may contain cycles.

4.1 Connections

Every PE has one or more ports to send data to or receive data from other PE’s
ports and memory. IPEC supports three protocols from the AXI4 family for the
ports: AXI4, AXI4 Lite, and AXI4 Stream. Additionally, connecting individual
wires is possible as well. Using IPEC, the user can create arbitrary connections
between ports, e.g., as shown in Figure 2b.
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Fig.2: A sample data-flow graph and topology, which can be mapped using IPEC.

A single master port can have multiple outgoing connections to other slaves,
while a single slave can have multiple incoming connections from other masters.
After specifying all connections, IPEC automatically generates the corresponding
hardware and connections further described in Section 5.5. Interconnects are
created automatically when needed. For ports with many incoming or outgoing
connections, the design is automatically optimized by creating a hierarchical
interconnect structure. With address-based protocols like AXI4 and AXI4 Lite, a
master can send data to individual slaves by using an address map (described in
greater detail in Section 5.6). AXI4 Stream masters, on the other hand, broadcast
data to all of their slaves. AXI4 Stream slaves include a FIFO in order to act as
a buffer to avoid slowing-down the master in case a slave is not ready yet.

Furthermore, connecting ports with mismatching protocols is supported, but
may require the user to specify a conversion protocol. Converting AXI4 to AXI4
Lite is done automatically, while converting an AXI4 Stream to AXI4 requires
the user to specify a hardware module to do the conversion.

In order to save routing resources, connections between different ports can be
grouped to form a Channel. A Channel can have multiple input ports, which are
arbitrated onto a single connection. On the other end, the data is forwarded to
the single addressed slave, or broadcast in the case of streams.

4.2 Memory

One advantage of FPGAs is the availability of distributed memory and customiz-
able memory systems such as [11]. To exploit distributed memory, PEs can each
have a local BRAM attached, which can also be made accessible to other PEs.
Since BRAM on most modern FPGAs is dual-ported, IPEC exposes both ports
to the user, who can then decide whether to give a single PE exclusive access
to a port for minimum latency, or share it among multiple PEs. Furthermore,
IPEC treats all types of memory identically, including BRAM, DRAM, HBM,
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Fig. 3: Shared memory accesses using AXI4 Stream, require RMA converters,
which are auto-generated by IPEC. An RMA read has up to three parameters
determining which data words to return. An RMA write has at least one data
packet, but will write additional data to successive memory addresses.

and register files. In the case of off-chip memory, IPEC delegates generating
the memory controller to TaPaSCo, but will create the necessary interconnects
for merging all connections accessing the same memory. PEs can perform their
memory accesses via AXI4, AXI4 Lite, and AXI4 Stream. For AXI4 Streams, the
required Remote Memory Access (RMA) converter units, as shown in Figure 3,
are created automatically.

RMA Read The PE has an address stream connected to the RMA unit and
a data stream back from the RMA unit. A read request contains up to three
parameters: the address, number of elements to read and the stride between
successive elements. After receiving a read request, the RMA unit will read the
data from memory and broadcast it to all receivers of the stream.

RMA Write The PE has a combined address and data stream connected to
the RMA unit. A write request contains at least two parameters: the address and
the data. Sending more than one data packet will write to successive addresses.

Data stored inside a PE and shared memory is persistent across launches,
meaning it is still available when the next task or task group is started. However,
it falls to the user to ensure that, if a later task requires data from a previous
one, the new task or group is launched on the specific PEs that can physically
access that memory.

4.3 Dispatch - Starting PEs

Since a task group consists of multiple tasks, and therefore involves multiple PEs,
there has to be a way to start all PEs belonging to the same task group. We
discuss the two possibilities shown in Figure 4.

Software Dispatch Task groups can be launched under host control by
assigning each involved PE a unique ID. The host can then individually launch the
tasks in a group using the identified PEs. While very flexible, software dispatch
has a relatively high communication overhead, as each task requires two PCle
transfers. In the example at the top of Figure 4, PEs A and B are launched as
group under host control. Afterwards, their respective tasks can communicate
using [PEC facilities.

Hardware Dispatch Instead of being launched under host control, IPEC can
configure PEs to be launched on-chip, without host intervention. Therefore, PEs
are fitted with a Stream Starter, which accepts new launch requests, including



IPEC: Inter-Processing Element Communication 7

the required parameters, from an AXI4 Stream. This allows arrangements as
shown in the left part of Figure 4, where only PE C is host-launchable by its
ID. The PEs D is then launched on-chip over IPEC links. In the example, PE D
can receive additional data from and return its result to PE C over additional
streams. The Stream Starter blocks until its controlled PE becomes idle again.
Note that hardware dispatch requires some care from the user, as in some cases,
such as circular structures, there is the risk of deadlocks.

Locks for Stream Synchronization To prevent multiple PEs from inter-
fering with each other, including deadlocks, individual stream connections can
be blocked using a lock. Locks contain an accumulator register connected to
an AXI4 Stream slave. Each incoming packet increments the accumulator or
applies a simple binary operation with the data field of the packet. This way,
accumulators can realize atomic operations across multiple concurrently executing
PEs. Additionally, the lock is linked with a channel and blocks all communication
over the channel if the accumulator is non-zero. This allows the realization of
different synchronization schemes such as semaphores, and mutexes.

5 Using IPEC to Simplify SoC Implementation

This section details how the user can create compositions using the previously
discussed functionalities. For ease of use and to make it more accessible to users
inexperienced in hardware development, IPEC is controlled by high-level Python
descriptions. We chose Python specifically for lowering the hardware designer’s
entry barrier. With IPEC, not only single-PE but multi-PE HLS designs become
feasible without the need for Tcl or any HDL knowledge to interface with existing
toolflows. Together with TaPaSCo’s HLS support, the user can now easily generate
a multi-PE SoC with custom interconnect structures.

As shown previously in Figure 1, using Python syntax, the user writes a script
instantiating all PEs, memories, and connections between them. Our library then
converts the given description into an intermediate representation, from which
the necessary converters and interconnects can be automatically inferred and the
address map is computed. Finally, from the extended intermediate representation,
an IP-XACT core containing all resources is created. For maximum automation,
IPEC is integrated into TaPaSCo. However, it can also be used in a stand-alone

- -

Fig.4: IPEC supports both host software and on-chip hardware dispatch. With
software dispatch, the host starts PEs individually. With hardware dispatch, PEs
have a Stream Starter attached to their configuration registers, which allows
other PEs to start tasks without host intervention.

Software Dispatch
Hardware Dispatch

Return Result
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Listing 1.1: Python code for an introductory
example of an IPEC composition.

pea = PEA(ID=1)

peb = PEB()

pec = PEC(Q)

hbm = HBM()

¢ = Channel (pea.maxisO,peb.config)

lock = Lock(c)
Channel (peb.maxis ,pec.config)
Channel (pec.maxis ,peb.config)

) Fig. 5: Corresponding block de-

Channel (pea.maxisl ,pec.maxisl,lock

for i in range (0, 10): sign: PE B and PE C form a
ped = PED(ID=i+1) cycle started by PE A through
bram = BRAM('16K') a lock. Each PE D has its own
Channel (ped.maxi0, bram.port0) BRAM and a connection to
Channel (ped.maxil, hbm.saxi) shared HBM.

manner in other design flows. Listing 1.1 is a simple introductory example for
using IPEC to describe the block design shown in Figure 5. More complex
real-world use-cases will be discussed in Section 6.

5.1 Device, PEs and Memory

When using IPEC, PEs can be instantiated by calling a Python constructor via
its identical name. To this end, IPEC reads the user’s TaPaSCo hardware cores
directory and automatically creates a Python class for every PE type found.
Note that IPEC adheres to TaPaSCo’s tenet of being language agnostic. Thus,
while the actual cores might have been created using Verilog HDL, Chisel, HLS,
Bluespec, or any other design flow, this no longer plays a role in their IPEC
composition. The code in Listing 1.1 creates the PEs PE A (Line 1), PE B (Line
2), PE C (Line 3), and multiple instances of PE D (Line 11). Each PE object
contains member attributes for every interface the PE exposes with the same
name and protocol, thus making it easy for the user to reference a specific PE port
in the IPEC script. Other hardware modules are created similarly, for example
the yellow lock in Figure 5 results from Line 6 in Listing 1.1.

In the case of PE A and PE D, the constructor includes the ID parameter,
thus making the PEs host-launchable using the TaPaSCo API. PE B and PE C,
on the other hand, are equipped with a PE Stream Starter created implicitly by
connecting an AXI4 Stream to master to their configuration registers. They can
thus be launched on-chip without host intervention.

Memory instances are created similar to PEs by calling a Python constructor
of the same name. BRAM creates one block of BRAM of the specified size with
two access ports (Line 12). DRAM and HBM aggregate all connected ports to a
single interface, which can later be connected to a memory controller.
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5.2 Connections

In Listing 1.1, different ports of PEs and memory are connected by creating
a channel. At least one master and one slave is to be specified per channel. If
multiple masters are part of a channel (Line 9), IPEC creates an interconnect
to arbitrate them onto a single connection. If multiple slaves are present in a
channel, the resulting interconnect will broadcast to all slaves for the case of the
slaves being AXI4 Streams, or unicast to the single specific slave as addressed by
AXI4 and AXI4 Lite interfaces. Multiple channels connected to the same port are
handled analogously. E.g., all PE D instances are connected to the same HBM in
Line 14. When creating the lock in Line 6, IPEC splits the given channel and
routes it through the lock.

5.3 Locks - Deadlock Avoidance

Locks offer a way to synchronize the execution of PEs, or prevent a deadlock.
In Figure 5, PE A can start a cycle, which contains PE B and PE C, with PE B
starting PE C as it finishes, and vice versa. If PE A restarts PE B before this
cycle is over, PE C will wait for PE B to finish, which, in turn, waits for PE C to
finish, causing a deadlock. To prevent this, we add a lock in Line 6.

The channel in Line 9 connects PE A and PE C to the accumulator part of the
lock, allowing them to block the second channel through the lock. This second
channel allows PE A to start PE B, if the accumulator register is 0. After PE A
starts PE B, it increments the accumulator of the lock by one, thus blocking any
of its own future attempts of starting PE B. PE C’s way to start PE B (Line 8),
on the other hand, is not blocked by the lock and it can still restart PE B. When
no more iterations between PE B and PE C are required, PE C will reset the lock,
thus re-enabling PE A to launch PE B again, and start a new processing cycle.

5.4 IPEC Intermediate Representation

For improved efficiency, the IPEC framework does not immediately generate
the corresponding hardware when the Python call is processed. Instead, the
calls construct the IPEC Intermediate Representation (IIR, see Figure 1) in the
background, which is then processed in its entirety to generate the interconnects.
The IIR is graph-based and comprises cells, ports, and connections:

Cells are hardware modules available to IPEC as IP-XACT cores. While all
cells have ports to express their connection points, ITR distinguishes between
PEs, Memory, Stream Operations, Interconnects, and (AXI) Converters.

Ports encapsulate all the low-level physical signals of a Cell associated with a
specific protocol into one user accessible object. IPEC differentiates between AXI4,
AXI4 Lite, AXI4 Stream, Clocks, Resets, Interrupts, and raw input and output
signals. Address based protocol ports are part of the address map generation.

Connections are point to point connections between ports. IPEC generates
a Tcl script from IIR, which, when used from within the context of the Xilinx
IP Integrator, imports, creates, and configures every referenced IP and the
connections between them to generate an IP-XACT core.
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5.5 Interconnect Generation

When the IR is constructed, the protocols of connected ports may not match.
Ports may even have multi-protocol fanouts. This is resolved by first inserting
generic interconnects which lack all protocol information. Afterwards, protocol
information, such as type, data width, and address width, is propagated through
the connection graph, starting from each port with a known protocol. When
different protocol information is propagated to the same port, IPEC selects a
common “super” protocol on the master side, or a common “sub” protocol on the
slave side. As an example, in Listing 1.1, the data width of the lock is not specified.
If multiple masters propagate different data widths to the same slave having an
unknown data width, then the widest data width of all masters is selected for the
slave. Conversely, if multiple slaves connect to a single master, the narrowest data
width is selected. The user can control this process by specifying the protocol
manually at key points, and then leave it to IPEC to infer the remaining protocol
parameters. After protocol propagation, IPEC inserts converters between each
pair of ports with mismatching protocol specifications. Finally, each generic cell
is replaced by one of the IP-cores that is available to IPEC and has the required
properties. While these capabilities are similar to those in Xilinx Vivado, they
allow IPEC to parameterize generic user IP cores like the lock as needed.

5.6 Address Map Generation

In contrast to AXI4 Streams, AXI4 and AXI4 Lite require assigned addresses for
communication. Thus, each master has an address space containing the address
segments of every slave it is connected to. IPEC automatically creates these
address maps for each master by inserting the slaves in the order specified by the
user into the masters address space. IPEC may leave parts of the address space
unassigned to ensure each slaves’ address segment starts at an aligned address
divisible by its own size to allow more efficient address decoding.

5.7 Advantages of Embedding IPEC in Python

IPEC profits from being a Domain-Specific Language embedded into a high-level
language, namely Python. This is exploited in Listing 1.1 by using a for-loop
to concisely create multiple PEs, BRAM, and the connections between them.
Note that only a single HBM instance is created (Line 4), which has multiple
connections created in Line 14. IPEC will create an interconnect block merging
all of the individual links.

While these abstractions could be implemented in Tecl, which is directly
supported by Vivado, we chose Python to accommodate non-hardware designers,
who can use it in combination with HLS to employ reconfigurable computing.

6 Evaluation

This section discusses two real-world case studies which successfully leverage
IPEC. Both projects initially relied on the Xilinx IP Integrator GUI to manually



IPEC: Inter-Processing Element Communication 11

create communication structures between PEs, before being migrated to IPEC.
For both use-cases, other approaches would either not provide sufficient bandwidth
(e.g., a single global shared memory), or require more FPGA resources (e.g.,
an NoC in soft-logic). The final composition when using IPEC is identical to
the previous manually created composition. Since the design, and therefore the
performance is identical, the focus of this study will thus be on the productivity
gains achievable using IPEC, as compared to the Xilinx IP Integrator GUIL. As
simple measure for the productivity gains, we compare the lines of IPEC Python
code with the number drag-and-drop user actions required in the GUI, which is
reflected by the number of corresponding Tcl lines automatically created by the
IP Integrator tool. In our experience, the number of Tcl lines is a good estimation
for the number drag-and-drop operations, ignoring grouping commands.

By using IPEC, it becomes much easier to perform design space exploration
by varying parameters of a composition, or to scale an IPEC design up or down
to target different FPGAs.

6.1 Case Study I: neoDB Database System

Many modern Data Base Management Systems (DBMSs) use multi-versioning
to enable consistency and high parallelism for both long-running analytical
queries (reads), and low-latency update transactions (writes) [18]. In this scheme,
the DBMS holds multiple versions of the same tuple linked with timestamps to
determine which single version is the current one (visible) to a given transaction or
query. This wisibility check requires loading tuples and comparing their timestamp
against the timestamp of the ongoing query.

In practice, the number of active versions can reach several hundred millions
[12], resulting in many entries being evicted from fast memory to cold storage.
Thus, in today’s DBMSs, analytical queries may be slowed by high latency
memory accesses when checking tuples for visibility.

neoDB is a next-gen DBMS based on PostgreSQL that uses FPGA-accelerated
Near-Data Processing (NDP) to address many traditional bottlenecks [2]. The
example employed as use-case for IPEC performs visibility checks on the FPGA
in NDP-fashion to determine the visible records. These can then be returned
back to the host, or be forwarded to further NDP accelerators on the FPGA. In
both cases, the results are written back to host memory.

The neoDB composition examined here comprises four types of PEs working
together to perform an NDP-operation. MicroBlaze softcores load tuples from
memory and perform the visibility checking, forwarding only the visible tuples
over an AXI4 Stream. Next, a specialized NDP accelerator continues to process
the visible tuples, using a complex data analytics operation in the actual system.
The third PE transforms the analytics accelerator results in preparation for
writing them to host memory, which is performed by the final PE. These four
PE types form a cluster, which can be replicated on larger target FPGAs. The
host only interacts with the first PE of each cluster, launching parallel tasks on
multiple softcores.
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H Listing 1.2: IPEC code for NeoDB
1 dram = DRAM()
o 2 for i in range(0,2): # 0..1
;UU 3 pe2 = NDP_Accelerator (ID=2)
("-; 4 for j in range(0,16): # 0..15
g 5 pel = MicroBlaze (ID=1)
§ 6 Channel (pel.maxis, pe2.saxis)
= 7 Channel (pel.maxi, dram.saxi)
= 8 pe3 = Stream_Preparation(ID=3)
9 ped4 = Stream_to_Memory (ID=4)

Fig.6: System composition of 10 Channel (pe2.maxis, pe3.saxis)
neoDB. Configuration connections 11  Channel (pe3.maxis, pe4.saxis)
are not shown for clarity. 12 Channel(pe4.maxi, dram.saxi)

Figure 6 shows an example of a composition for this architecture, including
multiple clusters each containing multiple softcores and an analytics accelerator
each. Listing 1.2 shows the IPEC code describing this composition, having two
clusters and 16 MicroBlaze softcores per cluster. The Tel script to generate the
composition contains almost 1,000 lines, each line representing one manual and
error prone action the user performed when using the Xilinx IP Integrator. Even
when using TaPaSCo to create much of the low-level infrastructure, more than
200 Tcl lines remain just to realize the inter-PE communication patterns. IPEC
can express these in just 12 code lines and allows to flexibly balance the different
processing pipeline parts to match throughputs across stages.

Furthermore, in the future, neoDB will require far more complex communica-
tion topologies, as well as support for fast atomic operations for synchronization.
IPEC already supports both of these functionalities.

6.2 Case Study II: Hardware Fuzzing Accelerator

Fuzzing is an automated method for finding vulnerabilities in applications using
a large number of computer generated test cases as input [15]. A black-box fuzzer
will randomly create such test cases and then externally observe the program for
unexpected behavior. In contrast, gray-box and white-box fuzzers indirectly or
directly obtain the program-internal state. Control flow information helps guiding
test case generation towards higher coverage, thereby increasing the chance to
actually find unintended program states or vulnerabilities [13].

Traditionally, software-based fuzzing frameworks such as AFL++ [6,5] are
used to perform this fuzzing-process. A program is iteratively executed and
monitored for any still undiscovered and possibly hazardous state. In software,
the monitoring aspect is typically realized by statically or dynamically inserting
new tracing instructions into the program. When fuzzing a program in a non-
native Instruction Set Architecture (ISA), an emulator has to be employed.
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Fig. 7: System Diagram of the Fuzzing Accelerator. Note that a fuzzing cluster of
PE 1-4 can be replicated on larger chips for higher fuzzing throughput. Since PE
2-4 are only configured and started by the host once, their connections to the
host interconnect are omitted for clarity.

Alternatively, the process of patching, emulating program execution, and
monitoring program states can be accelerated on an FPGA. In this manner, a
potentially large number of ISA-native processor cores may execute the program
with higher efficiency than emulation could achieve. Also, the program state
can be monitored via dedicated hardware blocks without the need for special
instructions. Beyond uncompressed monitoring, dedicated hardware may also
generate and continuously update a condensed trace of the program execution
and finally write it into the FPGA’s DDR-SDRAM. This coverage information
then guides the host in its generation of new and tighter test cases.

In its current version, the fuzzer is limited to executing baremetal-only applica-
tions without the capability of including any non-statically linked libraries. Even
with these limitations, though, it is suitable to demonstrate IPEC’s capabilities.

The fuzzing accelerator is organized into clusters, each holding four communi-
cating PEs as shown in Figure 7. The first PE contains the processor core and a
tracing interface. Depending on the specific core’s capabilities, the Real-Time
Lightweight Integrity enForcement intErface (RT-LIFE) [17] or the RISC-V Trace
(interface) Specification [4] are used to monitor the instruction stream. The raw
trace output is hardwired to the second PE, which transforms the trace into an
AXI4 Stream. The trace is compressed in the third PE. Finally, the fourth PE
writes the compressed tracing information into the FPGA’s DDR-SDRAM. Each
PE communicates with the next one via a hardwired connection, or an AXI4
Stream, while the last PE is connected to DRAM.

The block design for a system containing 25 fuzzing clusters requires a total
of 2,000 lines of Tcl to describe, each representing one user interaction with
the GUI. Even with the automation already provided by TaPaSCo, up to 600
additional design elements have to be manually formulated just for the inter-PE
communication, requiring a line of Tcl for each element. The IPEC automation
reduces this description to just 10 lines, shown in Listing 1.3. The resulting
block design with 25 fuzzing clusters is shown in Figure 8, highlighting the
error-proneness of the manual process.

Scaling the number of fuzzing clusters up or down becomes trivial when using
IPEC. Combined with the existing TaPaSCo framework, this enables a high
degree of portability and very simple design space exploration.
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Listing 1.3: IPEC code for 25 fuzzing clusters.

dram = DRAM()

for i in range(0,25): # 0..24
pel = RISC_V_Core_PE(ID=i*4+1)
pe2 = Converter_PE(ID=i*4+2)
pe3 = Compressor_PE(ID=1i%4+3)
pe4 = MemoryWr_PE(ID=ix*4+4)
Channel (pel.o_data, pe2.i_data)
Channel (pe2.maxis, pe3.saxis)
Channel (pe3.maxis, pe4d.saxis)

Channel(pe4.maxi, dram.saxi) Fig. 8: Resulting block design.

O © 00O ULk W

As a result, IPEC allowed to explore compositions with a varying number
of fuzzing clusters, and to select the composition yielding the highest wallclock
throughput, i.e. fuzzing jobs-per-time, by trading-off parallelism and achievable
clock frequency for different FPGAs.

7 Conclusion and Future Work

IPEC provides a solution for building complex SoCs with many interconnected
accelerator units. For the two real-world use-cases discussed here, the tool already
has significantly improved designer productivity and will enable much more
comprehensive design space explorations than feasible using the traditional
manual approaches.

Future work on IPEC will build on the existing foundations. Specifically, we
will examine high performance off/on-chip task dispatch using the hardware
structures introduced in this work, and extending its capabilities to start a
predefined set of multiple PEs with a single launch command, including some
form of on-device scheduling to maximize utilization of available PEs.

IPEC will be released as open-source software under the GNU LGPL v3
license at https://git.esa.informatik.tu-darmstadt.de/ipec/ipec.
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