
How to Make
Hardware with Maths:
An Introduction to
CIRCT's Scheduling
Infrastructure
Julian Oppermann, TU Darmstadt
Mike Urbach, SiFive
John Demme, Microsoft

European LLVM Developers' Meeting — London, UK — May 11, 2022

the community

CIRCT

Oppermann, Urbach, Demme: How to Make Hardware with Maths: An Introduction to CIRCT's Scheduling Infrastructure — EuroLLVM'22 1

= Circuit IR Compilers and Tools

• MLIR-based compiler infrastructure
for hardware design and verification
• LLVM incubator project
• More info @ US DevMtg 2021
• “CIRCT: Lifting hardware development

out of the 20th century”
• “Charting CIRCT: the present and near

future landscape“

This
talk

High-level Synthesis (seen from orbit)

Oppermann, Urbach, Demme: How to Make Hardware with Maths: An Introduction to CIRCT's Scheduling Infrastructure — EuroLLVM'22 2

func @dot(%X: memref<64xi32>,
%Y: memref<64xi32>) -> i32 {

%c0_i32 = arith.constant 0 : i32

%0 = affine.for %i = 0 to 64
iter_args(%sum = %c0_i32) -> (i32) {

%ldX = affine.load %X[%i] : memref<64xi32>
%ldY = affine.load %Y[%i] : memref<64xi32>
%mul = arith.muli %ldX, %ldY : i32
%add = arith.addi %sum, %mul : i32
affine.yield %add : i32

}

return %0 : i32
}

add

Hardware: Everything is parallel and
always running.

Software: Program executes sequentially.
“Untimed”.

1 cycle

Controller

mul

load load

Scheduling (here):
Figure out…
• … when to start each hardware module
• … and how often we can load new data into

the pipeline

Why does CIRCT need scheduling infra?

Oppermann, Urbach, Demme: How to Make Hardware with Maths: An Introduction to CIRCT's Scheduling Infrastructure — EuroLLVM'22 3

• Predominant abstraction is the Register-Transfer-Level (RTL)
• Modules, wires, registers, clocks, …
• Hard to transform – progression of time baked into the structural design

• Lifting the abstraction level is crucial for 21st century tools
• CIRCT is a great playground for that

• Higher-level IRs are often untimed
• Dataflow graphs, affine loops, systolic arrays, …
• Easy to transform and suitable for design-space exploration!
• At some point, lower to latency-insensitive hardware (handshakes),

or schedule at compile time (and synthesise controller)

Goals and audience

Oppermann, Urbach, Demme: How to Make Hardware with Maths: An Introduction to CIRCT's Scheduling Infrastructure — EuroLLVM'22 4

• Provide infrastructure that is as flexible as CIRCT itself
• Problem model should be tailored to source IR and target architecture

• Audience
• People that find scheduling boring:

Grow a library of ready-to-use problem definitions and suitable
scheduling algorithms
• People that find scheduling exciting:

Foster research into algorithms by providing consistent API to hook into
practically-relevant hardware-design flows

Cyclic scheduling problem for affine loop

Oppermann, Urbach, Demme: How to Make Hardware with Maths: An Introduction to CIRCT's Scheduling Infrastructure — EuroLLVM'22 5

%ldX %ldY

%mul

%add

Mem Multiply

opr = Mem opr = Mem

opr = Multiply

opr = Add

latency = 1 latency = 2

startTime = 0 startTime = 0

startTime = 1

startTime = 3

II = 1

distance = 1

All operations are linked to an
operator type with a latency
property

∀ dependences d from i to j:
i.startTime + i.opr.latency
≤ j.startTime + d.distance * II

%0 = affine.for %i = 0 to 64
iter_args(%sum = %c0_i32) {

%ldX = affine.load %X[%i]
%ldY = affine.load %Y[%i]
%mul = arith.muli %ldX, %ldY
%add = arith.addi %sum, %mul
affine.yield %add

}

Add
latency = 1

• Components
• Operations
• Dependences
• Operator types

• Properties
• Input
• Solution

• Constraints
• Input
• Solution

Extensible problem model

Oppermann, Urbach, Demme: How to Make Hardware with Maths: An Introduction to CIRCT's Scheduling Infrastructure — EuroLLVM'22 6

• Different flows require different problem variants
• Properties + Constraints = Reliable contract between client & algorithm

• Currently defined problems
• Problem – basic, acyclic problem
• CyclicProblem – for pipelined execution
• SharedOperatorsProblem – limits #unit per operator type
• ModuloProblem – for resource-constrained pipelined execution
• ChainingProblem – models physical propagation delays

• Mix-and-match and extend to define your own problems!
• Add properties, add/refine constraints

Schedulers

Oppermann, Urbach, Demme: How to Make Hardware with Maths: An Introduction to CIRCT's Scheduling Infrastructure — EuroLLVM'22 7

• Current goal: “Good enough” to bootstrap prototype flows
• LP-based (using in-tree simplex solver) for all pre-defined problems
• ILP-based (using external solver via OR-Tools): API demo
• List-scheduler: API demo

• Problem models provide a consistent API to implement
scheduling algorithms
• Infrastructure is not limited to linear programming
• Anything (satisfying the solution constraints) goes!

State and plans

Oppermann, Urbach, Demme: How to Make Hardware with Maths: An Introduction to CIRCT's Scheduling Infrastructure — EuroLLVM'22 8

• Available infrastructure in CIRCT
• 5 problem models
• Reference schedulers

• Current clients
• End-to-end flow from C/PyTorch to SystemVerilog (à circt-hls project)
• Retiming irregularly-placed systolic arrays (à WIP @ Microsoft)

• Future plans
• Integrate into more synthesis flows and evolve infrastructure as needed
• Design dialect to import/export scheduling problems
• Port state-of-the-art algorithms to CIRCT
• Can we share code with sibling projects or other parts of LLVM?

Thanks!

Oppermann, Urbach, Demme: How to Make Hardware with Maths: An Introduction to CIRCT's Scheduling Infrastructure — EuroLLVM'22 9

• Learn more: https://circt.llvm.org/docs/Scheduling/

• Get involved in CIRCT:
• https://circt.llvm.org
• ODM: Wednesdays @ 11am PT

• We thank Morten Borup Petersen,
Stephen Neuendorffer, Aaron Landy,
and the CIRCT community for their
insightful discussions & contributions!

t = 0

t = 1

t = 2

https://circt.llvm.org/docs/Scheduling/
https://circt.llvm.org/

