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Abstract—This paper introduces the project Scale4Edge. The 
project is focused on enabling an effective RISC-V ecosystem for 
optimization of edge applications. We describe the basic 
components of this ecosystem and introduce the envisioned 
demonstrators, which will be used in their evaluation. 
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I. INTRODUCTION 

Internet of Things (IoT) applications already became the 
reality around us over the last several years. In many 
applications, including automotive, industry automation, and 
space, IoT solutions are needed and applied. IoT devices rely 
frequently on edge processing, which needs to perform 
efficiently, with respect to energy but also from the cost point 
of view. Moreover, for many applications, the aspects of 
safety, security, and reliability are equally important as 
performance or energy consumption. 

For application-specific processing in IoT devices it is 
advisable to focus on specifically optimized processing 
architectures, which could provide up to 10 times better 
performance for such demanding applications. RISC-V has 
been introduced some years ago as a novel scalable and 
extendible Instruction Set Architecture (ISA), which could 
provide competitive solutions for special edge processors. 

Nevertheless, to enable effective use of RISC-V 
architectures for edge applications, the challenge is to provide 
a complete tool/IP ecosystem, which enables the 
implementation, verification, and test of highly scalable 
application-specific edge components. The Scale4Edge 
project addresses these needs and proposes an integrated 
RISC-V ecosystem with HW and SW support for safe, secure, 
and reliable applications. 

The main objective of the Scale4Edge project is the 
development of an ecosystem, based on a platform concept, to 
supply efficient and cost-effective application specific edge 
devices and value-added services addressing different market 
segments. This will be achieved through the automatic and 
very fine-grained adaptation of highly generic components to 
the application. The Scale4Edge ecosystem covers highly 
scalable components and tools and extends them for 

application-specific edge components at three levels: (1) CPU 
instruction level defined by the RISC-V Instruction Set 
Architecture (ISA), (2) software level defined by the latest C 
programming language standard C11 with compilers and 
libraries open to complementary standards like MISRA-C, 
and (3) operating system and firmware level through system 
services, configuration interfaces, and drivers.  

The ecosystem platform is developed as customizable to 
the individual application, through the RISC-V ISA, which 
may define optional custom instructions, e.g., to support non-
interruptible instructions, for individual applications. As such, 
Scale4Edge is based on a broadly scalable hardware 
addressing different pipeline architectures, multi-core 
architectures, co-processors and hardware accelerators, like 
for AI and DSP applications. In terms of hardware scalability, 
additions for non-functional properties such as energy 
efficiency, fault tolerance, robustness, and safety and security 
are important contributions of the Scale4Edge ecosystem. 
Various measures such as hardening of registers by error 
correction bits, scaling of clock frequency or protection of 
memory areas by an MPU are examples. Targeted main 
applications of Scale4Edge are classical edge components at 
the interface of the cloud or fog, respectively. Moreover, more 
specific components, such as sensor interfaces for 
automobiles and high-reliable (HighRel) electronics for 
reliability critical applications are considered as well.  

The remainder of this paper continues with an introduction 
to the Scale4Edge ecosystem, its components, and their 
interaction before applications and demonstrators are 
presented and a final summary and conclusion is given. 

II. THE ECOSYSTEM 

The Scale4Edge ecosystem is composed of a large set of 
interacting tools to customize, design, verify, and produce 
application specific RISC-V based microprocessors. Figure 1 
gives an overview of the different components, their 
interaction and how they are aligned to the different phases of 
the design and manufacturing process, which are introduced 
in more details in the following sections. 

The ISA description and specification language CoreDSL 
is the key to define custom ISA extensions and variants of the  



   

Figure 1: Scale4Edge ecosystem overview.

RISC-V core, which are both generated. Other analysis and 
verification tools are customizable by the CoreDSL. Tools of 
the ecosystem cover relevant parts of the complete 
Hardware/Software design process over hardware/software 
verification and debugging until final tapeout and chip test. 
For early software analysis and validation, the ecosystem is 
based on virtual prototypes, which are applied for ISA 
specification, simulation, and software development. This 
smoothly complements and extends the industrial synthesis 
and Place & Route design flow by commercial EDA tools. 

A. ISA/Core Specification: CoreDSL 

To ensure a consistent and comprehensive methodology 

in RISC-V ISA development, it is important to use a unified 

description of the supported instructions and their behavior. 

This ensures that all tools, including generators for RTL IP, 

virtual platforms, formal verification tools or compilers, use 

the same ISA specification. 

For this purpose, an existing but rudimentary description 
language was further developed. This language, called 

CoreDSL (Version 2) permits the modular description of the 

architectural state and the instructions. In order to keep the 

entrance barrier low, a C syntax was selected for the 

description of the state and the instructions. In addition, some 

extensions, like arbitrary sized data types and bit-select 

operations, are used. To describe concurrent operations, a 

new keyword 'spawn' has been added. Other existing 

keywords like 'extern' or 'register' got explicit meaning. 

A CoreDSL description consists of at least two sections: 

the definition of the architectural state and the definition of 
the instructions. Figure 2 shows a simple example of a 

processor core with 16-bit registers and a 64 kB memory 

address space. CoreDSL V2 does not yet support 

microarchitecture element descriptions. This will be the focus 

of future work and extensions of the language. Use cases for 

this would be, e.g., the generation of performance models and 

the early estimation of the influence of custom instructions 

on the overall performance of a given software. The complete 

specification of CoreDSL, as well as a reference 
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programmer's-manual 

implementation of the grammar based on XText is available 

as Open Source1. This allows easy usage for new use cases. 

In the Scale4Edge project, different transformations were and 

are implemented, e.g., to synthesize custom instructions for 
the MINRES pipeline, to generate the corresponding 

instruction set simulator, as well as compiler or to generate 

the properties for the formal specification. 

 

Figure 2: CoreDSL description example. 

B. High-Level Synthesis  

Implementing custom instructions requires expertise in 
hardware design as well as intricate knowledge of the host 
core. In the Scale4Edge ecosystem, we aim to make such ISA 
extensions accessible to non-experts, by providing tools to 
automate most of the process using high-level synthesis 
(HLS) techniques. Specifically, we synthesize a custom 
hardware architecture from the descriptions of instruction 
behavior in the CoreDSL source file and use the supplied 
metadata to automatically integrate the generated module into 
the host core’s pipeline. 

In order to support instructions of different complexities, 
ranging from simple combinational operations with two 
register operands, to decoupled functional units, we are 
designing a lean, specialized HLS engine. Our primary design 
goal is the efficient use of chip area, a key requirement in the 
edge computing setting. To achieve that goal, we employ 
provably optimal static pipelining combined with resource-
sharing whenever possible. The interface between the 
synthesized extension module and the host core is 



automatically adapted, and hence supports exactly the 
functionality actually required by the current set of 
extensions. Lastly, the HLS algorithms will present multiple 
trade-off solutions to the designer, to let them choose the best 
one for their application. 

 

Figure 3: High-level synthesis flow for ISA extensions. 

The HLS flow is outlined in Figure 3. The approach is 
based on CIRCT2, an LLVM Incubator Project providing a 
toolkit for implementing hardware design tools built on top 
of the popular MLIR compiler framework. 

C. Software Analysis and Synthesis 

1) Static Software Analysis  

Static software analysis means analyzing the software 
without actually executing it. This allows for obtaining useful 
information about the software that is valid for all executions 
with all possible inputs. In general, such information cannot 
be obtained by testing since it is usually impossible to prove 
that all inputs have been covered. AbsInt offers three static 
analysis tools for inclusion into the Scale4Edge ecosystem. 

Astrée analyzes C source code with the goal to find 
possible runtime errors or proving their absence. It is 
therefore largely independent from the target architecture 
except when very target-specific software should be 
analyzed. Scale4Edge develops methods for improving the 
analyzability of such software in Astrée. 

StackAnalyzer analyzes binary executables for 
determining their worst-case stack usage. This information is 
important to prove the impossibility of stack overflow, which 
could cause the system to crash or behave erroneously. Since 
StackAnalyzer operates on binary executables, it has to be 
adapted to each new target architecture such as RISC-V. This 
requires implementing a decoder for reading RISC-V 
executables and a value analysis for determining the possible 
values of memory cells and registers (including the stack 
pointer) at every program point. This value information is 
also used for finding conditions that are always true or always 
false, and for finding the possible targets of computed calls 
and branches. 

aiT analyzes binary executables for determining their 
worst-case execution time. This information is important for 
proving that real-time tasks are completed within their 
specified time frame. Operating on binary executables, aiT 
has to be adapted to the RISC-V architecture. Apart from 
decoder and value analyzer as described above, this involves 
the implementation of a cache and pipeline analyzer that 
records all possible cache and pipeline states. These states 
heavily influence the timing behavior; for instance, cache 
misses take much more time than cache hits. This part of the 
analyzer needs exact knowledge about the timing behavior of 
the RISC-V chip used in the project. 
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2) Compiler Synthesis and SDK Generation 

To exploit the powerful dynamic nature of RISC-V 
Instruction Set Architecture Extensions (ISAX), equally 
dynamic tooling support is needed, e.g., by corresponding 
compiler frameworks. Based on CoreDSL V2, the project 
will implement a compiler generator to produce this tooling 
based on such CoreDSL definitions. 

Work has already gone into implementing RISC-V 
support in existing compilers, most importantly in the form 
of GCC- and Clang/LLVM based RISC-V toolchains. These 
compilers, or, more specifically, compiler frameworks, 
implement all modern features of the C/C++ language to 
produce highly efficient and optimized code, making the de-
facto-standard in state-of-the-art software development. This 
leads to well supported integration in existing applications 
and platforms. Especially Clang/LLVM can be considered a 
popular choice for these kinds of tasks due to its extensible 
nature and its product-oriented software license. 

Since the project aims to automate the production of such 
compiler extensions based on a CoreDSL ISAX definition, 
the project plans to implement its tooling using the more 
flexible Clang/LLVM instead. LLVM already implements 
many parts of the ISA using a custom format called TableGen 
instead of hand-crafted C/C++ code. The project plans to 
provide tooling support for translating the relevant aspects of 
a CoreDSL ISAX definition into the TableGen format and 
generate the actual C/C++ code for implementing it using the 
existing Clang/LLVM tools (see Figure 4).  

 

Figure 4: C/C++ Compiler generation based on CoreDSL. 

Such a combination of dynamic tooling based on existing 

and state-of-the-art compiler technology allows us to ease the 

production of experimental compilers for researching the 

performance of competing CoreDSL definitions regarding 

optimization, and to provide sufficiently mature tools for 

implementing safety critical applications that guarantee the 

correct translation of at least a subset of the C programming 
language. 

D. Verification and Simulation 

1) Virtual Prototype Simulation  

VPs (Virtual Prototypes) serve as platforms for concept 
engineering (Concept VP), early SW development (SW-Dev 
VP), and functional reference models for the HW design flow 
(Simulation and Scoreboard VP). To facilitate and speed-up 
the VP creation process, we are developing the VP-VIBES 
framework 3  [1] that provides a set of common building 
blocks for VPs. An important part is the CoreDSL support 
that enables to generate an ISS based on the CoreDSL 
description to boost prototyping activities with custom 
instruction sets. This allows to build advanced VPs for 
simulation of RISC-V based systems very efficiently [1]. 

For verification purposes we developed two VP-driven 
approaches for RISC-V SW and RTL processor verification, 

3 https://github.com/VP-Vibes 



respectively. The first approach integrates concolic testing 
with a VP-based simulation environment [2]. Concolic 
testing essentially works by tracking symbolic execution 
constraints alongside the SW execution in order to generate 
new test cases that successively maximize the SW path 
coverage. The approach integrates seamlessly with the TLM-
2.0 bus communication standard and is tailored for the RISC-
V ISA. The basic concolic testing approach was extended to 
detect spatial memory safety violations and found several 
new bugs in the RIOT OS. In addition, the detection of stack 
overflows was investigated. The second approach integrates 
a RISC-V instruction stream generator in a co-simulation 
setting with an RTL processor under test and an ISS reference 
model [3]. The tight co-simulation and custom randomized 
generator enable a very efficient and comprehensive testing 
process. We found several intricate bugs in the Scale4Edge 
ecosystem core using the approach. 

2) Formal Verification for Functional Correctness and 

Security  

The Scale4Edge ecosystem is an example for the 
increasing role of customizable and extendible HW and SW 
infrastructures involving components from numerous 
providers as well as from open-source domains. This calls for 
advanced and highly effective verification methods. 
Scale4Edge meets the wide-spread concerns that subtle 
details of the RTL implementation, as they result from 
seemingly innocuous design decisions, can lead to severe 
security vulnerabilities in HW platforms. Especially, with the 
trend towards widely distributed design activities in the 
context of open-source initiatives, not only design bugs but 
also the risk of “backdoors” or “trojans” must be given 
appropriate attention [4]. To this end, in addition to 
conventional verification methods, the Scale4Edge safety and 
security assurance rests on two new pillars. 

 

Figure 5: UPEC on unrolled SoC model. 

Siemens EDA automates its formal GapFree verification 
approach for processor cores4, which guarantees for a given 
ISA specification the complete coverage of all relevant 
processor behaviors. Such functional verification of the core 
is powerful enough to even detect trojans despite their low 
activation probability. It is complementary with the following 
second pillar of S4E HW security. The ecosystem integrates 
“Unique Program Execution Checking (UPEC)”, a new 
formal verification technique was jointly researched. UPEC 
is the first tool of its kind. Security violations are detected by 
comparing two instances of the same SoC running any but the 
same program. Only the secret information may vary between 
the two instances. UPEC is based on checking certain 
equivalences and timing conditions between selected state 
variables on a bounded model (Figure 5). This allows for 
detecting security-critical design bugs in the entire SoC as 
well as side channels and backdoors. A commercialization of 
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these contributions to Scale4Edge security assurance is 
planned. A first prototype of UPEC demonstrates its potential 
[5].  

3) Fault Coverage and Fault Simulation  

The Scale4Edge project also applies chip tests by the 
execution of compiled C programs. To increase their fault 
coverage, compiled C programs are analyzed and simulated 
on a QEMU based VP, which has been extended for RISC-V 
fault coverage analysis and fault simulation [6]. Realistic 
conclusions with respect to their coverage at RTL can be 
drawn as we can identify common structures in the VP and 
the corresponding RTL model like the executed instruction, 
the GPRs, and the CSRs, and trace them to gate level and 
layout. As the VP execution is based on principles of Just-in-
Time compilation the speed heavily depends on the structure 
of the executed software. In our applications, the execution 
speed typically ranges from 0.5 to 50 MIPS x n where n 
stands for the number of cores of the simulation host. Such 
execution speeds allow to extend the analysis beyond single 
stuck-at-fault assumptions to a restricted multi stuck-at fault 
analysis. Moreover, it also allows a restricted transient fault 
analysis of fault tolerant architectures as that also multiplies 
the number of required fault injections and simulation runs, 
i.e., mutations, under SEU (Single Event Upset) assumptions. 

Figure 6 gives an overview of our scalable framework. 
The ISA module configuration customizes the software 
generator, the compiler as well as the fault coverage analysis 
and injection. The framework comes with a library with 
RISC-V test suites like the RISC-V architectural test 
framework and the RISC-V unit tests, and scalable generators 
like Torture and Csmith. After a first analysis, the set of 
programs is reconfigured to finally arrive at a minimum set 
of programs with maximum coverage. 

 

Figure 6: Scalable framework for fault coverage and simulation. 

4) SBST Generation   

The adaptability of the Scale4Edge Ecosystem to a broad 
range of constraints w. r. t. efficiency, security, safety, and 

computational power requires that also the test process can be 

scaled accordingly. We target a test strategy to find 

manufacturing defects during production, and moreover, to 

detect degradation in the field. An essential part will be 

Software-Based Self-Tests (SBST). We developed an 

approach for the automatic creation of SBST programs for 
RISC-V architectures via SAT-based test pattern generation. 

Not only stuck-at-faults, but also cell-aware fault models are 

supported. The SBST programs can be run after production 

to detect manufacturing defects and, during idle times, 

degradation in the field. 



5) Visualisation and Debugging  

The Scale4Edge Ecosystem includes the powerful 
visualization and debugging engine StarVision PRO5 that is 

adapted to the specific needs of the ecosystem. For instance, 

we extend the tool to visualize not only test data and the 

propagation of fault effects, but also the test coverage in 

different hardware modules to assist the user in identifying 

critical hard-to-test parts of a RISC-V system where 

testability needs to be improved (see Figure 7). Additionally, 

we support the interactive selection of a subset of stuck-at and 

cell-aware faults for which tests should be generated. 

 

Figure 7: Visualization of a test pattern for a stuck-at-fault in Dark-

RISC-V. The affected gate and the propagated fault effect are shown 

using different colours. 

III. APPLICATIONS AND DEMONSTRATORS  

The Scale4Edge project addresses three areas for 
demonstration: the ecosystem demonstrators, demonstrators 
for AI applications, and a HiRel demonstrator.  

A. Ecosystem Validation Demonstrator  

The Scale4Edge ecosystem is applied to two different 
automotive applications to validate the ecosystem. The first 
application are sensor signal processing ASICs, where on-
chip processors execute typical DSP algorithms as well as 
safety monitoring and communication protocol tasks. The 
second application is a siren detection system, where audio 
signals are processed by ML algorithms running on an on-
chip processor. 

For both applications, demonstrators are built by using the 
Scale4Edge ecosystem. Custom extensions beneficial for 
each application are identified and specified using the 
CoreDSL. Based on this description, hardware 
implementations of the custom extensions are automatically 
generated and integrated into the ecosystem core. At the same 
time, the extendible compiler is automatically extended based 
on the CoreDSL description. The existing application 
software is then ported to the Scale4Edge ecosystem core. For 
the software bring-up, Virtual Platforms are built 
incorporating the DBT-RISE processor model. The siren 
detection application is also used to build a physical 
demonstrator. Here, a MEMS microphone is connected to the 
Scale4Edge ecosystem chip and the siren detection NN 
software is executed on the integrated ecosystem core. 

The ecosystem demonstrator chip is developed in two 
version. In a first step, an area-optimized version of a 
generated RISC-V IMC core has been integrated into the 
PULPissimo 6  platform with 2x32kB SRAM. Synthesis, 
physical implementation, and signoff has been conducted 
with industrial tools from Cadence and Siemens EDA for 
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tapeout in May 2021 through Europractice with 22FDX 
technology from Global Foundries. Figure 8 shows the chip 
layout of the ecosystem demonstrator Version 1. Version 2 of 
the ecosystem demonstrator is planned as a fully-fledged chip 
for siren detection application with AI accelerator in 2022. 

 

Figure 8: Ecosystem demonstrator Version 1 layout.  

B. AI Edge Processing Demonstrators 

1) TinyML  

The ecosystem includes a complete end-to-end flow, i.e., 
TinyML, that transforms a given machine learning model into 
deployable machine code with VP-VIBES support.  TinyML 
deployment use and extend two frameworks. Firstly, the 
TensorFlow Lite for Microcontrollers (TFLM) can be used in 
an automated flow using their interpreter-based approach. A 
variant of that flow is given with a static code generation 
approach that eliminates the overheads of the interpreter. 
Secondly, the TVM framework is supported in two variants: 
a static code generation approach similar to the TFLM one, 
and the TVM Ahead-of-Time (AOT) backend. The latter is 
also a code generation approach, but was only recently 
developed and not yet matured for productive use. While the 
TFLM framework with muriscv_nn support currently 
outperforms TVM, the increased flexibility and control of 
intermediate steps in TVM allows for more powerful 
transformations that may lead to a superior performance. This 
includes plans to utilize global data flow transformations to 
reduce memory requirements. 

2) Parameterizable ML Accelerator  

The ecosystem includes the scalable hardware accelerator 
UltraTrail for application-specific ultralow-power edge AI 
processing [7]. Figure 9 depicts the top-level architecture. 
The accelerator uses distributed memories to store the 
features (FMEM0-2), parameters (W/BMEM) and local 
results (LMEM).  Features,  parameters,  and  internal  results  

 

Figure 9:  Overview of the UltraTrail architecture. 

6 https://github.com/pulp-platform/pulpissimo 



use a fixed-point representation. An array of multiply and 
accumulate (MAC) units calculates the convolutional and 
fully-connect layers. A separate output processing unit 
(OPU) handles post-processing operations like bias addition, 
application of a ReLU activation function, or average 
pooling. The architecture of UltraTrail has been 
parameterized such that it can be easily fit to various ML 
workloads. Memory sizes, word widths, the MAC array 
dimension, and supported post-processing operations can be 
automatically configured using a hardware/software co-
design process. UltraTrail is integrated into the PULPissimo 
platform as a co-processor and will be part of Version 2 of 
the ecosystem demonstrator. 

3) SpiNNedge Accelerator  

The SpiNNedge accelerator module allows to offload 
signal processing and recurrent neural network (RNN) 
workloads from the RISC-V processor. Windowing, filtering 
and frequency transforms (FFT, DCT) are supported, and can 
be cascaded to more complex preprocessing stages such as 
Mel-Frequency Cepstral Coefficients (MFCC) for audio 
processing. Different kinds of RNNs, such as GRU, LSTM or 
LMU, are supported. Processing effort in the RNN is 
significantly reduced via delta encoding and subsequent 
sparsity exploitation. The accelerator follows a loosely-
coupled approach, but still shares its main memory with the 
processor. An internal control module orchestrates the 
different calculations and enables the accelerator to perform 
complex processing layers autonomously. A TVM backend 
for the accelerator is planned for simple ML model 
deployment and integration with the ML activities in the 
Scale4Edge ecosystem. 

C. HiRel Demonstrator  

High Reliability (HiRel) applications are also one important 
application field of the RISC-V ecosystem. The relevant 
applications include space, high altitude avionics, nuclear etc. 
An additional requirement which needs to be fulfilled for such 
applications is related to resilience to soft errors, i.e., Single 
Event Effects (SEEs). This requirement is usually addressed 
at different abstraction layers, starting from technology and 
standard cell level, providing certain protection against SEEs. 
Nevertheless, additional efforts are required at the higher 
abstraction layers in order to enable optimal trade-off between 
performance, energy consumption and reliability. In order to 
enable dynamicity and reconfiguration of redundant 
resources, the Scale4Edge HiRel platform employs a multi-
processor architecture of RISC-V cores, that could be 
dynamically configured in hardware lock-step modes, 
enabling core level error detection and correction. 
Additionally, further operating modes are available, including 
high performance mode, supporting classical multi-
processing, and destress mode, supporting lifetime extension 
of the system. In order to reduce the overhead imposed by cell 
level hardening, it is frequently required to utilize selective 
cell hardening. For this the specific, netlist level flow has been 
investigated and enabled, identifying flip-flops which could 
generate most critical SEUs (Single Event Upsets) leading to 
persistent error or error which propagates to primary outputs. 
This flow is based on Answer Set Programming (ASP) and 
shows very promising initial results [8].  

Figure 10 describes the architecture of the HiRel 
demonstrator. The system includes 4 core RISC-V cores, 
extended with relevant interfaces, such as SpaceWire, CAN, 
MIL-STD-1553, SPI, UART, JTAG, and I2C. The control of 

the operating mode is performed by a framework controller 
that is at the same time able to operate as lock-step controller 
and voter. This system is currently under implementation and 
verification, and in the following months the chip fabrication 
is planned. 

 

Figure 10:  Architecture of HiRel demonstrator. 

IV. SUMMARY AND CONCLUSIONS 

This paper has introduced the concept, objectives and first 

results of the project Scale4Edge. The project targets at 

ecosystem development for scalable RISC-V based edge 

applications. The proposed ecosystem will be evaluated in 

different demonstrators. The Scale4Edge project started in 

Mai 2020, and first results have been already obtained and the 
demonstrators are under preparation. The following period 

will show the completion of the Scale4Edge ecosystem, and 

its evaluation by the demonstrators. 
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