

The Scale4Edge RISC-V Ecosystem
Wolfgang Ecker

Infineon Technologies AG
wolfgang.ecker@infineon.com

Milos Krstic
IHP –Leibniz Institut für innovative

Mikroelektronik & University Potsdam
krstic@ihp-microelectronics.de

Andreas Mauderer
Robert Bosch GmbH

andreas.mauderer@de.bosch.com

Eyck Jentzsch
MINRES Technologies GmbH

eyck@minres.com

Mihaela Damian, Julian Oppermann,
Andreas Koch

Technical University of Darmstadt
firstname.lastname@esa.informatik.tu-

darmstadt.de

Peer Adelt, Wolfgang Mueller
Paderborn University

firstname.lastname@hni.upb.de

Vladimir Herdt, Rolf Drechsler
University of Bremen / DFKI GmbH
firstname.lastname@uni-bremen.de

Rafael Stahl, Karsten Emrich, Daniel
Mueller-Gritschneder

Technical University of Munich
firstname.lastname@tum.de

Jan Schlamelcher, Kim Grüttner
OFFIS - Institut für Informatik
firstname.lastname@offis.de

Jörg Bormann
Siemens EDA

joerg.bormann@siemens.com

Wolfgang Kunz
Technische Universität Kaiserslautern

wolfgang.kunz@eit.uni-kl.de

Reinhold Heckmann
AbsInt Angewandte Informatik GmbH

heckmann@absint.com

Gerhard Angst, Ralf Wimmer
Concept Engineering GmbH

firstname.lastname@concept.de

Bernd Becker, Philipp Scholl
Albert-Ludwigs-Universität Freiburg
firstname.lastname@informatik.uni-

freiburg.de

Paul Palomero Bernardo, Oliver
Bringmann

Universität Tübingen
firstname.lastname@uni-tuebingen.de

Johannes Partzsch, Christian Mayr
Technische Universität Dresden

firstname.lastname@tu-dresden.de

Abstract—This paper introduces the project Scale4Edge. The
project is focused on enabling an effective RISC-V ecosystem for
optimization of edge applications. We describe the basic
components of this ecosystem and introduce the envisioned
demonstrators, which will be used in their evaluation.

Keywords—RISC-V, edge applications, ecosystem

I. INTRODUCTION

Internet of Things (IoT) applications already became the
reality around us over the last several years. In many
applications, including automotive, industry automation, and
space, IoT solutions are needed and applied. IoT devices rely
frequently on edge processing, which needs to perform
efficiently, with respect to energy but also from the cost point
of view. Moreover, for many applications, the aspects of
safety, security, and reliability are equally important as
performance or energy consumption.

For application-specific processing in IoT devices it is
advisable to focus on specifically optimized processing
architectures, which could provide up to 10 times better
performance for such demanding applications. RISC-V has
been introduced some years ago as a novel scalable and
extendible Instruction Set Architecture (ISA), which could
provide competitive solutions for special edge processors.

Nevertheless, to enable effective use of RISC-V
architectures for edge applications, the challenge is to provide
a complete tool/IP ecosystem, which enables the
implementation, verification, and test of highly scalable
application-specific edge components. The Scale4Edge
project addresses these needs and proposes an integrated
RISC-V ecosystem with HW and SW support for safe, secure,
and reliable applications.

The main objective of the Scale4Edge project is the
development of an ecosystem, based on a platform concept, to
supply efficient and cost-effective application specific edge
devices and value-added services addressing different market
segments. This will be achieved through the automatic and
very fine-grained adaptation of highly generic components to
the application. The Scale4Edge ecosystem covers highly
scalable components and tools and extends them for

application-specific edge components at three levels: (1) CPU
instruction level defined by the RISC-V Instruction Set
Architecture (ISA), (2) software level defined by the latest C
programming language standard C11 with compilers and
libraries open to complementary standards like MISRA-C,
and (3) operating system and firmware level through system
services, configuration interfaces, and drivers.

The ecosystem platform is developed as customizable to
the individual application, through the RISC-V ISA, which
may define optional custom instructions, e.g., to support non-
interruptible instructions, for individual applications. As such,
Scale4Edge is based on a broadly scalable hardware
addressing different pipeline architectures, multi-core
architectures, co-processors and hardware accelerators, like
for AI and DSP applications. In terms of hardware scalability,
additions for non-functional properties such as energy
efficiency, fault tolerance, robustness, and safety and security
are important contributions of the Scale4Edge ecosystem.
Various measures such as hardening of registers by error
correction bits, scaling of clock frequency or protection of
memory areas by an MPU are examples. Targeted main
applications of Scale4Edge are classical edge components at
the interface of the cloud or fog, respectively. Moreover, more
specific components, such as sensor interfaces for
automobiles and high-reliable (HighRel) electronics for
reliability critical applications are considered as well.

The remainder of this paper continues with an introduction
to the Scale4Edge ecosystem, its components, and their
interaction before applications and demonstrators are
presented and a final summary and conclusion is given.

II. THE ECOSYSTEM

The Scale4Edge ecosystem is composed of a large set of
interacting tools to customize, design, verify, and produce
application specific RISC-V based microprocessors. Figure 1
gives an overview of the different components, their
interaction and how they are aligned to the different phases of
the design and manufacturing process, which are introduced
in more details in the following sections.

The ISA description and specification language CoreDSL
is the key to define custom ISA extensions and variants of the

Figure 1: Scale4Edge ecosystem overview.

RISC-V core, which are both generated. Other analysis and
verification tools are customizable by the CoreDSL. Tools of
the ecosystem cover relevant parts of the complete
Hardware/Software design process over hardware/software
verification and debugging until final tapeout and chip test.
For early software analysis and validation, the ecosystem is
based on virtual prototypes, which are applied for ISA
specification, simulation, and software development. This
smoothly complements and extends the industrial synthesis
and Place & Route design flow by commercial EDA tools.

A. ISA/Core Specification: CoreDSL

To ensure a consistent and comprehensive methodology

in RISC-V ISA development, it is important to use a unified

description of the supported instructions and their behavior.

This ensures that all tools, including generators for RTL IP,

virtual platforms, formal verification tools or compilers, use

the same ISA specification.

For this purpose, an existing but rudimentary description
language was further developed. This language, called

CoreDSL (Version 2) permits the modular description of the

architectural state and the instructions. In order to keep the

entrance barrier low, a C syntax was selected for the

description of the state and the instructions. In addition, some

extensions, like arbitrary sized data types and bit-select

operations, are used. To describe concurrent operations, a

new keyword 'spawn' has been added. Other existing

keywords like 'extern' or 'register' got explicit meaning.

A CoreDSL description consists of at least two sections:

the definition of the architectural state and the definition of
the instructions. Figure 2 shows a simple example of a

processor core with 16-bit registers and a 64 kB memory

address space. CoreDSL V2 does not yet support

microarchitecture element descriptions. This will be the focus

of future work and extensions of the language. Use cases for

this would be, e.g., the generation of performance models and

the early estimation of the influence of custom instructions

on the overall performance of a given software. The complete

specification of CoreDSL, as well as a reference

1 https://github.com/Minres/CoreDSL/wiki/CoreDSL-2-

programmer's-manual

implementation of the grammar based on XText is available

as Open Source1. This allows easy usage for new use cases.

In the Scale4Edge project, different transformations were and

are implemented, e.g., to synthesize custom instructions for
the MINRES pipeline, to generate the corresponding

instruction set simulator, as well as compiler or to generate

the properties for the formal specification.

Figure 2: CoreDSL description example.

B. High-Level Synthesis

Implementing custom instructions requires expertise in
hardware design as well as intricate knowledge of the host
core. In the Scale4Edge ecosystem, we aim to make such ISA
extensions accessible to non-experts, by providing tools to
automate most of the process using high-level synthesis
(HLS) techniques. Specifically, we synthesize a custom
hardware architecture from the descriptions of instruction
behavior in the CoreDSL source file and use the supplied
metadata to automatically integrate the generated module into
the host core’s pipeline.

In order to support instructions of different complexities,
ranging from simple combinational operations with two
register operands, to decoupled functional units, we are
designing a lean, specialized HLS engine. Our primary design
goal is the efficient use of chip area, a key requirement in the
edge computing setting. To achieve that goal, we employ
provably optimal static pipelining combined with resource-
sharing whenever possible. The interface between the
synthesized extension module and the host core is

automatically adapted, and hence supports exactly the
functionality actually required by the current set of
extensions. Lastly, the HLS algorithms will present multiple
trade-off solutions to the designer, to let them choose the best
one for their application.

Figure 3: High-level synthesis flow for ISA extensions.

The HLS flow is outlined in Figure 3. The approach is
based on CIRCT2, an LLVM Incubator Project providing a
toolkit for implementing hardware design tools built on top
of the popular MLIR compiler framework.

C. Software Analysis and Synthesis

1) Static Software Analysis

Static software analysis means analyzing the software
without actually executing it. This allows for obtaining useful
information about the software that is valid for all executions
with all possible inputs. In general, such information cannot
be obtained by testing since it is usually impossible to prove
that all inputs have been covered. AbsInt offers three static
analysis tools for inclusion into the Scale4Edge ecosystem.

Astrée analyzes C source code with the goal to find
possible runtime errors or proving their absence. It is
therefore largely independent from the target architecture
except when very target-specific software should be
analyzed. Scale4Edge develops methods for improving the
analyzability of such software in Astrée.

StackAnalyzer analyzes binary executables for
determining their worst-case stack usage. This information is
important to prove the impossibility of stack overflow, which
could cause the system to crash or behave erroneously. Since
StackAnalyzer operates on binary executables, it has to be
adapted to each new target architecture such as RISC-V. This
requires implementing a decoder for reading RISC-V
executables and a value analysis for determining the possible
values of memory cells and registers (including the stack
pointer) at every program point. This value information is
also used for finding conditions that are always true or always
false, and for finding the possible targets of computed calls
and branches.

aiT analyzes binary executables for determining their
worst-case execution time. This information is important for
proving that real-time tasks are completed within their
specified time frame. Operating on binary executables, aiT
has to be adapted to the RISC-V architecture. Apart from
decoder and value analyzer as described above, this involves
the implementation of a cache and pipeline analyzer that
records all possible cache and pipeline states. These states
heavily influence the timing behavior; for instance, cache
misses take much more time than cache hits. This part of the
analyzer needs exact knowledge about the timing behavior of
the RISC-V chip used in the project.

2 https://circt.llvm.org

2) Compiler Synthesis and SDK Generation

To exploit the powerful dynamic nature of RISC-V
Instruction Set Architecture Extensions (ISAX), equally
dynamic tooling support is needed, e.g., by corresponding
compiler frameworks. Based on CoreDSL V2, the project
will implement a compiler generator to produce this tooling
based on such CoreDSL definitions.

Work has already gone into implementing RISC-V
support in existing compilers, most importantly in the form
of GCC- and Clang/LLVM based RISC-V toolchains. These
compilers, or, more specifically, compiler frameworks,
implement all modern features of the C/C++ language to
produce highly efficient and optimized code, making the de-
facto-standard in state-of-the-art software development. This
leads to well supported integration in existing applications
and platforms. Especially Clang/LLVM can be considered a
popular choice for these kinds of tasks due to its extensible
nature and its product-oriented software license.

Since the project aims to automate the production of such
compiler extensions based on a CoreDSL ISAX definition,
the project plans to implement its tooling using the more
flexible Clang/LLVM instead. LLVM already implements
many parts of the ISA using a custom format called TableGen
instead of hand-crafted C/C++ code. The project plans to
provide tooling support for translating the relevant aspects of
a CoreDSL ISAX definition into the TableGen format and
generate the actual C/C++ code for implementing it using the
existing Clang/LLVM tools (see Figure 4).

Figure 4: C/C++ Compiler generation based on CoreDSL.

Such a combination of dynamic tooling based on existing

and state-of-the-art compiler technology allows us to ease the

production of experimental compilers for researching the

performance of competing CoreDSL definitions regarding

optimization, and to provide sufficiently mature tools for

implementing safety critical applications that guarantee the

correct translation of at least a subset of the C programming
language.

D. Verification and Simulation

1) Virtual Prototype Simulation

VPs (Virtual Prototypes) serve as platforms for concept
engineering (Concept VP), early SW development (SW-Dev
VP), and functional reference models for the HW design flow
(Simulation and Scoreboard VP). To facilitate and speed-up
the VP creation process, we are developing the VP-VIBES
framework 3 [1] that provides a set of common building
blocks for VPs. An important part is the CoreDSL support
that enables to generate an ISS based on the CoreDSL
description to boost prototyping activities with custom
instruction sets. This allows to build advanced VPs for
simulation of RISC-V based systems very efficiently [1].

For verification purposes we developed two VP-driven
approaches for RISC-V SW and RTL processor verification,

3 https://github.com/VP-Vibes

respectively. The first approach integrates concolic testing
with a VP-based simulation environment [2]. Concolic
testing essentially works by tracking symbolic execution
constraints alongside the SW execution in order to generate
new test cases that successively maximize the SW path
coverage. The approach integrates seamlessly with the TLM-
2.0 bus communication standard and is tailored for the RISC-
V ISA. The basic concolic testing approach was extended to
detect spatial memory safety violations and found several
new bugs in the RIOT OS. In addition, the detection of stack
overflows was investigated. The second approach integrates
a RISC-V instruction stream generator in a co-simulation
setting with an RTL processor under test and an ISS reference
model [3]. The tight co-simulation and custom randomized
generator enable a very efficient and comprehensive testing
process. We found several intricate bugs in the Scale4Edge
ecosystem core using the approach.

2) Formal Verification for Functional Correctness and

Security

The Scale4Edge ecosystem is an example for the
increasing role of customizable and extendible HW and SW
infrastructures involving components from numerous
providers as well as from open-source domains. This calls for
advanced and highly effective verification methods.
Scale4Edge meets the wide-spread concerns that subtle
details of the RTL implementation, as they result from
seemingly innocuous design decisions, can lead to severe
security vulnerabilities in HW platforms. Especially, with the
trend towards widely distributed design activities in the
context of open-source initiatives, not only design bugs but
also the risk of “backdoors” or “trojans” must be given
appropriate attention [4]. To this end, in addition to
conventional verification methods, the Scale4Edge safety and
security assurance rests on two new pillars.

Figure 5: UPEC on unrolled SoC model.

Siemens EDA automates its formal GapFree verification
approach for processor cores4, which guarantees for a given
ISA specification the complete coverage of all relevant
processor behaviors. Such functional verification of the core
is powerful enough to even detect trojans despite their low
activation probability. It is complementary with the following
second pillar of S4E HW security. The ecosystem integrates
“Unique Program Execution Checking (UPEC)”, a new
formal verification technique was jointly researched. UPEC
is the first tool of its kind. Security violations are detected by
comparing two instances of the same SoC running any but the
same program. Only the secret information may vary between
the two instances. UPEC is based on checking certain
equivalences and timing conditions between selected state
variables on a bounded model (Figure 5). This allows for
detecting security-critical design bugs in the entire SoC as
well as side channels and backdoors. A commercialization of

4 www.onespin.com/solutions/risc-v

these contributions to Scale4Edge security assurance is
planned. A first prototype of UPEC demonstrates its potential
[5].

3) Fault Coverage and Fault Simulation

The Scale4Edge project also applies chip tests by the
execution of compiled C programs. To increase their fault
coverage, compiled C programs are analyzed and simulated
on a QEMU based VP, which has been extended for RISC-V
fault coverage analysis and fault simulation [6]. Realistic
conclusions with respect to their coverage at RTL can be
drawn as we can identify common structures in the VP and
the corresponding RTL model like the executed instruction,
the GPRs, and the CSRs, and trace them to gate level and
layout. As the VP execution is based on principles of Just-in-
Time compilation the speed heavily depends on the structure
of the executed software. In our applications, the execution
speed typically ranges from 0.5 to 50 MIPS x n where n
stands for the number of cores of the simulation host. Such
execution speeds allow to extend the analysis beyond single
stuck-at-fault assumptions to a restricted multi stuck-at fault
analysis. Moreover, it also allows a restricted transient fault
analysis of fault tolerant architectures as that also multiplies
the number of required fault injections and simulation runs,
i.e., mutations, under SEU (Single Event Upset) assumptions.

Figure 6 gives an overview of our scalable framework.
The ISA module configuration customizes the software
generator, the compiler as well as the fault coverage analysis
and injection. The framework comes with a library with
RISC-V test suites like the RISC-V architectural test
framework and the RISC-V unit tests, and scalable generators
like Torture and Csmith. After a first analysis, the set of
programs is reconfigured to finally arrive at a minimum set
of programs with maximum coverage.

Figure 6: Scalable framework for fault coverage and simulation.

4) SBST Generation

The adaptability of the Scale4Edge Ecosystem to a broad
range of constraints w. r. t. efficiency, security, safety, and

computational power requires that also the test process can be

scaled accordingly. We target a test strategy to find

manufacturing defects during production, and moreover, to

detect degradation in the field. An essential part will be

Software-Based Self-Tests (SBST). We developed an

approach for the automatic creation of SBST programs for
RISC-V architectures via SAT-based test pattern generation.

Not only stuck-at-faults, but also cell-aware fault models are

supported. The SBST programs can be run after production

to detect manufacturing defects and, during idle times,

degradation in the field.

5) Visualisation and Debugging

The Scale4Edge Ecosystem includes the powerful
visualization and debugging engine StarVision PRO5 that is

adapted to the specific needs of the ecosystem. For instance,

we extend the tool to visualize not only test data and the

propagation of fault effects, but also the test coverage in

different hardware modules to assist the user in identifying

critical hard-to-test parts of a RISC-V system where

testability needs to be improved (see Figure 7). Additionally,

we support the interactive selection of a subset of stuck-at and

cell-aware faults for which tests should be generated.

Figure 7: Visualization of a test pattern for a stuck-at-fault in Dark-

RISC-V. The affected gate and the propagated fault effect are shown

using different colours.

III. APPLICATIONS AND DEMONSTRATORS

The Scale4Edge project addresses three areas for
demonstration: the ecosystem demonstrators, demonstrators
for AI applications, and a HiRel demonstrator.

A. Ecosystem Validation Demonstrator

The Scale4Edge ecosystem is applied to two different
automotive applications to validate the ecosystem. The first
application are sensor signal processing ASICs, where on-
chip processors execute typical DSP algorithms as well as
safety monitoring and communication protocol tasks. The
second application is a siren detection system, where audio
signals are processed by ML algorithms running on an on-
chip processor.

For both applications, demonstrators are built by using the
Scale4Edge ecosystem. Custom extensions beneficial for
each application are identified and specified using the
CoreDSL. Based on this description, hardware
implementations of the custom extensions are automatically
generated and integrated into the ecosystem core. At the same
time, the extendible compiler is automatically extended based
on the CoreDSL description. The existing application
software is then ported to the Scale4Edge ecosystem core. For
the software bring-up, Virtual Platforms are built
incorporating the DBT-RISE processor model. The siren
detection application is also used to build a physical
demonstrator. Here, a MEMS microphone is connected to the
Scale4Edge ecosystem chip and the siren detection NN
software is executed on the integrated ecosystem core.

The ecosystem demonstrator chip is developed in two
version. In a first step, an area-optimized version of a
generated RISC-V IMC core has been integrated into the
PULPissimo 6 platform with 2x32kB SRAM. Synthesis,
physical implementation, and signoff has been conducted
with industrial tools from Cadence and Siemens EDA for

5 https://www.concept.de/StarVision.html

tapeout in May 2021 through Europractice with 22FDX
technology from Global Foundries. Figure 8 shows the chip
layout of the ecosystem demonstrator Version 1. Version 2 of
the ecosystem demonstrator is planned as a fully-fledged chip
for siren detection application with AI accelerator in 2022.

Figure 8: Ecosystem demonstrator Version 1 layout.

B. AI Edge Processing Demonstrators

1) TinyML

The ecosystem includes a complete end-to-end flow, i.e.,
TinyML, that transforms a given machine learning model into
deployable machine code with VP-VIBES support. TinyML
deployment use and extend two frameworks. Firstly, the
TensorFlow Lite for Microcontrollers (TFLM) can be used in
an automated flow using their interpreter-based approach. A
variant of that flow is given with a static code generation
approach that eliminates the overheads of the interpreter.
Secondly, the TVM framework is supported in two variants:
a static code generation approach similar to the TFLM one,
and the TVM Ahead-of-Time (AOT) backend. The latter is
also a code generation approach, but was only recently
developed and not yet matured for productive use. While the
TFLM framework with muriscv_nn support currently
outperforms TVM, the increased flexibility and control of
intermediate steps in TVM allows for more powerful
transformations that may lead to a superior performance. This
includes plans to utilize global data flow transformations to
reduce memory requirements.

2) Parameterizable ML Accelerator

The ecosystem includes the scalable hardware accelerator
UltraTrail for application-specific ultralow-power edge AI
processing [7]. Figure 9 depicts the top-level architecture.
The accelerator uses distributed memories to store the
features (FMEM0-2), parameters (W/BMEM) and local
results (LMEM). Features, parameters, and internal results

Figure 9: Overview of the UltraTrail architecture.

6 https://github.com/pulp-platform/pulpissimo

use a fixed-point representation. An array of multiply and
accumulate (MAC) units calculates the convolutional and
fully-connect layers. A separate output processing unit
(OPU) handles post-processing operations like bias addition,
application of a ReLU activation function, or average
pooling. The architecture of UltraTrail has been
parameterized such that it can be easily fit to various ML
workloads. Memory sizes, word widths, the MAC array
dimension, and supported post-processing operations can be
automatically configured using a hardware/software co-
design process. UltraTrail is integrated into the PULPissimo
platform as a co-processor and will be part of Version 2 of
the ecosystem demonstrator.

3) SpiNNedge Accelerator

The SpiNNedge accelerator module allows to offload
signal processing and recurrent neural network (RNN)
workloads from the RISC-V processor. Windowing, filtering
and frequency transforms (FFT, DCT) are supported, and can
be cascaded to more complex preprocessing stages such as
Mel-Frequency Cepstral Coefficients (MFCC) for audio
processing. Different kinds of RNNs, such as GRU, LSTM or
LMU, are supported. Processing effort in the RNN is
significantly reduced via delta encoding and subsequent
sparsity exploitation. The accelerator follows a loosely-
coupled approach, but still shares its main memory with the
processor. An internal control module orchestrates the
different calculations and enables the accelerator to perform
complex processing layers autonomously. A TVM backend
for the accelerator is planned for simple ML model
deployment and integration with the ML activities in the
Scale4Edge ecosystem.

C. HiRel Demonstrator

High Reliability (HiRel) applications are also one important
application field of the RISC-V ecosystem. The relevant
applications include space, high altitude avionics, nuclear etc.
An additional requirement which needs to be fulfilled for such
applications is related to resilience to soft errors, i.e., Single
Event Effects (SEEs). This requirement is usually addressed
at different abstraction layers, starting from technology and
standard cell level, providing certain protection against SEEs.
Nevertheless, additional efforts are required at the higher
abstraction layers in order to enable optimal trade-off between
performance, energy consumption and reliability. In order to
enable dynamicity and reconfiguration of redundant
resources, the Scale4Edge HiRel platform employs a multi-
processor architecture of RISC-V cores, that could be
dynamically configured in hardware lock-step modes,
enabling core level error detection and correction.
Additionally, further operating modes are available, including
high performance mode, supporting classical multi-
processing, and destress mode, supporting lifetime extension
of the system. In order to reduce the overhead imposed by cell
level hardening, it is frequently required to utilize selective
cell hardening. For this the specific, netlist level flow has been
investigated and enabled, identifying flip-flops which could
generate most critical SEUs (Single Event Upsets) leading to
persistent error or error which propagates to primary outputs.
This flow is based on Answer Set Programming (ASP) and
shows very promising initial results [8].

Figure 10 describes the architecture of the HiRel
demonstrator. The system includes 4 core RISC-V cores,
extended with relevant interfaces, such as SpaceWire, CAN,
MIL-STD-1553, SPI, UART, JTAG, and I2C. The control of

the operating mode is performed by a framework controller
that is at the same time able to operate as lock-step controller
and voter. This system is currently under implementation and
verification, and in the following months the chip fabrication
is planned.

Figure 10: Architecture of HiRel demonstrator.

IV. SUMMARY AND CONCLUSIONS

This paper has introduced the concept, objectives and first

results of the project Scale4Edge. The project targets at

ecosystem development for scalable RISC-V based edge

applications. The proposed ecosystem will be evaluated in

different demonstrators. The Scale4Edge project started in

Mai 2020, and first results have been already obtained and the
demonstrators are under preparation. The following period

will show the completion of the Scale4Edge ecosystem, and

its evaluation by the demonstrators.

V. ACKNOWLEDGEMENTS

The work is supported in part by the German Federal
Ministry of Education and Research (BMBF) within
the project Scale4Edge under contract no. 16ME0127.

VI. REFERENCES

[1] D. Mueller-Gritschneder, et al. „The Extendable Translating
Instruction Set Simulator (ETISS) interlinked with an MDA
Framework for fast RISC Prototyping,“ IEEE RSP, 2017.

[2] S. Tempel, et al., „An Effective Methodology for Integrating
Concolic Testing with SystemC-based Virtual Prototypes,“ DATE,
2021.

[3] V. Herdt, et al. „Efficient Cross-Level Testing for Processor
Verification: A RISC-V Case-Study,“ FDL, 2020.

[4] European Commision: „The impact of Open Source Software and
Hardware on technological independence, competitiveness and
innovation in the EU economy“. Final Study report, 2021.

[5] J. Müller, et al. „A Formal Approach to Confidentiality Verification
in SoCs at the Register Transfer Level“, In 58th IEEE/ACM Design
Automation Conf., 2021.

[6] P. Adelt, et al. „Fast Dynamic Fault Injection for Virtual
Microcontroller Platforms“. In: Proceedings of the IEEE/IFIP VLSI-
SOC, Tallin, Estonia, 2016.

[7] P. Palomero Bernardo, et al. "UltraTrail: A Configurable Ultralow-
power TC-ResNet AI Accelerator for Efficient Keyword Spotting."
IEEE Trans. CAD 39.11 (2020): 4240-4251.

[8] A. Breitenreiter et al. "Reliability Analysis in Less than 200 Lines of
Code." IEEE LASCAS, 2021.

