
An Evaluation of Using CCIX for Cache-Coherent
Host-FPGA Interfacing

Sajjad Tamimi, Florian Stock, Andreas Koch
Embedded Systems and Applications Group

TU Darmstadt
[surname]@esa.tu-darmstadt.de

Arthur Bernhardt, Ilia Petrov
Data Management Lab
Reutlingen University

[firstname].[surname]@reutlingen-university.de

Abstract—For a long time, most discrete accelerators have been
attached to host systems using various generations of the PCI
Express interface. However, with its lack of support for coherency
between accelerator and host caches, fine-grained interactions
require frequent cache-flushes, or even the use of inefficient
uncached memory regions. The Cache Coherent Interconnect
for Accelerators (CCIX) was the first multi-vendor standard
for enabling cache-coherent host-accelerator attachments, and
already is indicative of the capabilities of upcoming standards
such as Compute Express Link (CXL). In our work, we compare-
and-contrast the use of CCIX with PCIe when interfacing an
ARM-based host with two generations of CCIX-enabled FPGAs.
We provide both low-level throughput and latency measurements
for accesses and address translation, as well as examine an
application-level use-case of using CCIX for fine-grained syn-
chronization in an FPGA-accelerated database system. We can
show that especially smaller reads from the FPGA to the host
can benefit from CCIX by having roughly 33% shorter latency
than PCIe. Small writes to the host have a latency roughly 32%
higher than PCIe, though, since they carry a higher coherency
overhead. For the database use-case, the use of CCIX allowed
to maintain a constant synchronization latency even with heavy
host-FPGA parallelism.

I. INTRODUCTION

When combining conventional software-based processing
on host CPUs with specialized hardware accelerators to per-
form heterogeneous computing for higher performance or
better efficiency, the nature of the interface between the host
and the accelerators is a key design decision.

For most discrete accelerators, such as GPUs or FPGA
boards, PCI Express (short: PCIe) has long been the dominant
interface. Its performance has steadily increased, with PCIe
4.0, the latest widely deployed version, reaching 1.97 GB/s per
lane. However, PCIe is mostly optimized for high-throughput
bulk transfers. E.g., as shown in [1], transfers of 128. . . 256
KB are required to reach at least 50% of the theoretical
bandwidth. The achievable throughput drops dramatically for
the smaller transfer sizes (down to cache-line size) required
for fine-grained host-accelerator interactions. And while PCIe
has added extensions such as Address Translation Service
(ATS) / Page Request Interface (PRI) to support shared virtual
memory, or atomic operations, most implementations do not
encompass cache coherency mechanisms.

This makes fine grained interactions quite costly, as either
cache flushes are required on both the host or accelerator sides
when synchronizing execution or exchanging small parameters
or results, or memory regions used for data transfers have to
be marked as uncached, slowing down the accesses of the
processing element (host or accelerator) they are physically
located with.

To address this problem, a number of interfaces and proto-
cols have been proposed that also cover cache coherency. In
this work, we examine the use of Cache Coherent Interconnect
for Accelerators (CCIX), the first of these interfaces specified
as a multi-vendor standard and implemented across multiple
different accelerator and host architectures. Further improve-
ments can be expected in the near future once protocols such as
Compute Express Link (CXL), which has even wider industry
support, make their way into the market.

We present both detailed low-level measurements for var-
ious CCIX access scenarios, as well as an application-level
use-case. The latter employs CCIX for high-performance syn-
chronization between an FPGA accelerator and the host when
running an Database Management System (DBMS) exploiting
Near Data Processing (NDP). To our knowledge, this is the
first time a cache-coherent accelerator interface has been used
for that purpose.

We give an overview over some of the interfaces and
protocols in the next section and then discuss CCIX details,
especially in context of FPGA accelerators, in Section III. Our
main contribution, though, is the evaluation, where we present
both low-level characteristics in Section IV, as well as the
application-level use-case in Section V. We conclude and look
forward to future work in Section VI.

II. RELATED WORK

a) PCIe: PCI Express [2] is the standard for connecting
peripherals to desktop and server systems. PCIe scales by
bundling multiple lanes for a single device to increase the
bandwidth of the link. In version 1.0, it was capable of
transferring 250 MB/s per lane. With each successor version
the bandwidth roughly doubled, reaching now 7.88 GB/s per
lane in version 6.0. Currently, version 6.0 is just specified,
while hardware for 5.0 is upcoming, and 4.0 is the version
most widely deployed on current hardware. PCIe uses full-
duplex serial links, with a point-to-point topology that has two978-1-6654-8332-2/22/$31.00 ©2022 IEEE

additional layers on top of the electrical link layer, namely
the data link and transaction layers. These additional layers
provide error correction and packet-based communication. In
addition to basic operations, like transferring data, initial-
ization of devices etc., PCIe also supports more advanced
(optional) features, such as PRI and ATS, but does not cover
cache coherency.

b) CCIX: CCIX [3], [4] is an advanced I/O interconnect
that enables two or more devices to share data in a cache-
coherent manner. On the physical layer, it can be compatible
with PCIe (though it optionally allows higher signalling rates),
and only differs in the protocol and the endpoint controllers.
It was introduced in 2016 by the CCIX Consortium, which
was founded by AMD, ARM, Huawei, IBM, Mellanox, Qual-
comm, Xilinx [5]. CCIX has been implemented on both ARM-
based as well as x86-based CPUs.

c) Other Shared-Virtual-Memory (SVM) or Cache-
Coherent SVM Interconnects: CCIX is not the only contender
for shared virtual memory interconnects. Alibaba Group, Cisco
Systems, Dell/EMC, Facebook, Google, HPE, Huawei, Intel,
and Microsoft proposed the CXL [6] in 2019, based on prior
work by Intel. While CCIX can run on older PCIe connections,
CXL was designed initially based on PCIe 5.0. Thus, CXL can
reach up to 32 GT/s (that is 3.94 GB/s) per lane, it provides
similar functionality as CCIX, but uses a different logical view.
CXL has seen even wider industrial uptake than CCIX and is
expected to become the predominant solution in the years to
come.

Another option is the Coherent Accelerator Processor In-
terface (CAPI, later OpenCAPI) introduced in 2014 by IBM.
While the first version was also implemented on top of PCIe,
recent versions a vendor-specific interface. CAPI is primarily
used in IBM POWER-based hosts and thus has a more limited
scope than CCIX and CXL. In OpenCAPI 3.0 (x8 lanes), it
provides a bandwidth of 22 GB/s with read/write latencies of
298/80 ns [7].

While not a straightforward extension to PCIe like CCIX,
another interconnect that supports cache coherent protocols is
Gen-Z [8]. It provides up to 56 GT/s per lane, and allows,
similar to PCIe, the combination of multiple lanes. Despite its
promising features, no Gen-Z hardware has been commercially
released and the technology will be merged into CXL.

d) Database acceleration on FPGAs: [9] gives a good
overview of using FPGAs to accelerate database operations.
The most common approach, e.g., as used in state-of-the-
art solutions such as Centaur [10], employs FPGAs as of-
fload accelerators for large-scale filtering, sorting, joining, or
arithmetic computations. This mode of operation carries the
cost of large data transfers from/to the FPGA, though, and is
different from the near-data processing approach investigated
here, which aims to avoid these transfers.

III. CCIX ARCHITECTURE AND USE ON FPGAS

This section will give an overview of the general CCIX
architecture and discusses how it can be used in two different
FPGA families.

A. General Overview

Devices attach to CCIX at endpoints. For the discussion
here, the relevant kinds of endpoints are the Home Agent (HA)
and the Request Agent (RA). The HA acts as the “owner” of
physical memory, to which it provides coherent access, while
the RA performs non-local reads and writes to remote memory
by communicating with the owning HA. What distinguishes
CCIX from PCIe is that the RA can provide its own caching,
but maintains coherency with the HA over CCIX. On the
HA side, a change in the cache state will be propagated
to the accessing RA(s) by sending appropriate messages.
CCIX natively uses physical addresses for the accesses, but
can optionally employ existing PCIe mechanisms to allow
accelerators to employ virtual addresses. To perform the actual
address translation, CCIX relies on the PCIe ATS mechanism,
which is one of the reasons that CCIX-attached accelerators
also maintain a conventional PCIe connection to the host on
a different PCIe Virtual Channel (VC). Of the various CCIX
topologies, which include meshes and switched hierarchies,
we employ a simple one relying on direct connections between
host and accelerator. Also, since all of the required operations
including address translation and coherency are supported
at the hardware interface level, no special device drivers or
custom firmware is required on the host.

Fig. 1-(A) shows the high-level architecture of the cache-
coherent host-FPGA attachment for CCIX-enabled devices.
This block diagram has the host at the top and accelerator on
the bottom, both connected via a CCIX-capable PCIe interface.
CCIX uses multiple VCs on the PCIe transaction layer to carry
both PCIe and CCIX traffic over the same PCIe slot. On the
CCIX-capable slots, the transaction layer uses VC0 for PCIe-
packets and VC1 for CCIX-packets, sharing the same physical
and link layers. However, CCIX can optionally use Extended
Speed Modes (ESM), which increase the signalling rate. For
the PCIe 4.0 attachment we use, ESM increases the rate from
16 GT/s to 25 GT/s, with 128 payload bits per transfer. The
ESM mode will be enabled automatically during the CCIX
discovery phase at boot time if both parties (i.e., RA and HA)
support it.

B. FPGA RA using Xilinx XDMA

Xilinx Virtex UltraScale+ HBM devices are CCIX capable,
but have to implement the CCIX functionality as reconfig-
urable “soft” logic in the form of an extended XDMA IP block.
As shown in Fig. 1-(B), the key blocks include a CCIX-capable
PCIe-controller, an ATS switch, and a PCIe-AXIMM-bridge.
The ATS switch is used to insert virtual-to-physical address
translation requests into the regular PCIe communication via
PCIe VC0, and later retrieve their results. It also includes
a small Address Translation Cache (ATC) to buffer existing
translation results, in order to avoid the relatively costly ad-
dress translations for already known mappings. The AXIMM
bridge provides memory-mapped communication between the
host and the accelerator (mainly control-plane traffic). For
data-plane accesses, the accelerator employs an on-chip cache
realized using the Xilinx System Cache IP Block [11], which

Versal Premium (VCK5000)

Coherency and PCIe Module (CPM)

Host (N1-SDP)

User space

Virtex UltraScale+ HBM (Alveo U280)

CCIX Traffic Generator (CTG)

System Cache CCIX
RA

(CCIX mode + ATS)
(128KB & 64B)

CCIX-RA-controller
(MB)

XDMA PCIe
block

always @(!start & startTransaction) begin
 cycleCount <= 0;
 operation <= read/ write;
 start <= True;
end

always @(start & operation & length > 0) begin
 length_temp <= 4096;
 address <= address + length(4096)
 if (length < 4096) {
 length_temp <= length - 4096; }
 sendCCIX(operation, address, length_temp);
end

always @(start & operation) begin
 get_response(read/write?);
 if (is it last response?) {
 start <= False;
 Latency <= cycleCount; }
end

always @(clock) begin
 cycleCount <= cycleCount + 1;
end

PCIe VC0

ATS Switch

AXIS to
AXIMM

PCIe
controller

CCIX VC1

PCIe
AXIMM
Bridge

CQ
RC
CC
RQ

CXS0_Tx

CXS0_Rx

A
T

S
M

on
it

or

CXS

Start Transaction
(VA, length, operation)

Latency

void DelayCalculator() {
 buffAdd = AllocateBuffer();
 while (length < 256KiB) {
 newAdd = buffAdd + rand();
 startTrans(newAdd, length);
 Wait();
 read(Delay);
 Length = length*2;
 }
}

PCIe

void DelayCalculator() {
 buffAdd = AllocateBuffer();
 newAdd = buffAdd + rand();
 startTrans(newAdd, length);
 wait();
 read(Delay);
}

DDR

PCIe
VCKernel space

(e.g., VFIO)

CCIX
VC

IOMMU

HA

DDRDDR

C
C

IX
 T

ra
ffi

c
G

en
er

at
or

 (C
T

G
)

L1 System Cache
(ATS)

(128KB & 64B)

ATS Switch PCIe Controller_0

CCIX-Capable

PCIe
AXIMM
Bridge

CQ
RC
CC
RQ

M0_CHI

A
T

S
M

on
it

or

L2 Cache
(Integrated)
(1MB & 64B)

Coherency
Mesh Network

(CMN)

Coherent Hub
Interface (CHI)

CQ RC CC RQ

CHI

CXS

Start Transaction
(VA, length, operation)

Latency

Controlling signal PCIe Controller_1

CCIX-Capable

(C) Versal Premium (VCK5000)

Coherency and PCIe Module (CPM)

(A) Host (N1-SDP)

User space

(B) Virtex UltraScale+ HBM (Alveo U280)

CCIX Traffic Generator (CTG)

System Cache CCIX
RA

(CCIX mode + ATS)
(128KB & 64B)

CCIX-RA-controller
(MB)

XDMA PCIe
block

always @(!start & startTransaction) begin
 cycleCount <= 0;
 operation <= read/ write;
 start <= True;
end

always @(start & operation & length > 0) begin
 length_temp <= 4096;
 address <= address + length(4096)
 if (length < 4096) {
 length_temp <= length - 4096; }
 sendCCIX(operation, address, length_temp);
end

always @(start & operation) begin
 get_response(read/write?);
 if (is it last response?) {
 start <= False;
 Latency <= cycleCount; }
end

always @(clock) begin
 cycleCount <= cycleCount + 1;
end

PCIe VC0

ATS Switch

AXIS to
AXIMM

PCIe
controller

CCIX VC1

PCIe
AXIMM
Bridge

CQ
RC
CC
RQ

CXS0_Tx

CXS0_Rx

A
T

S
M

on
it

or

CXS

Start Transaction
(VA, length, operation)

Latency

PCIe

void DelayCalculator() {
 buffAdd = AllocateBuffer();
 newAdd = buffAdd + rand();
 startTrans(newAdd, length);
 wait();
 read(Delay);
}

DDR

PCIe
VCKernel space

(e.g., VFIO)

CCIX
VC

IOMMU

HA

DDRDDR

C
C

IX
 T

ra
ffi

c
G

en
er

at
or

 (C
T

G
)

L1 System Cache
(ATS)

(128KB & 64B)

ATS Switch PCIe Controller_0

CCIX-Capable

PCIe
AXIMM
Bridge

CQ
RC
CC
RQ

M0_CHI

L2 Cache
(Integrated)
(1MB & 64B)

Coherency
Mesh Network

(CMN)

Coherent Hub
Interface (CHI)

CQ RC CC RQ

CHI

CXS

Start Transaction
(VA, length, operation)

Latency

Controlling signal PCIe Controller_1

CCIX-Capable

User space

DDR

Kernel space (e.g., VFIO)

CCIX-HADDRDDR

PCIe-DMA (VC0) CCIX-RA (VC1)

P
C

Ie

PCIe-DMA (VC0) CCIX-HA (VC1)

Computational resources

(A) Host (home agent)

(B) CCIX-enabled devices (request agent)

C
C

IX

H
W

 a
cc

el
er

at
o

r

Versal Premium (VCK5000)
Coherency and PCIe Module

(CPM)

ATS
switch PCIe controller_0

CCIX-capable

PCIe
AXIMM
bridge

CQ
RC
CC
RQ

M0_CHI

L2 Cache
(Integrated)
(1 MiB & 64B)

Coherency
Mesh

Network
(CMN)

Coherent Hub
Interface (CHI)

CQ RC CC RQ

CHI

CXS

Controlling
signal

PCIe controller_1

CCIX-capable

H
W

 a
cc

el
er

at
or

H
W

 a
cc

el
er

at
or

H
W

 a
cc

el
er

at
o

r

L1 System Cache
(ATS)

(128 KiB & 64B)
User space

DDR

Kernel space (e.g., VFIO)

CCIX-HADDRDDR

PCIe-DMA
(VC0)

CCIX-RA
(VC1)

P
C

Ie

PCIe-DMA
(VC0)

CCIX-HA
(VC1)

Computational resources

Host (HA)

CCIX-enabled devices (RA)

C
C

IX

H
W

 a
cc

el
er

at
or

Virtex UltraScale+ HBM (AU280)

CQ
RC
CC
RQ

Coherent Hub
Interface (CHI)

Controlling
signal

H
W

 a
cc

el
er

at
or

H
W

 a
cc

el
er

at
or

H
W

 a
cc

el
er

at
o

r

System Cache
(CCIX+ATS)

(128 KiB & 64B)

XDMA PCIe block

PCIe VC0

ATS switch

AXIS to
AXIMM

PCIe
controller

CCIX VC1

PCIe AXIMM
bridge

CXS0_Tx
CXS0_Rx

C
C

IX
 S

tr
ea

m

(C
X

S
)

(B)

(A)

H
W

 a
cc

el
er

at
o

r

Versal ACAP (VCK5000)
Coherency and PCIe Module

(CPM)

ATS
switch PCIe controller_0

CCIX-capable

PCIe
AXIMM
bridge

CQ
RC
CC
RQ

M0_CHI

L2 Cache
(Integrated)
(1 MiB & 64B)

Coherency
Mesh

Network
(CMN)

Coherent Hub
Interface (CHI)

CQ RC CC RQ

CHI

CXS

Controlling
signal

PCIe controller_1

CCIX-capable

H
W

 a
cc

el
er

at
or

H
W

 a
cc

el
er

at
or

H
W

 a
cc

el
er

at
o

r

L1 System Cache
(ATS)

(128 KiB & 64B)

User space

DDR

Kernel space (e.g., VFIO)

CCIX-HADDRDDR

PCIe-DMA
(VC0)

CCIX-RA
(VC1)

P
C

Ie

PCIe-DMA
(VC0)

CCIX-HA
(VC1)

Computational resources

Host (HA)

CCIX-enabled devices (RA)

C
C

IX

H
W

 a
cc

el
er

at
or

Virtex UltraScale+ HBM (AU280)

CQ
RC
CC
RQ

Controlling
signal

H
W

 a
cc

el
er

at
or

H
W

 a
cc

el
er

at
or

H
W

 a
cc

el
er

at
o

r
System Cache

(CCIX+ATS)
(128 KiB & 64B)

XDMA PCIe block

PCIe VC0

ATS switch

AXIS to
AXIMM

PCIe
controller

CCIX VC1

PCIe AXIMM
bridge

CXS0_Tx
CXS0_Rx

C
C

IX
 S

tr
ea

m

(C
X

S
)

(A)

(C)(B)

Fig. 1. Middle (A): Architecture of CCIX-capable host, acting as HA, with a CCIX-attached accelerator acting as RA. Left (B): SoC realizing CCIX-RA on
a Xilinx UltraScale+ HBM device. Right (C): SoC realizing CCIX-RA on a Versal ACAP device.

in turns interacts with the CCIX coherency mechanisms using
the CCIX streaming protocol. Misses in this cache become
remote memory accesses, which are forwarded via CCIX to
the HA to retrieve the data. The HA, in turn, ensures the
coherency of the FPGA-side SC with the host-side caches.

C. FPGA RA using Xilinx CPM

The more recent Xilinx Versal devices have optimized
“hardened” support for CCIX in their silicon. Specifically, the
Coherency and PCIe Module (CPM) IP block [12] includes
an integrated L2 cache, communicating with the chip-wide
coherency mesh network using ARM’s CHI protocol, which
in turn again uses CXS to interface with the CCIX-capable
PCIe controller. As before in the UltraScale+ device, two PCIe
VCs are used to separate PCIe and CCIX traffic running over
the same PCIe slot. Our setup requires only one of the two
CCIX-capable PCIe controllers provided by the CPM block.
The ATS Switch and AXIMM blocks are used as before.

D. Address Translation

After the System Cache (SC) receives a read/write request
from the accelerator(s), it checks the ATC for the virtual-to-
physical mapping. If the SC does not find a valid translation in
the ATC (i.e., ATC miss), it requests the translation from the
host using the PCIe ATS feature via VC0. The ATS interface
on the system cache uses a request-completion protocol [13]
to provide the translation service via four streaming interfaces:
Incoming Completer Request (CQ), outgoing Completer Com-
pletion (CC), outgoing Requester Request (RQ), and incoming
Requester Completion (RC). The reply from the host, e.g.,
holding the physical address, is delivered back to the FPGA
using the same mechanism.

E. CCIX Timing Model

The average latency for a CCIX transaction is shown in Eq.
1. The latency for each transaction depends on the probability
of having a valid cached address translation available in the
ATC vs. having to request a new translation from the host
by ATS, and then whether the requested data is present in the

TABLE I
SPECIFICATIONS OF CCIX-ENABLE DEVICES

CCIX-capable
devices

Core specification PCIe specification

N1-SDP (HA)

4xARM N1-CPU,
16GB RAM,

L1I (64KiB) per core,
L1D (64KiB) per core,
L2D (1MiB) per core,
L3D (2MiB) shared

1x CCIX Gen4 x16
1x PCIe x16 Gen3

AU280 (RA) L1 (128KiB, 64B) 1x CCIX Gen3 x16

VCK5000 (RA) L1 (128KiB, 64B)
L2 (1MB, 64B) 1x CCIX Gen4 x8

local on-chip cache vs. having to be requested from the remote
HA. Note that with the use of ESM, the physical CCIX latency
can be shorter than the physical PCIe latency.

Latency = PATC-hit × LatencyATC
+ (1− PATC-hit)× LatencyATS
+ Pcache-hit × Latencyr/w-local
+ (1− Pcache-hit)× Latencyr/w-remote

Latencyr/w-remote = LatencyCCIX + LatencyHA
(1)

IV. EXPERIMENTAL SETUP AND EVALUATION

We perform the practical evaluation in real hardware,
namely using a CCIX-capable ARM N1-SDP platform as
host, and Xilinx Alveo U280 (AU280) and VCK5000 CCIX-
attached boards, having an UltraScale+ HBM and Versal
ACAP FPGA, respectively, as the accelerators. Table I shows
the specifications of the different devices.

A. Measurement Setup

All of the low-level benchmarks described later use the same
basic measurement approach, which consists of three main
components: a software Application Programming Interface

(API), a hardware module and the on-chip CCIX components
described above. The software API runs on the host and is
responsible for executing the benchmarks and reading the
hardware-profiled CCIX latency characteristics. The software
API has four main tasks: a) allocating a buffer in the host
memory, b) initializing the hardware module with the access
to measure, c) retrieving the latency data recorded by the
hardware module, and d) profiling results. The pseudo-code of
software API is shown in Algorithm 1. Note that we randomize
addresses to force SC misses, thus ensuring that the CCIX
transfers we are interested in actually take place.

Algorithm 1: Pseudo-code for software API in the
ARM machine

Function host_API
buffAddr = allocateBuffer();
newAddr = buffAddr + rand();
start_CTG (newAddr, length);

end
Function start_CTG (addr, length)

configure CTG(addr, length);
wait();
read Register(&latency);

end

The hardware module, known as CCIX Traffic Generator
(CTG), uses the fetch/store approach to capture CCIX latency.
This module accepts requests (including type, virtual address,
and length) from the startTrans call of the software API in
the host. Following the API request, the CTG creates requests
via the AXI4-MM interface to the SC, which performs the role
of the CCIX RA, and then times the arrival of responses at
the SC. The captured timings can then be read by the software
API. Note that we consider a transaction complete only after
all of its data has arrived.

Table. II shows the FPGA resources required for the sim-
ple CCIX-RA we examined. As shown in Fig. 1-(C), the
VCK5000 uses a PCIe controller in the form of the hardened
CPM module, but still needs some additional “soft” logic to
support PCIe transfers and ATS translations.

B. Low-Level Experimental Evaluation

Experiment 1: CCIX vs PCIe - Latency and Throughput.
In this experiment, we compared CCIX and PCIe transfer
latencies for the relatively small block sizes of 32B to 16KiB
typical for fine-grained interactions (and much smaller than
the PCIe bulk transfers examined in [1]). The open-source
TaPaSCo [14] framework was used to test the DMA transfers.
In this experiment, the ATS latency was eliminated by making
sure that the translation of the address is already existing in
the ATC. Fig. 2-(A) and Fig. 2-(B) shows read and write
latencies for PCIe and CCIX traffic, respectively. For the PCIe-
DMA transfers, we used the high-performance DMA engine of
TaPaSCo by setting different data transfer sizes and directly
used the physical address of the data of the host memory.
For the CCIX measurement, a buffer is allocated in host
memory and its virtual address is passed to the CTG module.

TABLE II
CCIX-RA RESOURCE USAGE FOR AU280 AND VCK5000 AT 250 MHZ

CCIX-capable
devices

Core
specification LUTs Registers BRAM

Alveo U280 Available
resources 1303680 2607360 2016

PCIe Block 3.53% 2.49% 3.17%
System Cache 12.10% 3.54% 6.25%

CTG 0.14% 0.07% -
ATS monitor 0.49% 0.16% -

VCK5000 Available
resources 899840 1799680 967

CPM 0.02% 0.09% 4.14%
PCIe Block 1.96% 0.76% 3.41%

System Cache 9.24% 4.14% 8.38%
ATS Switch 0.64% 0.44% -

CTG 0.24% 0.09% -

TABLE III
COMPARING CCIX AND PCIE READ/WRITE THROUGHPUT ON THE AU280

Size
(KiB)

Read-CCIX
(GiB/s)

Write-CCIX
(GiB/s)

Read-PCIe
(GiB/s)

Write-PCIe
(GiB/s)

1KiB 0.400 2.592 0.121 0.394
2KiB 0.487 4.065 0.152 0.883
4KiB 0.482 4.212 0.256 1.455
8KiB 0.486 3.145 0.354 2.942

16KiB 0.514 3.079 0.396 3.780

Our evaluation shows that on both the AU280 as well as the
VCK5000, the CCIX transfers have a better latency for reads
from the host in comparison to the PCIe-DMA transfers, as
long as the data transferred is shorter than 4 KiB. In both
cases, the speedup is due to the optimized packet protocol
that is used by CCIX. However, when writing to the host
memory from the FPGA using the optimized packet protocol,
CCIX incurs longer latency compared to the PCIe transfers,
as these writes participate in the coherency mechanism. Our
throughput measurements show a read throughput for CCIX,
relative to PCIe, of 3.3x, 1.29x, 0.87x for data set sizes of
1KiB, 16KiB, and 32KiB. Additional data points for read and
write throughput are shown in Table III.
Experiment 2: Cost of ATS. The capability to transparently
resolve virtual addresses simplifies the accelerator design and
host interface considerably. However, that operation can be
costly, as it might trigger a slow full page table walk on the
host if the translation requested is not present in one of the host
IOMMU’s TLBs. In Experiment 1, we examined accesses that
did not need address translations (noATS). But to examine the
cost of ATS, we have now constructed two access scenarios,
shown in Fig. 3: In the first (withATS), we force misses in
both the SC and ATC, thus always incurring ATS overhead.
In the second (noATS), we allow ATC hits, but still force an
SC miss in order to actually have a CCIX transaction take
place. The results show that especially for smaller transfers,
the ATS overhead can be significant, leading to a tripling of
access latencies on an ATC miss. For transfers of 32KB and
more, though, the transfer time begins to dominate the ATS
overhead.

1-255 (64KiB) 256-511
(128KiB)

512-767
(192KiB)

768-1023
(256KiB)

32
K

iB
12

8K
iB

51
2K

iB
2M

iB

10
00

>
10

00
>

La
te

nc
y

(n
s)

La
te

nc
y

(n
s)

La
te

nc
y

(n
s)

La
te

nc
y

(n
s)

FPGA latency
Host latency

Number of iterations

(C) 2MiB

(B) 32KiB

(A)

(A) Read from host (B) Write to host

Fig. 2. Comparing CCIX and PCIe read/write access latency on the AU280 and VCK5000

(A) Read from host (B) Write to host

Fig. 3. ATS-effect on the CCIX access latency for random accesses to the RA module from CTG module on Alveo U280 card and VCK5000

Fig. 4. Comparing read/write latency of CCIX-RA and ATS latency on Alveo
U280 card

To further investigate the ATS latency, we can exploit the
fact that the entire ATS mechanism is implemented in the
ATS Switch block of the SoC. We can thus monitor the
request/reply interface of that module to capture exact request-
response timings for the ATS operation itself. Fig. 4 shows
the CCIX access latency for blocks of 64 B (cache line
size), 128 B, and 4 KiB. Since the Linux PageSize is 4KiB,
these requests required only a single ATS translation each. By

increasing the size of the request, more translations are needed.
The initial access to the allocated buffer in host memory has
the longest latency. Later sequential accesses have less ATS
overhead, even when crossing onto another page at 4 KiB. We
assume that this is due to pre-translations being performed by
the host-IOMMU for the sequential accesses used here. For
the case of a repeated 64 B read, by comparing the latency
that is required by the host IOMMU to answer an ATS request
(≈ 617 ns, captured at the ATS Switch), and the known latency
for a 64B read under an SC miss (≈ 700 ns, from Fig. 3-(A)),
the ATC itself appears to take (2453− 617− 700 ≈ 1136 ns)
for its operation.

One way to improve the latency of CCIX traffic is to
mitigate the effect of address translation. This can be achieved,
for example, by using the Linux huge page support. This
will lead to larger pages, that, in turn, will have fewer page
boundary crossings requiring fresh translations. The N1-SDP
platform does support huge pages with different sizes (i.e.,
64KB, 2MB, 32MB, and 1GB) at the boot time. We employed
this approach in the database use-case (Section V) to improve
performance.
Experiment 3: Data-Locality. The use of CCIX allows the
accelerator to use its own cache(s), in confidence that they
will always be coherent with the host. To show the best-
case baseline performance of the two SoCs we evaluated the
case where all accesses are guaranteed to hit in the on-device

(A) Read from host (B) Write to host

(A) Read from host (B) Write to host

Fig. 5. The effect of data locality on the CCIX latency for AU280 and VCK5000

cache(s), called data-local in Fig. 5, and measure the latencies
of these hits. For comparison, we also show the data-remote
case which covers cache misses. The simpler cache hierarchy
in the AU280 achieves smaller latencies (write ≈ 80 ns, read
≈ 100 ns) than the two-level one on the VCK5000 (write
≈ 150 ns, read ≈ 170 ns) for smaller transfer sizes. For larger
transfers, though, the two-level hierarchy becomes faster.

Experiment 4: Coherency Efforts. In this scenario, the
application on the host allocates a shared buffer that is
simultaneously accessed and modified both by the host and the
accelerator. These concurrent accesses/modifications increase
the coherency efforts, and in turn, the access latency. A huge
page is used to avoid ATS overhead. As outlined in Algorithm
2, the hardware CTG and the software API simultaneously
modify cache lines in the shared buffer. Initially, we use a
buffer of 2 MiB for the measurements, which is then shrunk
down to 512 KiB, 128 KiB and 32 KiB, respectively, to
increase the degree of contention, and thus the efforts required
to maintain coherency. This shrinking of the buffer is shown
along the Y-axis at the left side of Fig. 6. For each of these
shared buffer sizes, we then perform 1024 accesses to random
addresses in the buffer from both host , using single CPU core,
and FPGA and track their latencies. As expected, contention
increases both with a larger number of accesses, as well as
with a shrinking size of the buffer. In both cases, the chance
of a coherency conflict that has to be resolved increases.
Interestingly, the additional coherency effort mostly affects
the host’s accesses, the latency of FPGA-side accesses stays
almost constant. This is examined in greater detail on the right
side of Fig. 6, which plots histograms of access times, now for
20,000 accesses, for the 32 KiB and 2 MiB shared buffer sizes.
While being longer, the remote accesses from the FPGA-side
have far less “jitter” (narrower distributions) than the local
host-side accesses. Note that the very short outliers for the
FPGA-side accesses are actually hits in the SC, for which
the probability is larger in the smaller 32 KiB than in the
larger shared buffer. In this experiment, only a single core
on the host accesses the shared buffer. To investigate further,
we used multiple cores on the host to modify and access the
shared buffer. Our evaluation shows that increasing the number

of cores from 1 to 3 for the 32 KiB address range actually
shrinks the local host-side average access latency from 333 ns
to 235 ns, due to more cache hits. On the other hand, the device
access latency grows from 674 ns to 741 ns due to more cache
misses. For the larger memory range, access times will again
stay almost constant.

Algorithm 2: Pseudo-code for stressing coherency
Function coherency_stress_API (iterations)

buffAddr = allocateBuffer(hugePage);
for iterations do

hostPtr = buffAddr + rand();
FPGAPtr = buffAddr + rand();
FPGA Latency(start_CTG (FPGAPtr, length));
host Latency(write(dummyData, &hostPtr, length));

end
end

Experiment 5: Atomic Operations. CCIX is also able to
perform atomic transactions between RA (e.g., AU280) and
HA (e.g., N1-SDP) by supporting AtomicStore, AtomicLoad,
AtomicSwap, and AtomicCompare operations. They are con-
structed on the RA-side as multi-step sequences of AXI4-
MM requests. Our evaluation shows that an AtomicCompare,
initiated from the host, requires 50 ns, while one initiated from
the accelerator takes 740-800 ns.

V. DATABASE APPLICATION

After these detailed low-level measurements, we now exam-
ine the use of CCIX at the application-level for scenarios re-
quiring fine-grained host-accelerator interaction. As a realistic
scenario, we selected the domain of database acceleration. The
studied system is neoDBMS (Fig. 7) [15], [16], a PostgreSQL-
based DBMS using FPGA-accelerated NDP. In this manner,
computations are moved closer to the storage (e.g., Flash,
NVM), which is assumed to be directly connected to the
accelerator. Using NDP reduces data transfers and increases
overall system performance. However, NDP in database ap-
plications faces some challenges such as synchronization and
transactional consistency. In the database, there are two types
of transactions in NDP mode, read-only NDP and update NDP.
In read-only NDP, to make transactions intervention-free, each

256 512 768 1024

32
 K

iB
12

8
K

iB
51

2
K

iB
2

M
iB

10
00

>
10

00
>

La
te

nc
y

(n
s)

La
te

nc
y

(n
s)

La
te

nc
y

(n
s)

La
te

nc
y

(n
s)

FPGA latency
Host latency

Number of Accesses

2 MiB

32 KiB

(A)

0

(B)
256 512 768 1024

32
 K

iB
12

8
K

iB
51

2
K

iB
2

M
iB

10
00

>
10

00
>

La
te

nc
y

(n
s)

La
te

nc
y

(n
s)

La
te

nc
y

(n
s)

La
te

nc
y

(n
s)

FPGA latency
Host latency

Number of Accesses

2 MiB

32 KiB

(A)

0

(B)
Fig. 6. Coherency efforts for increasing host-FPGA access contention using a single CPU core. Left (A): 1024 simultaneous random accesses in an address
range shrinking from 2 MiB to 32 KiB. Right (B): Histograms showing “jitter” of access latencies for the two address ranges.

neoDBMS

NDP
(update)

H
as

h
fu

nc
tio

n Send CCIX-CAS

Send resp.

Get lock

NDP
Scheduler CCIX-HA

AU280

neoDB

NVM
(DDR &

emulator)

HW-acceleratorHW-acceleratorVisibility checker

NDP-update

NDP-read

Result
handler

PCIe-DMA (VC0) CCIX-RA (VC1)

NDP-updateNDP-update

NDP-read NDP-read

Hash function

Get lock

Send CCIX-CAS

Send resp.

Lo
ck

 h
an

dl
er

Control
unit

Executor

NDP
Scheduler Storage Manager CC-SVM

PCIe-DMA (VC0) CCIX-HA (VC1)

AU280

NDP-Engine

NDP
(update)

NDP
(update)Lo

ck
 h

an
dl

er

Executor

Storage
Manager

CCIX-RA

neoDB

NDP
(update)

H
as

h
fu

nc
ti

on

Send CCIX-CAS

Send resp.

Get lock

NDP
Scheduler

CCIX-HA

AU280

NDP
(update)

NDP
(update)

Lo
ck

 h
an

dl
er

Executor

Storage Manager

CCIX-RA

cc-SVM

CCIX

neoDB

NDP
(update)

H
as

h
fu

nc
ti

on

Send CCIX-CAS

Send resp.

Get lock

NDP
Scheduler

CCIX-HA

AU280

NDP
(update)

NDP
(update)

Lo
ck

 h
an

dl
er

Executor

Storage Manager

CCIX-RA

CCIX

Fig. 7. neoDBMS architecture with shared lock-table

transaction operates against its own snapshot. This requires to
first collect all DBMS updates in main-memory on the host,
and then ship the changed DBMS state to the accelerator with
each NDP-invocation [15].

In update NDP, making transactions intervention-free is
challenging due to concurrent modifications from both the
host and the accelerator to the same record. Initially, the same
current version of the record is present on the accelerator and
in the memory of the DBMS. If both simultaneously create a
new successor version of the record, this results in two current
version branches, causing unresolvable inconsistencies called
a write/write conflict. One way to mitigate this inconsistency
would be to exclusively lock the entire database table before
execution, but this would severely limit concurrency. Another
way is using a fine-grained cache-coherent shared lock ta-
ble supporting record-level locking, so that each individual
record’s version can be locked to synchronize the modifica-
tions between DBMS and accelerator.

A. Shared Lock Table

To enable consistent and intervention-free update NDP
operations between DBMS and accelerator, cache-coherent
invalidation and synchronization mechanisms with low latency
are necessary. To handle the write/write conflicts described
above in neoDBMS, we realize a shared lock table by employ-
ing a CCIX-based solution. Without CCIX, synchronization
would be far more costly and would most likely waste any
performance gains achievable by NDP processing. To this end,
our modified neoDBMS allocates a shared lock table in host
memory and both parties, the host and the FPGA, request a
lock on the record before updating it. neoDBMS relies on the
huge page (i.e., HugeTLB Page) support in the Linux kernel
to request physically contiguous memory pages used for the
allocation of the lock table and makes sure they are pinned.
As the size of the lock table is relatively small, and entries
are very frequently accessed over the entire run-time of the
DBMS, pinning the table in physical host memory is efficient.

Acquiring a row-level lock is performed by inserting an
entry in a queue located in the hash bucket. The queue can
thus contain multiple lock entries at the same time. The bucket
position is calculated by applying a hash function to the record
version identifier. Fig. 8 shows an example of two concurrent
processes, one on the host and one on the device, requesting
a lock of the same record version (i.e, Rv2). Applying the
hash function on the record version identifier results in both
processes trying to insert a lock into the same locking queue
located in the same hash bucket, here numbered 2. In this
example, first, the device requests a lock and immediately
acquires the lock. The first slot represents the process currently
holding the lock and which is allowed to modify the data.
Later, the host tries to also request the same lock. Because
the first slot of the lock queue is already taken, the host can
not acquire the lock, and appends its request at the tail of the

host-RV2

 - Acquires lock
 - Continues

neoDB

NDP
(update)

H
as

h
fu

nc
ti

on

Send CCIX-CAS

Send resp.

Get lock

NDP
Scheduler

CCIX-HA

AU280

NDP
(update)

NDP
(update)

Lo
ck

 h
an

dl
er

Executor

Storage Manager

CCIX-RA

…

Shared Lock Table

h(rec_version_id)

…Hash BucketLo
ck

h(rec_version_id) Lock

Shared Lock Table

Free
Slot

Free
Slot

Free
Slot

…

…

Locking Queue

host-RV2

 - Requests lock
 - Waiting

Lock

Shared Lock Table

Free
Slot

Free
Slot

Free
Slot

…

…

Locking queue (Hash bucket)

device-RV2

 - Request lock
 - Acquires lock
 - Continues

Host Device

Entry 0

Entry 1

Entry n

2

2

2

2

Free hash
bucket

Shared Lock Table

…

Acquire lock
T_v2-host

T_v2
device

T_v2
device

T_v2
host

T_v2
host

Release lock
T_v2-host

Request
(version#)

Locking Queue

request lock
T_v2-host

waiting

request lock
T_v2-device

Acquire lock
T_v2-device

TX_host TX_device

1

n

0

…

1

1

1

1

Currently
holding lock

Free slot

Release lock
(Shifting queue)

Shared Lock Table

Request lock
host-TV2

(Waiting)

T_v2
host

Release lock
T_v2-device

Request Lock (record version
identifier)

Locking queue (Hash bucket)

Request &
Acquires lock
T_v2-device

Host acquires
Lock

(Continues)

Host Device

1

n

0

…

1

1

1

1

Currently
holding lock

T_v0
device

…

Release lock
(Shifting queue)

T_v2
device

T_v2
device

T_v2
host

Hash key
(record version identifier)

device-RV2

 - Release lock

host-RV2

device-RV2

device-RV2

host-RV2 host-RV2

 - Acquires lock
 - Continues

host-RV2

 - Requests lock
 - Waiting

Locking queue (Hash bucket)

device-RV2

 - Request lock
 - Acquires lock
 - Continues

Host Device

2

2

2

2

Currently
holding lock

Free slot

Release lock
(Shifting queue)

Hash key
(record version identifier)

device-RV2

 - Release lock

host-RV2

device-RV2

device-RV2

host-RV2

Fig. 8. An example for a single hash-bucket (for the hash key 2) in the
shared-lock table, with concurrent lock requests from the host and the device
to the same record version being queued in the bucket.

locking queue and waits. As soon as the device is finished, it
releases the lock by shifting the entire queue left, granting the
lock now located at the queue head to the next process. The
lock is then acquired by the host and execution can continue.

On the FPGA, a Bluespec module has been developed to
handle lock requests from the NDP-update module. This mod-
ule creates a hash-table organized lock-table on the provided
virtual address. The address of the allocated buffer and the lock
table are specified by neoDBMS. The module receives/sends
the lock requests/responses via streaming interfaces. After
receiving a lock request, the module creates a CCIX Atomic
Compare and Swap (CAS) operation to place the lock and
update the queue, which the CCIX-RA on the AU280 then
sends to the host. With the cache coherent shared-lock table
and the employed CCIX atomic operations, we achieve a fine-
grained cooperative processing of the data between DBMS and
FPGA.

B. Evaluation

To evaluate the performance of the CCIX-based synchro-
nization mechanism, we measured the end-to-end lock request
latencies for neoDBMS running on the N1-SDP platform and
the AU280-based accelerator as shown in Fig. 9. Since the size
of the shared-lock table is larger than a Linux 4 KiB page,
there is a high risk of accesses incurring long ATS overheads.
This has been avoided here by using a huge page instead.
The hardware module performs a single request independent
of the actual shared lock operations to “warm-up” the ATC
with a physical translation for the huge page. All actual lock
requests will then have ATC hits and do not suffer from ATS
overheads.

For the experiment, both neoDBMS (on a single CPU core)
and the accelerator then continuously create lock requests,
while we increase the contention on the other side. Under low
contention, neoDBMS is able to lock a record version in 80 ns
in the locally resident lock table. Under high contention, the
local locking latency of neoDBMS increases to 200-250 ns.
Locking from the accelerator of course takes longer, as remote
accesses are performed to host memory, but the observed

1-255 (62.5KiB) 256-511 (125KiB) 512-767 (192KiB) 768-1024 (250KiB)

32
K

iB
12

8K
iB

51
2K

iB
2M

iB

10
00
>

10
00
>

La
te

nc
y

(n
s)

La
te

nc
y

(n
s)

La
te

nc
y

(n
s)

La
te

nc
y

(n
s)

CTG latency
Host latency

Number of iterations

(C) 2MiB

(A)

0% 50% 100%

Fig. 9. The effect of parallel accesses to the shared-lock table

latencies of 750 to 800 ns are typical for CCIX atomic CAS
operations (see Experiment 5 above) and, most importantly,
are unaffected by increasing contention. While this confirms
the behavior already observed in Experiment 4 above, it
is interesting to note that it applies not just to the simple
read/write operations of Experiment 4, but also to the more
complex atomic CAS accesses used here.

VI. CONCLUSION

We have investigated the use of CCIX for fine-grained
interaction between a host and FPGA-based accelerators. In
our results we show, that especially for smaller transfer block
sizes, shorter latencies are achievable than with PCIe. Further-
more, the transparent integration of address-translation with
CCIX operations enables the cache-coherent Shared Virtual
Memory (ccSVM) programming model between hosts and
FPGA accelerators that has traditionally been the domain only
of highly specialized platforms, such as the Convey HC-class
machines. For the database use-case, it can be seen that CCIX
remote accesses, while slower than local ones, do not suffer
even for higher degrees of contested access to shared data
structures such as the lock table.

As can also be seen from our results, optimization potential
is present on multiple levels of the hardware/software stack.
E.g., we have already demonstrated the use of huge pages
to reduce address translation overhead. It would also be
possible to insert more efficient application-specific translation
mechanisms into the SoC, as all of translation occurs in the
ATS Switch module, that, with its well documented interfaces,
is amenable to be substituted with a custom version. This
could be exploited, e.g., in the DBMS use-case of Sec. V
to completely avoid ATS even for random access patterns
exceeding the ATC capacities. There also appears to be
optimization potential in the ATC itself, but this will require
a larger engineering effort as it is more tightly integrated with
the vendor-provided blackboxed part of the system.

ACKNOWLEDGMENT

The authors would like to thank Millind Mittal and
Sunita Jain from AMD (Xilinx) Inc. for their support and
the donations of hardware and software. This research was
funded by the German Research Foundation (DFG) as project
#419942270 neoDBMS.

REFERENCES

[1] D. de la Chevallerie, J. Korinth, and A. Koch, “fflink: A lightweight
high-performance open-source pci express gen3 interface for reconfig-
urable accelerators,” in ACM SIGARCH Computer Architecture News.
ACM, 2015.

[2] PCI Express Base Specification Revision 6.0, PCI-SIG, January 2022.
[3] C. C. Inc., “An introduction to CCIX - white paper,” 2016.
[4] D. Koenen and J. Defilippi, “CCIX: a new coherent multichip inter-

connect for accelerated use cases,” http://www.armtechforum.com.cn/
attached/article/C7 CCIX20171226161955.pdf, 2017.

[5] B. Benton, “Ccix, gen-z, opencapi: Overview & comparison,” in Open-
Fabrics Workshop, 2017.

[6] D. D. Sharma, “Compute express link,” CXL Consortium White
Paper.[Online]. Available: https://docs. wixstatic. com/ugd/0c1418
d9878707bbb7427786b70c3c91d5fbd1. pdf, 2019.

[7] M. Slota, “Opencapi technology,” in OpenPOWER Summit, 2018.
[8] Gen-Z Core Specification 1.0, Gen-Z Consortium, October 2018.
[9] P. Papaphilippou and W. Luk, “Accelerating database systems using

fpgas: A survey,” in 2018 28th International Conference on Field
Programmable Logic and Applications (FPL), 2018, pp. 125–1255.

[10] M. Owaida, D. Sidler, K. Kara, and G. Alonso, “Centaur: A framework
for hybrid cpu-fpga databases,” in 2017 IEEE 25th Annual Interna-
tional Symposium on Field-Programmable Custom Computing Machines
(FCCM), 2017, pp. 211–218.

[11] System Cache v5.0, Xilinx Inc., November 2021, https:
//www.xilinx.com/support/documentation/ip documentation/system
cache/v5 0/pg118-system-cache.pdf.

[12] Versal ACAP CPM CCIX, Xilinx Inc., November 2020,
https://www.xilinx.com/support/documentation/architecture-manuals/
am016-versal-cpm-ccix.pdf.

[13] Versal ACAP Integrated Block for PCI Express v1.0, Xilinx
Inc., December 2021, https://www.xilinx.com/support/documentation/
ip documentation/pcie versal/v1 0/pg343-pcie-versal.pdf.

[14] J. Korinth, J. Hofmann, C. Heinz, and A. Koch, “The TaPaSCo open-
source toolflow for the automated composition of task-based parallel
reconfigurable computing systems,” in Applied Reconfigurable Comput-
ing, 2019.

[15] A. Bernhardt, S. Tamimi, F. Stock, C. Heinz, C. K. Tobias Vinçon,
A. Koch, and I. Petrov, “neodb: In-situ snapshots for multi-version dbms
on native computational storage,” Proc. ICDE, 2022.

[16] T. Vinçon, C. Knoedler, L. Solis-Vasquez, A. Bernhardt, S. Tamimi,
L. Weber, F. Stock, A. Koch, and I. Petrov, “Near-data processing in
database systems on native computational storage under htap work-
loads,” Proc. VLDB, 2022.

