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ABSTRACT
Custom instructions extending a base ISA are often used to in-
crease performance. However, only few cores provide open inter-
faces for integrating such ISA Extensions (ISAX). In addition, the de-
gree to which a core’s capabilities are exposed for extension varies
wildly between interfaces. Thus, even when using open-source
cores, the lack of standardized ISAX interfaces typically causes
high engineering effort when implementing or porting ISAXes. We
present SCAIE-V , a highly portable and feature-rich ISAX interface
that supports custom control flow, decoupled execution, multi-cycle-
instructions, andmemory transactions. The cost of the interface itself
scales with the complexity of the ISAXes actually used.
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1 INTRODUCTION
With the emergence of the free and open-source RISC-V ISA, hard-
ware engineers can now pick from an ever-growing list of compati-
ble open-source and commercial processor cores [6, 10]. Depending
on the project, it becomes quite practical to switch back and forth
between cores [11, 16], to satisfy on evolving requirements. This
becomes more difficult though, when the general-purpose RISC-V
ISA has been extended with custom instructions (here called ISAX)
to achieve specific design goals (e.g., performance, energy etc.).

ISAXes hinder portability in two dimensions. First, custom in-
structions tailored for a certain application may not be suitable
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for improving other workloads. Second, optimizing an ISAX for a
specific processor microarchitecture often leads to lock-in to that
specific processor core. As a result, classical ISAXes induce a high
engineering effort when being updated, or when being ported be-
tween processor cores.

Prior work has already proposed a number of processor-ISAX
interfaces. Some of these are tailored for a specific domain, such
as vector processing in case of ORCA [18] cores. Others are more
generic. E.g., PicoRV32 [5] also provides the PCPI interface for
instructions implementing non-standard opcodes. However, PCPI
does not support control flow instructions or memory transactions.
CV32E40X [12] also supports offloading non-standard opcode in-
structions via an abstract interface. However, it lacks support for
custom control flow ISAXes. While CV32E40X’s interface is well
suited for multi-cycle accelerators, it does not tailor the resource
usage of the interface for the actual ISAXes’ requirements.

To overcome the drawbacks of the prior mostly static interfaces,
which cannot be flexibly matched to the actual ISAXes’ needs,
we propose SCAIE-V. At the heart of SCAIE-V lies an automatic
hardware generator, which integrates custom instructions via an
adaptive lightweight interface.

We introduce the workflow of SCAIE-V in Figure 1. A designer
provides the hardware implementation underlying a new instruc-
tion, and configures SCAIE-V for the required capabilities. For the
supported processors, SCAIE-V will then automatically update the
core and generate the least-cost interface between the custom logic
and the core.

SCAIE-V’s offers a number of benefits, with the key contribution
being the reduction in effort to implement and port a wide variety of
ISAXes between different cores.

• Scalability: The hardware cost of SCAIE-V scales with the
capabilities required by the ISAXes. Simple instructions carry
only a low overhead.

• Portability: SCAIE-V abstracts the individual core’s microar-
chitecture and hardware description language. It supports
both pipelined and non-pipelined RISC-V processor cores.

• Flexibility: SCAIE-V supports advanced features such as cus-
tom control flow, decoupled execution, custom multi-cycle in-
structions, and custom memory and I/O instructions and op-
tional support for dynamic scheduling.

The following section provides details on the differences between
SCAIE-V and prior work. Section 3 describes the capabilities of our
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module custom_instr(
  input         clk,
  input  [31:0] arg1, arg2,
  output [31:0] res);
  some_func inst(.clk(clk),
   .a(arg1),   // read in cycle 1
   .b(arg2),   // read in cycle 2
   .out(res)); // written in cycle 4
endmodule

SCAIEV intf = …;
SCAIEVInstr instr =
 intf.addInstr(/* encoding */);
instr.addReadRS1(1);
instr.addReadRS2(2);
instr.addWriteRD(4);
intf.generate("VexRiscv");

Custom hardware
(to be integrated)

SCAIE-V 
configuration

custom_instr

X[rs1]

X[rs2]

X[rd]

Generated 
interface to host
core

decode

Figure 1: SCAIE-V flow: SCAIE-V extends a base core (green
area) to provide/accept a custom hardware module’s in-
puts/outputs at the cycles specified in the configuration.

approach. As the proposed interface aims to support multiple cores,
the main characteristics of these cores and challenges are discussed.
In Section 4, we evaluate the efficiency of our concept.

2 RELATEDWORK
As shown in Figure 2, we differentiate between three hardware accel-
erator approaches: 1. dedicated accelerators, 2. custom coprocessor
ISAXes, 3. in-pipeline ISAXes. These differ in their integration and
interfaces. Highly portable dedicated accelerators are often attached
via interfaces such as PCI Express, Memory Mapped IO (MMIO),
or similar. While portable, these may carry latency penalties, have
limited throughput, as well as high area/power costs (PCIe).

Pipeline-integrated or custom on-chip coprocessor-based-ISAXes
avoid off-chip latency and throughput limitations. In the following,
we differentiate between tightly integrated in-pipeline [13], and
coprocessor ISAX approaches [19]. While the prior usually lead to
better resource usage, but cause more design effort, the latter scale
better, but may come with higher area and timing costs. However,
on-chip interfacing between processor cores and tightly integrated
ISA-extensions is not portably standardized, yet.

Chip
CPU Core
FE DE EX M WB

3. In-Pipeline

2. Custom
Coprocessor

1.
Dedicated
Accelerator

Req.

Resp.

e.g. Mem. Mapped IO

Figure 2: Different Implementation approaches: 1. Dedicated
Accelerator, 2. Custom Coprocessor, 3. In-Pipeline. Deep in-
tegration can limit inter-core portability. Off-chip designs
may affect latency, throughput, and hardware cost. SCAIE-
V’s connections are highlighted in green.

Codasip [1] offers a closed-source commercial solution for inte-
grating custom instructions. The user can specify a new instruction
in a Domain Specific Language (DSL) called CodAL, from which the
required tools for an automatic integration of the new instructions
[2] are generated. In contrast to most open source interfaces, their
approach permits support for custom control-flow. The Andes Copi-
lot closed-source ISAX interface is described to have in-pipeline
features and to be compatible with multiple Andes processors [3].
However, we did not find benchmarks, and, due to its closed-source
nature, the interface is not available on non-Andes cores.

Multiple open-source co-processor ISAX interfaces exist. Exam-
ples include the EAI [19] interface designed for the E203 core, the
eXtension Interface [12] of the CV32E40X processor, and the RoCC
[14] interface of the Rocket core. In all cases, the communication
with the main core is based on a request-response mechanism for
offloading the custom instructions, accessing the memory bus, and
writing the results.

Although this concept scales well for more complex multi-cycle
instructions, the co-processor approach is not sufficiently tightly
integrated into a core to also support custom control flows. These
can be quite desirable, as they support, e.g., conditional branches
depending on ISAX-internal state, or advanced features such as zero-
overhead loops. Moreover, with their reliance on request-response
protocols, many coprocessor-based designs are too heavyweight
for combinational instructions, which have proven sufficient for
many practical use-cases.

The PULPissimo platform [15] also provides a solution for in-
tegrating custom instructions. The user can add accelerators via
the MMIO-based Hardware Processing Engine protocol. However,
communicating through this interface requires additional clock
cycles and is expensive especially for simple instructions.

At first glance, it would seem promising to employ existing inter-
faces designed for verification, tracing, debugging and short-latency
attack responses [7–9, 17] to attach ISAXes. However, aside from
the debugging interface, these cannot modify registers, and thus
are not suitable for ISAXes. While the debugging interfaces could
modify registers, their out-of-core nature would induce frequent
pipeline stalls, resulting in high performance overheads.

Some cores that we currently support in SCAIE-V already bring
their own ISAX interface. However, for the ORCA core, this inter-
face is mainly designed for vector processing applications [4]. That
of the PicoRV32 [5] core allows neither control flow instructions
nor memory accesses. SCAIE-V overcomes all of these limitations
and, as we demonstrate, is portable across multiple cores.

With its tighter integration into the logic of themain core, SCAIE-
V supports not only rapid transfers to the register file, memory, and
I/O devices, but also allows custom instructions to affect the control
flow. Moreover, when possible, it saves hardware costs by re-using
existing control- and datapaths of the main pipeline. Finally, SCAIE-
V is portable to cores with significantly different microarchitectures
(e.g., pipelined vs. FSM-based).

3 SCAIE-V FEATURES
3.1 Portability to Different RISC-V Cores
To demonstrate portability, we implemented SCAIE-V on four very
different processor microarchitectures. Table 1 gives an overview
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of the configurations we chose for the four cores. The pipelined
ones also require a handling of hazards, ideally by reusing existing
bypassing/forwarding paths. E.g., ORCA has paths from the write-
back to the decode stage, as well as from the output of the ALU to
the input of the execution stage. SCAIE-V abstracts these variations
behind its external ISAX interface.

Table 1: Overview of core characteristics.

Core Pipeline
Stages

Stage handling
taken branches

Memory
op stage

Memory
interface

Design
Language

Piccolo 3 1 2 AXI Bluespec
VexRiscv 4 3 3 AHB SpinalHDL
ORCA 5 5 4 AXI VHDL
PicoRV
32

FSM, not
pipelined

1st FSM state; addr.
given by prev. instr.

3rd
FSM state

native
interface Verilog

3.2 Simple ISAX-Core Interface
To enable a wide range of applications, SCAIE-V offers multiple
register and memory operations, as shown in Table 2.

The interface has mandatory, as well as optional signals, to adapt
to the requirements of the actual ISAX. For example, to support
memory accesses, the interface requires a data signal, an optional
valid flag, and an address bus. If the valid signal is not used, the
memory transfers always occur when the corresponding instruc-
tion reaches the pipeline stage responsible for memory operations
(Table 1). The memory accesses either reuse the existing address
generation logic in the core (usually X[rs1] plus offset), or optionally
instantiate a dedicated address bus to allow the ISAXes to perform
their own address computations (e.g., skip/stride accesses).

Similar to memory accesses, the interface for register writes can
also have optional valid and address (register number) signals. The
valid signal can be employed to easily realize predicated updates.
This is helpful when the custom instruction does not always want
to write its result, but rather commits its output depending on an
ISAX-internal condition.

For ISAXes holding internal state, SCAIE-V can additionally pro-
vide control signals from the core, such as forwarding the stall and
flush signals of the main pipeline. These are essential for the correct

Table 2: Operations supported by SCAIE-V.

Operation Semantics

RdRS1/2 Reads from the register file.

WrRD* Writes to register file at the regno provided
in the instruction field, or by the user.

RdPC Reads the current program counter

WrPC* Updates the program counter.

Rd/WrMem* Starts memory accesses. Reuses core’s address computation logic,
or optionally employs a custom address bus.

RdInstr Read current instruction word.

RdIValid_X Status bit informing the custom logic that a certain
pipeline stage currently contains an instruction of type X.

*Optionally predicated by a valid bit.

synchronization between the pipeline and the ISAX hardware. Fur-
thermore, they prevent invalid updates of the internal state in case
of flushed ISAXes. SCAIE-V also allows an ISAX to stall the pipeline,
e.g., when transferring data to/from an ISAX-local memory or I/O
interface.

3.3 From Simple Combinational to Complex
Multi-Cycle and Decoupled Instructions

Our proposed interface targets a wide range of applications, from
simple combinational custom instructions, to complex, multi-cycle
accelerators. When integrating solely combinational instructions,
only the decoder and the data hazard unit of the core are extended.
However, the control of multi-cycle functional units is more com-
plex. One possible approach would be stalling the main pipeline
until the functional unit commits its results to the register file.
Although SCAIE-V can be configured to use this approach, this
strategy is inefficient, as an ISAX could halt the main pipeline for
many cycles. Instead, SCAIE-V can be configured to allow ISAXes
to be decoupled and run in parallel to the main pipeline, while the
other stages continue their normal execution. Although this has a
higher hardware cost, it can achieve better performance. Following
the basic SCAIE-V paradigm, the cost for this more powerful func-
tionality is only paid if the feature is actively used and implemented
by our generator. Note that SCAIE-V permits a highly efficient im-
plementation of such decoupled ISAXes. E.g., the area required for
the decoupled zero-overhead loop mechanism shown in Figure 5(c)
gets lost in the “optimization noise” of the FPGA mapping flow.

Enabling decoupled instructions implies a more complex control
unit for handling data hazards. To track Read AfterWrite (RAW) and
Write After Write (WAW) hazards, we implement a “not-ready” bit
for destination registers. Whenever a new multi-cycle instruction
is issued, this bit is set for the corresponding destination register.
The core’s pipeline is stalled whenever it tries to execute an in-
struction that wants to read or write to an address for which the
“not-ready” bit is set. This bit is cleared when the corresponding
result is committed, or the ISAX finishes.

Decoupled instructions also require special care when jumps or
branches are executed, as the ISAXes’ underlying hardware must
be synchronized with the main pipeline in that case. To this end,
SCAIE-V forwards the flush control signal from the main pipeline to
the hardware of the custom instruction. But simply connecting the
core’s flush signal to the ISAXes’ hardware would lead to erroneous
behaviour. When a branch is taken, the prior stages of the core are
always flushed. But the hardware underlying the decoupled ISAX
should only be flushed if that ISAX was issued after the branch
instruction. To solve this problem, SCAIE-V shifts an “active” status
for each decoupled ISAX along the pipeline. If a flush occurs for a
pipeline stage where such an “active” bit is set, the corresponding
ISAX hardware is aborted (will not commit any results).

If decoupled instructions are used (and only then!), the SCAIE-V
generator automatically creates hardware logic for two synchroniza-
tion instructions. disaxfence stalls the pipeline until all decoupled
ISAXes have completed, disaxkill terminates all currently exe-
cuting ISAXes. It is up to the hardware block realizing the ISAX
to react to the kill signal appropriately, e.g., completing the cur-
rent bus-cycle before resetting an internal control FSM back to idle.
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These synchronization capabilities are required for constructs such
as a zero-overhead loop mechanism, which runs in parallel to the
main pipeline and is no longer valid when the execution leaves the
scope of the current function (e.g., by an early return), thus must
be explicitly terminated.

To simplify the logic for the control mechanisms discussed above,
decoupled multi-cycle instructions are restricted to be issued in
a single, specific pipeline stage. This also avoids the case where
such an ISAX would be launched in a stage after than where the
corresponding disaxkill functionality is realized, which would
erroneously allow the decoupled ISAX to continue executing even
after its intended demise.

A similar problem arises when handling data hazards. If an in-
struction starts and sets its “not-ready” bit in a later stage, the
control logic must ensure that this does not cause any data haz-
ards for instructions earlier in the pipeline. By always starting
multi-cycle instructions in a fixed pipeline stage, namely as soon
as register operands, or bypassed/forwarded values are available,
the data hazard logic can be simplified.

3.4 Meta-Data Support and Efficient Intra-ISAX
Scheduling

The supported cores have very different microarchitectures and
offer various configurations. SCAIE-V supports multiple operations,
as presented in Section 3.2, and each of them may occur in differ-
ent clock cycles, depending on the underlying core. One possible
approach for solving this issue would be by implementing a hand-
shake for each interface signal. However, this would add hardware
and delay overhead. An alternative would be restricting the inter-
face just to a certain pipeline stage, for example the execution stage.
In this scenario, the custom instruction would receive all operands,
and would be allowed to request memory accesses or jumps, only
in this stage. Clearly, this would be a significant limitation for the
custom extensions. For example, in case of zero-overhead (hard-
ware) loops or jumps, both of which are operations that could/must
update the program counter in earlier stages, such a constraint
would add unnecessary flushes and cause a run-time penalty.

This is where the second key component of SCAIE-V comes into
play, beyond the interface/integration generator described so far.
SCAIE-V can also provide core-dependent meta-data describing
the intra-instruction timing (e.g., pipelines stages), which specifies
when the core’s state may be read or written. Respectively, it in-
dicates in which clock cycles the custom instruction is allowed to
conduct one of the operations shown in Table 2. For example, in
case of the ORCA core, the functional unit can read the instruction
fields already in the second pipeline stage, request memory access
in the fourth stage, and update the register file in the fifth state.
Program counter updates can be performed in any of these stages,
with SCAIE-V auto-generating the required flush-handling logic.

This meta-data is essential when generating the ISAX hardware
and internally scheduling its operations according to Table 2. It
can be interpreted both by human designers as well as automatic
High Level Synthesis (HLS) systems for creating hardware blocks
optimally scheduled for each target processor.

For operations reading the core’s state, SCAIE-V specifies not
only the first cycle in which they may be scheduled, but also the

S1

Decoupled instr.
updating the PC

S2 S3 ...

F3 F4 F5

RdInstrWrPC_multicycle

Instr. reading
instruction fields

F6

RdInstr

Instr. reading
instruction fields

S_WB

F7 F8 F9

Decoupled instr.
updating the reg. file

WrRD_multicycle

Pipeline of the main core

a) b) c)

F2F1
01S0

Figure 3: Shared and exclusive interfaces, generated depend-
ing on operation type and pipeline stage.

last cycle when a state can be requested before it gets overwritten.
This, too, is helpful to save hardware resources via an optimized
schedule. For example, if an ISAX requires a field of the original
instruction word in a later stage, SCAIE-V will provide this data
exactly to that stage. In most cores, the relevant instruction fields
are shifted to these later stages anyways, which enables the re-use
of this part of the core’s pipeline by SCAIE-V. This hardware re-use
is currently supported for register file operands, instruction fields,
and the program counter.

In order to automatically generate the ISAX-specific integrations,
SCAIE-Vmust be informed not only which logical operations (Table
2) are required by each custom instruction, but also in which cycles
they are to be performed. The generator will then create separate
physical interfaces for the operations at the desired pipeline stages.
Only a single physical interface will be generated at each stage,
even ifmultiple instructions require the data in the same clock cycle
(e.g., F3,F4,F5 in Figure 3.b). If other instructions need the same
information in later stages (e.g., F6), the corresponding physical
interface logic will also be generated in those stages (but again, at
most once-per-stage). This rule does not apply to interfaces that
serve multi-cycle decoupled instructions. When such instructions
need to write their result to the register file, or access the memory
bus, a dedicated interface is generated for each of the decoupled
ISAXes (e.g., F7,F8,F9 in Figure 3.c). Multiple instructions running in
parallel could return their results in the same clock cycle. In this case,
the results are buffered and then committed sequentially in program-
order to the register file. In this case, the pipeline is stalled until all
results are written. For all decoupled instructions that may modify
the program counter, only a single interface is created (e.g., F1,F2 in
Figure 3.a). If multiple such instructions want to update the program
counter at the same time, a priority mechanism (arbiter) is required,
which must be defined in the ISAX hardware blocks. Note that
such a priority mechanism is not required when multiple decoupled
instructions want to commit their result in the same clock cycle to
the register file. The decoupled instructions will have been issued in
the first place only if they write to different registers. Otherwise, the
Data Hazard (DH) handling logic generated by SCAIE-Vwould have
prevented them to execute in parallel, due to detecting possible
WAW hazards.

4 EVALUATION
4.1 Implemented Custom Instructions
In order to evaluate the SCAIE-V interface, the following custom
instructions were implemented and tested on all supported cores:



SCAIE-V: An Open-Source SCAlable Interface for ISA Extensions for RISC-V Processors DAC ’22, July 10–14, 2022, San Francisco, CA, USA

• hardware (zero-overhead) loop: This custom instruction
requires the program counter and two operands from the reg-
ister file. These set the start and end addresses of a software
loop, as well as the number of iterations. The information
is stored in ISAX-internal registers, and the hardware block
controlling the loop is decoupled to act in parallel to the
main pipeline. As long as the loop is still active, it updates
the program counter with the loop’s start address each time
the fetcher reaches the end address of the loop.

• auto-increment load/store: This functional unit encom-
passes three instructions: load, store and setup. Its main role
is to generate a regular access pattern for memory transfers.
One instruction sets-up the start address and the increment
(stride) value. This data is stored in ISAX-internal registers.
Two more instructions load or store data from the memory
using the address given in the internal register, which is
incremented after each transfer.

• sincos: These are two separate ISAXes, realized by the same
hardware block. Depending on an instruction bit, this unit
computes either the sine or the cosine of the input operand. It
implements the well-known Cordic algorithm, and executes
as a decoupled multi-cycle instruction.

• SBOX: As part of the Advanced Encryption Standard (AES)
algorithm, this instruction performs the SBOX computation.

• indirect jump: This instruction updates the program counter
based on an address read from the memory location given
by rs1 plus offset.

These ISAXeswere selected in order to covermost of the SCAIE-V
capabilities, and evaluate their impact on the core.

• hardware loop: a decoupled control-flow instruction that
runs in parallel to the main pipeline and updates the program
counter.

• auto-increment load/store: custom memory accesses.
• sincos: decoupled multi-cycle instructions that run in paral-
lel to the main core, and commit into the register file.

• SBOX: a simple combinational instruction.
• indirect jump: a control-flow jump executed when the in-
struction is in a later pipeline stage.

4.2 Integration of Custom Instructions
The custom instructions were integrated with SCAIE-V in all four
different cores. However, for brevity, only the integration flow for
the ORCA core with its five IF-D1-D2-M&EX-WB stages is discussed
here in closer detail. The instructions described in Section 4.1 re-
quire different signals in different pipeline stages, which is shown in
Figure 4. The user would inform SCAIE-V which of the operations
listed in Table 2 are required for each custom instruction and in
which stage. Furthermore, the encoding of the new instructions
must be provided. Our tool will then automatically update the core,
and generate the customized SCAIE-V interface for the selected
ISAXes. This means that the logic of the core is extended to recog-
nise the new instructions, flush the pipeline in case of a jump, set the
memory address in case of an auto-increment load/store, or update
the register file when required. Moreover, the core-specific mech-
anism for handling data hazards is extended. Logic is also added
to support the sincos and hardware loop decoupled instructions,

as described in Section 3.3. For instructions with internal state, the
flush and stall control signals of the main pipeline are forwarded to
the custom logic. These are just some of the adaptations which are
performed automatically by SCAIE-V, simplifying the integration
considerably over the traditional manual approach.
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WrRD_multicycle 
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Figure 4: Interfaces required for the examined ISAXes. The
width of the ISAX boxes indicates the affected stages.

4.3 Hardware overhead of the SCAIE-V
Interface

For evaluating the impact of the SCAIE-V interface, we implemented
the resulting designs on a Xilinx Zynq 7020 FPGA using an out-of-
context flow. All instructions presented in Section 4.1 were imple-
mented on the VexRiscv, Piccolo, PicoRV32 and ORCA cores. Figure
5(a) shows the resource usage and Figure 5(b) the clock frequen-
cies for the core extended with SCAIE-V, but not considering the
hardware underlying the ISAXes themselves. For these first two
graphs, we consider just two scenarios: The original unaugmented
core as a baseline, and one where all of the ISAXes discussed above
were added to each of the four cores. The latter scenario is broken
down into two subcases: One including automatically generated
dynamic Data Hazard (DH) handling capabilities for the ISAX, and
one without that relies on correct latency-aware static scheduling
of instructions by the programmer or compiler.

As an example, for the VexRiscv core, adding all ISAXes without
a DH unit causes SCAIE-V to have an area overhead of 11% of LUTs
over the baseline, while adding the DH unit increases this to 26%.
For the larger Piccolo core, these overheads drop to 5% and 7%,
respectively. The clock frequency of VexRiscv drops by 7% when
using SCAIE-V with dynamic hazard handling, and by just 2% for
the static approach.

For space reasons, we can individually examine SCAIE-V over-
heads for each ISAX just for a single core. Figure 5(c) shows the area
requirements for the SCAIE-V interface (again: not the underlying
ISAX hardware itself) on a per-ISAX basis for VexRiscv with static
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scheduling. As can be seen, SCAIE-V is lightweight, even a decou-
pled multi-cycle instruction such as sincos requires less than 5%
of extra LUTs to integrate in the core. Also, the generator is able to
reuse hardware effectively, as the hardware overhead of SCAIE-V
configured for all ISAXes (rightmost columns) is less than the sum
of the overheads of the ISAX-individual SCAIE-V interfaces.

PicoRV32 already provides an interface (PCPI) for integrating
custom instructions. As PCPI is more limited than SCAIE-V, we
could not compare the resource usage overhead for control flow
or memory instructions. However, for the SBOX instruction, our
approach requires around 35 fewer FFs compared to a PCPI-based
implementation. Taking into consideration that the unmodified Pi-
coRV32 has just under 600 FFs, these are considerable savings. Also,
when using the PCPI-integrated SBOX ISAX, the core’s 𝑓max drops
from 217 MHz down to 204 MHz, while the SCAIE-V integrated
SBOX does not slow down the core at all.

5 CONCLUSION
In this work, we demonstrated the capabilities of SCAIE-V, a light-
weight interface for adding custom instructions to RISC-V cores,
which is portable across very different microarchitectures. The hard-
ware integration layer is automatically generated and tailored to
the needs of the actual ISAXes employed, aiming for area-efficient
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Figure 5: Evaluation results on Xilinx Zynq 7020 FPGA

heavily reused hardware resources. The approach is highly flex-
ible, supporting both dynamic as well as static hazard handling
approaches.

In future work, we will examine extending SCAIE-V to more
complex processors, including dual-issue and out-of-order micro
architectures.

SCAIE-V is an open source tool. The source code is available at:
https://github.com/esa-tu-darmstadt/SCAIE-V.
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