
Exploiting High-Bandwidth Memory for FPGA-
Acceleration of Inference on Sum-Product Networks

Lukas Weber∗, Johannes Wirth∗, Lukas Sommer∗, Andreas Koch∗
∗Embedded Systems and Applications Group, TU Darmstadt, Germany

∗[surname]@esa.tu-darmstadt.de

Abstract—Due to the memory wall becoming increasingly
problematic in high-performance computing, there is a steady
push to improve memory architectures, mainly focusing on better
bandwidth as well as latency. One of the results of this push is
the development of High-Bandwidth Memory (HBM) which is an
alternative to the regular DRAM typically used by accelerator-
cards.

This work adapts an existing accelerator architecture for
inference on Sum-Product Networks (SPN) to exploit the HBM
present on more recent high-performance FPGA-accelerator
cards. The evaluation shows that the use of HBM enables almost
linear scaling of the performance due to the embarrassingly
parallel nature of batch-wise SPN inference. It is also shown
that the only hindrance to this scaling is the limited bandwidth
available for data-transfers between host and FPGA. Even
with this bottleneck, the prior FPGA-based implementation is
outperformed by up to 1.50x (geo.-mean 1.29x). Similarly, the
CPU and GPU baselines are outperformed by up to 2.4x (geo.-
mean 1.6x) and 8.4x (geo.-mean 6.9x) respectively.

Based on the evaluation, the scaling potential of HBM-based
FPGA-accelerators is explored to give an outlook on what is to
come with future generations of PCIe-based interfaces.

Index Terms—Sum-Product Network, Probabilistic Models,
Machine Learning, High-Bandwidth Memory, FPGA

I. INTRODUCTION

Artificial intelligence and machine learning (ML) have
become pervasive in our every-day life, being deployed in
applications such as voice-based smart assistants or in medical
applications. Most of the progress made in recent years has
not only been enabled by improvements to the ML models
themselves, but also by the constant improvement of the execu-
tion hardware, which needs to provide sufficient computational
power to train models with multiple billions of parameters, and
compute inference quickly enough for real-time applications.

Much work on the acceleration of machine learning models
has focused on (deep) neural networks (NN). Next to GPUs
and dedicated ASIC-accelerators built for the single purpose
of accelerating machine learning training and inference, such
as Google’s TPU or Graphcore’s IPU, FPGAs have proven
to be a compelling platform for deep neural network (DNN)
acceleration [1].

However, despite their broad adoption, deep neural networks
can still suffer from serious limitations in real-world usage sce-
narios. This has sparked an increased interest in probabilistic
models, which are much better able to cope with real-world
uncertainties. While inference for many probabilistic mod-
els is intractable in the general case, so-called Sum-Product
Networks (SPN) [2] combine the strengths of probabilistic

models with tractable inference for real-world applications.
These properties make SPNs not only an interesting candidate
model for ML applications, but also an attractive application
for acceleration on different target-platforms, including GPUs
[3]–[5], custom ASIC processors [3] and also FPGAs [4], [6],
[7].

In our prior work, we developed an architecture for high-
throughput inference in Sum-Product Networks, based on
FPGAs available in Amazon’s AWS cloud [8]. As a single
instance of the pipelined accelerator for SPN inference did
not fully exploit the available FPGA resources, we developed
a multi-core architecture, with multiple identical accelerators
conducting inference in parallel. However, even though we
employed up to four parallel memory banks, the memory
accesses during the computations quickly became a bottleneck,
in particular due to the relatively low arithmetic intensity of
SPN inference.

A promising alternative to overcome this limitation is the
use of High-Bandwidth Memory (HBM), which FPGA vendors
are now increasingly integrating into their products. Being
composed of dozens of small, independent blocks of memory,
HBM allows multiple memory accesses to be performed in
parallel and thus increases the available memory bandwidth.

This work presents our contribution, which is an adapted
accelerator architecture that exploits the highly parallel in-
terface of HBM on FPGAs for high-throughput inference
for Sum-Product Networks. The pipelined multi-core accel-
erator architecture is automatically generated from an SPN
description, and is automatically integrated in a heterogeneous
system. In addition, the hardware accelerator is combined with
an efficient, multi-threaded software runtime interface on the
host, to ensure a high-throughput supply of input data for the
FPGA accelerator. Our contribution here includes the adapted
overarching accelerator architecture, as well as the improved
software runtime interface.

II. BACKGROUND

A. Sum-Product Networks

In recent years, research interest in machine learning and
artificial intelligence has been very high. Especially DNNs
have been researched and improved to a great extent. A
different, less explored model are Sum-Product Networks
(SPN) [2]. Stemming from the class of probabilistic graphical
models, they are able to capture joint probability distribu-
tions over many different random variables. Their two major



(a) Sum-Product Network (b) Mixed Sum-Product Network

Fig. 1. Different types of SPNs. (a) shows a typical SPN with Gaussian leaf
nodes. (b) shows a Mixed SPN using histograms to approximate the gaussian
distributions of (a).

advantages are their tractability and their ability to handle
uncertainty. With regard to tractability, inference on SPNs can
be performed in linear time w.r.t. the size of an SPN. With
regards to uncertainty, SPNs are able to handle uncertainties
like missing features or unclear classifications, due to the fact
that they compute actual probability values. A very interesting
example for this is discussed in the work by Peharz et al.
[9] which uses randomly generated SPNs for classification
tasks. Confronting an SPN trained for the image classification
benchmark MNIST with out-of-domain images yields lower
probabilities and thereby indicates that the SPN is uncertain
about the resulting classification.

In general, SPNs are directed acyclical graphs, comprising
three distinct node types: 1) The leaf nodes represent univariate
probability distributions over single random variables. 2) Prod-
uct nodes represent factorizations of independent variables. 3)
Sum nodes represent mixtures of distributions.

Using these three node types, SPNs are capable of capturing
complex joint probability distributions. To achieve this, the
general process is as follows: For each dataset, an inde-
pendence check is performed to determine if there are any
independent variables. If so, this is represented in the SPN
using a product node. If this is not the case, the dataset
is divided by clustering. The resulting sub-datasets are then
recursively traversed, until the data can be represented using a
single univariate distribution. Due to this very simple structure,
SPNs are a very simple and concise way of representing
complex joint probability distributions. To perform inference
on an SPN, a simple bottom-up evaluation has to be performed.

In this work, we rely on a specific flavor of SPNs called
Mixed SPNs [10]. The main difference between pure SPNs and
mixed ones is the fact that the leaf nodes are approximated us-
ing simple histograms (c.f. Fig. 1). These histograms can easily
be mapped to hardware as shown in [4], [6], [11]. Specifically,
we will build upon our prior work [8], which explored the
application of SPNs in a heterogeneous reconfigurable cloud
(Amazon AWS F1 Instances with FPGA accelerators).

B. High-Bandwidth Memory

In their current UltraScale+ series, Xilinx offers some FP-
GAs which include High-Bandwidth-Memory (HBM) in addi-
tion to conventional off-chip SDRAM. As the name implies,

this new type of memory provides significantly more memory
bandwidth compared to off-chip SDRAM: According to Xilinx
the HBM used on their FPGAs can achieve up to 460GB/s.
However, this number can only be achieved when issuing
multiple memory requests in parallel, making it necessary to
adapt existing architectures in order to actually exploit the
additional bandwidth.

The HBM on these Xilinx FPGAs has a capacity ranging
from 4GB to 16GB and is split into two stacks. Each stack
features 16 memory channels with a width of 256 bit, each
connected to its own memory region. By default, each of these
channels can only access its associated memory region. Each
of these memory channels is exposed to the user logic via one
AXI3 interface, resulting in a total of 32 AXI3 interfaces for
the HBM.

0 2 4 6 8 10 12
Throughput (GiB/s)

32 KiB

1 MiB

32 MiB

Ac
ce

ss
 S

ize

HBM Read/Write Performance by Access Size

 450 MHz w/o Smart Connect
 225 MHz w/ Smart Connect

Fig. 2. Maximum throughput when issuing linear read and write accesses
in parallel to one HBM memory channel for two different configurations and
different request sizes. The first configuration runs the block generating the
accesses with the 450 MHz clock used by the HBM and natively connects
both. The second configuration runs the PE at half the clock frequency but
the interface width is doubled. An AXI Smart Connect is used to perform
clock- and data-width-conversion.

Xilinx offers an optional crossbar which, when enabled,
hides the partitioning from the user and allows to access
the entire memory space from each AXI interface. However,
this comes at the cost of additional latency and decreased
performance, where the actual impact is highly dependent on
the concrete access pattern. For the rest of this work, we will
not use the crossbar, since we aim to explore the maximally
achievable performance.

Figure 2 shows the performance for one HBM memory
channel. The performance data is generated using a special
benchmark hardware block which generates linear memory
reads and writes in parallel, as this is the access pattern
used by our SPN accelerators. There are two major insights:
First, the throughput caps at a request size of 1 MiB, as no
further performance improvements are observed beyond this.
And second, there is no significant performance benefit when
running the benchmark block at 450 MHz with a connection
to the HBM at its native interface width versus running the
block at half the clock frequency and in turn doubling the
interface width. This is a valuable insight, as it is often not
possible to run user logic at 450 MHz. Because we do not
use the crossbar, the different HBM memory channels are



completely independent and performance scales linearly w.r.t.
to the number of channels/accelerators used.

III. APPROACH

In this section, we will introduce our approach for scaling
up the number of SPN-accelerators using HBM. Additionally,
we will discuss the motivation and reasoning for the upscaling.

A. Motivation

Considering the theoretical advantages of SPNs over other
machine learning models, they have an obvious place in many
real-world applications. The fast inference that can be achieved
using FPGA-accelerated SPNs is an additional advantage.
Since FPGAs are not as wide spread as GPUs, using the
reconfigurable cloud is also a reasonable choice (as described
in [8]). Unfortunately, looking at the architecture used by [8],
there is an obvious problem: Due to the size of the SPN
accelerators, as well as their memory-bandwidth requirements,
it becomes increasingly hard to map them to Amazon AWS
F1 instances. Looking at the NIPS80 benchmarks from [8],
we can see that combining bigger accelerators with multiple
memory controllers leads to a trade-off: Either we sacrifice
memory controllers, which limits the overall throughput of the
system by reducing the amount of data that can be accessed
in parallel. Or, we reduce the number of accelerators, which
means that fewer inferences can be handled concurrently.
Specifically, the logic resources on the F1 are insufficient to
hold the combination of four NIPS80 accelerators with four
separate memory controllers. Thus, only two accelerators were
used, which in turn slowed performance for that benchmark.
Alternatively, it was possible to use a single memory controller
in combination with three SPN accelerators, which also had a
performance cost.

If we take into account the advantages of HBM memory
(described in Section II-B), it seems very reasonable to replace
the use of on-board DRAM with use of on-chip HBM. The
HBM controllers are implemented as hard IP and thus do
not consume FPGA resources. This, in turn, should allow
the use of more accelerator-cores. Since soft memory con-
trollers are also sensitive to clocking constraints, their removal
should also improve the problem of globally deteriorating
clock frequencies encountered in [8]. Specifically, the use of
additional soft memory controllers had a larger impact on the
achievable clock frequency than the addition of extra SPN
accelerators. Last but not least, the independent HBM blocks
can be exclusively assigned to individual SPN accelerators,
avoiding interference between them. This should also be
another advantage over the shared use of on-board DRAM.

B. SPN-Accelerator

Fundamentally, the basic SPN accelerator-cores have a
simple architecture. The accelerator is connected to a memory
via a AXI4 Full interface, which typically enables access to
the on-board DRAM. The same interface can be used to access
on-chip BRAM or HBM without requiring big changes to the
accelerator. To ensure compatibility to all kinds of AXI-based

Sample Buffer

Result Buffer

+

× ×

Load Unit

Store Unit

C
on

tro
lle

r

AXI4 Full Master

AXI4 Lite Slave

Fig. 3. Architecture of the SPN-Accelerator

memories, we made our interface generation more generic to
also cover HBM memories. Accelerators are controlled by an
AXI4 Lite Interface, which exposes a simple register file to
the user. Due to the increased address-width of the HBM-data-
channel, we had to adapt the control registers to 64 bit. Within
the accelerator (also depicted in Fig. 3), there are multiple
submodules which orchestrate the batch-wise inference: First,
the Load Unit loads the data from the memory and pushes
it into the Sample Buffer. This buffer collects incoming data
until a complete vector of input values has been built. Then,
the vector is pushed into the SPN Datapath. The result values
of the SPN Datapath are collected in a Result Buffer. The
result buffer collects 64 bit result values, until a 512 bit word
is complete. This word is then pushed into the Store Unit,
which will handle the AXI4 Write to store the results back to
memory.

The most important part of the accelerator is the SPN Dat-
apath, which can be generated automatically from a textual
description of the SPN. The textual description is compatible
with the SPFlow library [12], which enables a very simple and
streamlined development toolflow. SPNs can be easily trained
and evaluated using SPFlow, afterwards exporting them to
the textual description for hardware-generation. In addition to
the SPFlow-compatibility, the generator offers great flexibility
with regards to the used internal number format. In prior
work, the different number formats were discussed in more
detail [4], but in general, the generator supports a Custom
Floating Point (CFP) format as well as a Logarithmic Number
System (LNS) format. Both formats can be configured at a
very fine granularity. For CFP, the number of exponent- and
mantissa-bits can be configured, as well as the used rounding
scheme. For both formats, the generated digital arithmetic is
optimized towards the use on FPGAs. The optimizations of
LNS are further discussed in [11], while the CFP format is
described in detail in [4]. For this work, we chose the suitable
configurations determined in [4].

IV. IMPLEMENTATION

To enable the use of HBM, we have made two distinct
changes to our prior work: First, we adapted the on-chip
architecture to use HBM in a manner that enables the use



of many parallel SPN accelerators. In addition, we made
some improvements to the software-interface to ensure that the
parallelism provided by the many HBM channels is actually
exploited.

A. On-Device Architecture

We use the open-source framework TaPaSCo [13] as a basis
for our architecture. However, several modifications had to be
made to accommodate the requirements for our use-case.

The biggest change is, of course, the use of HBM instead
of off-chip DDR-SDRAM memory. We use a dedicated HBM
block (and thus memory channel) per SPN accelerator. How-
ever, it is not possible to run the SPN accelerators at the 450
MHz of clock frequency used by the HBM. In order to achieve
the same memory throughput, we run the accelerators at the
more easily achievable half frequency (225 MHz), but double
the interface width to 512 bit. As discussed in Section II-B,
this indeed does not affect memory performance. We use an
AXI SmartConnect between the accelerator and the HBM,
which is responsible for data-width- and clock-conversion.
It also performs protocol conversion, as the accelerators use
AXI4, while the HBM only supports AXI3. Additionally,
we employ register slices on these AXI connections where
necessary, to achieve routability. This setup ensures that there
are no unnecessary dependencies between the accelerators
which might impact performance.

B. Parallel Runtime

To allow users to easily interface with the SPN inference
accelerators on the FPGA, we have developed a software
runtime, based on the TaPaSCo API. In contrast to prior work,
where important parameters and information had to be sup-
plied manually by the user, the new software runtime can now
query the TaPaSCo system and the accelerator itself for these
parameters, making it easier to interact with the accelerator. To
this end, the accelerator was extended with a second execution
mode to read out the configuration parameters specified at
synthesis time.

In addition to providing an easy-to-use interface to the user,
the second important task of the runtime is to orchestrate the
execution of the accelerator instances on the FPGA.

As described in Section IV-A, accelerator instances on the
FPGA are directly coupled to a dedicated HBM memory chan-
nel per instance, i.e., each accelerator instance only has access
to a single HBM memory block. However, TaPaSCo currently
does not support to split the device address space into distinct
memory regions, so we cannot rely on TaPaSCo’s memory
management API to allocate and manage the HBM address
space. Instead, our SPN runtime implements its own thread-
safe device memory manager, which allows to manage the
distinct HBM memory blocks separately. The device memory
manager in our runtime supports allocation and freeing of
memory blocks in a specific HBM block, making it possible
to establish distinct address regions for each HBM block.

Prior work [8] also showed that overlapping the data-
transfers between host and device with the execution on the

accelerator can reduce overall execution time. To implement
such a scheme, each compute job is broken down into multiple
sub-jobs, according to an user-specified block-size. Each CPU
thread then performs the same sequence of tasks: First, the data
is transferred to the on-chip HBM. Then the SPN-accelerator
is invoked and the CPU-thread waits for it to finish. As soon
as the accelerator finishes the inference task, the CPU thread
triggers the transfer of the results from HBM to the host.

By assigning multiple CPU threads to one accelerator in-
stance on the FPGA, we can effectively overlap data transfers
and computations, as one thread will be able to perform data
transfers for block n+1, while another thread is waiting for the
FPGA accelerator instance to complete computation of block
n.

In the prior work, up to four threads per SPN accelerator
were used to achieve maximum throughput. In our current
implementation, measurements have shown that the DMA over
PCIe bandwidth is already fully utilized with just two threads
per SPN accelerator.

V. EVALUATION

To evaluate how the use of HBM impacts SPN inference, we
will first take a look at the hardware utilization and (potential)
scaling capabilities of our approach. Afterwards we compare
the results against our prior work focusing on AWS F1 [8],
which mainly assesses the performance of SPN inference in
a cloud computing setting. For all benchmarks we rely on
datasets from the well-known NIPS corpus1.

A. Resource Utilization

Compared to our prior work, there are three significant
changes which impact the resource utilization: 1) Due to
the exclusive use of HBM, it is not necessary to include
soft DRAM controllers in our design. The HBM controllers
are hardened IP, which means they do not require logic
resources. Conversely, using a soft DRAM controller requires
a significant amount of FPGA-resources. 2) While we are
using the same SPNs as [8], we exploit additional prior work,
which made the internal arithmetic format more flexible w.r.t.
to the bitwidth, and also optimized the arithmetic for the
SPNs [4], [11]. 3) Our evaluation was performed using a
Bittware XUP-VVH accelerator card, which features a Xilinx
UltraScale+ VU37P FPGA. In comparison, Amazon AWS
F1 instances feature a similar FPGA, which does not have
HBM capabilities. Both FPGAs are from the UltraScale+
series, but the AWS FPGA has slightly fewer logic resources.
Additionally, all designs targeting the F1 instances have to
include a shell for the host interface, which also incurs a
resource overhead.

In addition to these differences, the results provided by
[8] use varying numbers of SPN accelerators and memory
controllers. For a valid comparison, we initially limit the
scope to benchmarks with four accelerator-instances with a
corresponding memory channel each (i.e., up to and including

1http://archive.ics.uci.edu/ml/datasets/bag+of+words



NIPS40). To contrast these with our new HBM-capable ar-
chitecture, we built corresponding designs that feature four
accelerator-instances, each connected to a dedicated HBM
channel. The results are shown in Table I.

It is obvious that our new approach is more resource
efficient in almost all resource types. Interestingly, the ac-
celerators used in [8] generally require fewer LUTs used as
Memory. The change to the custom floating point arithmetic
here (originally developed in [4]) could explain this change.
In terms of LUTs used as Logic, BRAM and DSPs, our work
typically requires approx. 66% fewer resources. LUTs used
as memory are slightly increased (except for NIPS40). The
number of registers used here is roughly 50% less than in [8].

Overall, the resource requirements have vastly decreased
in comparison to [8]. This opens up the potential to further
replicate the accelerator to scale up. This allows us, e.g., to
fit up to eight NIPS80 accelerators on the FPGA compared to
only two in [8].

B. Performance Scaling

To describe the scaling of our architecture, we take a closer
look at the very small NIPS10 benchmark. For each processed
sample, the input consists of 10 single-byte values. The result
is a single double-precision value. This means that each
processed sample entails a total data transfer of 144 bits. Using
a single SPN accelerator, the architecture is able to process
133,139,305 samples per second. Multiplying by the number
of input and result bits per sample reveals that the accelerator
requires 2.23 GiB/s of memory bandwidth. Given the HBM
performance discussed earlier (c.f. Fig. 2), this shows that a
single HBM channel should easily be able to provide the data
required for a single accelerator. Hypothetically, linear scaling
should be possible to at least 32 accelerators, due to the 32
HBM channels (and completely disregarding the limited logic
resources).

To test this hypothesis, we ran multiple performance bench-
marks for each of the benchmark SPNs and measured the end-
to-end execution time required for computing inference over
100,000,000 samples using up to eight concurrent SPN cores,
each controlled by up to two control-threads. From the results,
we conclude that using more than one control-thread only
improves performance for less than four accelerators. Thus,
all of the results presented in this section are measured with
only one dedicated control-thread per SPN accelerator. The
corresponding benchmark results are visualized in Fig. 4.

If we look at the right side of Fig. 4, the scaling for NIPS10
is obviously slowing at five or more SPN accelerators. Adding
additional accelerators after that point does not yield any
significant performance improvements. Using five accelerators,
we are able to process 614,654,595 samples per second, which
in turn requires approx. 10.3 GiB/s of memory bandwidth.
Due to the use of up to eight independent HBM channels
with approx. 12 GiB/s each, the available memory bandwidth
should not be an issue.

To further investigate this point we performed a separate
set of benchmark runs. In the second run, we disregarded the

1 2 3 4 5 6 7 8
PE Count

0.0

0.5

1.0

1.5

Sa
m

pl
es

 p
er

 S
ec

on
d

1e9 w/o data-transfers

1 2 3 4 5 6 7 8
PE Count

w/ data-transfers
Scaling by PE Count w/ and w/o host-to-device data-transfers

Example
NIPS10
NIPS20
NIPS30
NIPS40
NIPS50
NIPS60
NIPS70
NIPS80

Fig. 4. Comparison of peak performance in samples per second. On the
left, host-to-device data-transfers are excluded to disregard a PCIe-based
bottleneck. On the right, actual end-to-end performance is measured. Note
that the inclusion of the data-transfer time leads to severely skewed scaling.

host-to-device data-transfer times and only measured the on-
device computation including the HBM accesses. The results
are shown on the left in Fig. 4. It is clear that almost linear
scaling is achieved for up to eight concurrent accelerators.
This makes sense, since the batch-wise inference on SPNs is
embarrassingly parallel. This trend is also likely to continue at
least until all 32 HBM channels are used by at least one SPN
accelerator. Unfortunately, scaling up that far is not possible
due to the limited FPGA logic resources, as well as routing
scarcity.

After examining these results, we conclude that the issue
is caused by the host-to-device data-transfers, which are per-
formed using DMA-transfers via the PCIe 3.0 x16 interface
of the accelerator card.

C. Scaling Limitations

The previous Section V-B shows that scaling is limited due
to the host-to-device data-transfers as well as the available
FPGA-resources. Disregarding these limitations, we want to
give a perspective on the theoretical limitations of our ap-
proach focusing only on the HBM. According to the spec-
ification, the theoretical peak bandwidth of the HBM on
the BittWare XUP-VVH platform is 460 GB/s (approx. 428
GiB/s). From the HBM benchmark shown in Fig. 2, we see
that the practical performance is around 12 GiB/s per channel,
assuming that that the blocks accessed are reasonably large.

Given the required data rates for the NIPS10 benchmark
(144 bits per sample, 2.23 GiB/s), this means that a channel
is easily able to accommodate at least four accelerators.
Multiplying by the number of channels (32) would mean that
overall, up to 128 NIPS10-accelerators could be used without
any memory bandwidth limitations. The required memory
bandwidth in that case would be 32 ∗ 4 ∗ 2.23 GiB/s = 285
GiB/s, which is still well below the theoretical limit, as well
as the practical limit (32 ∗ 12 GiB/s = 384 GiB/s). Due to
the independent nature of the HBM channels, it is relatively
likely that this setup would actually allow linear scaling up to
the practical limit of the HBM memory.

The HBM-scaling potential is further highlighted in Fig. 5.
Using the data-sizes and samples per second for each bench-
mark, we calculated the required memory throughput of each



TABLE I
RESOURCE UTILIZATION OF THE COMPARABLE NIPS-BASED BENCHMARKS. “NEW” COLUMNS SHOW THE RESULT OF THIS WORK, WHILE [8] REFERS

TO OUR PRIOR WORK.

kLUTs as Logic kLUT as Mem kRegs BRAM DSP
Example New [8] New [8] New [8] New [8] New [8]
NIPS10 169.8 376.0 66.9 45.4 275.1 530.2 122 360 200 612
NIPS20 180.5 467.0 69.6 54.4 320.7 650.6 126 388 448 1356
NIPS30 230.9 577.3 70.4 62.6 354.4 765.4 122 364 696 2100
NIPS40 241.2 664.1 72.9 75.1 401.6 907.1 132 380 976 2940
Available 1304.0 1182.0 601.0 592.0 2607.0 2364.0 2016 2160 9024 6840

0 12 50 100 150 200 250 300 350 389 428
Throughput (GiB/s)

NIPS10
NIPS20
NIPS30
NIPS40
NIPS50
NIPS60
NIPS70
NIPS80

HBM channel
HBM maxp

HBM maxt

Ex
am

pl
e

Required Throughput of NIPS-accelerators

Instances
128
64
16
4
1

Fig. 5. Scaling potential of the presented architecture under the assumption that logic resources are sufficient and host-to-device bandwidth is available. For
each benchmark, we depict the required memory throughput depending on the number of instantiated SPN-cores. The throughput is compared against the
maximum throughputs of a single HBM channel as measured in Fig. 2. Additionally, we compare against the practical maximum throughput scaled from our
single-channel benchmarks (HBM maxp), and the theoretical limit quoted by the vendor (HBM maxt).

of the benchmark SPNs. The resulting values are compared
against the HBM throughput limitations. The comparison
is drawn versus the single-channel result from our HBM
benchmark shown in Fig. 2, the practical limitation imposed
by 32 channels running at maximum channel throughput and
the theoretical limit (as quoted by Xilinx). The vast memory
bandwidth provided by HBM could theoretically allow the
use of 64 accelerator-instances for all benchmarks, effectively
boosting the current performance by up to 8x. For the smaller
benchmarks NIPS10 and NIPS20, up to 128 instances could be
served by the HBM, which in turn would double performance
over 64 instances. While these values are currently out of
reach, the improvements provided by the upcoming genera-
tions of PCIe will help improve the performance.

To put this into perspective, we look at NIPS80: Using 80
single-byte input values, we are able to process 116,565,604
samples per second. The input data alone requires a bandwidth
of 8.7 GiB/s. When we consider the theoretical peak band-
width of PCIe 3.0 x16, the one-directional theoretical limit is
15.754 GB/s (14.67 GiB/s), which is in practice never reached.
For example, current PCIe-based DMA-engines like the Xilinx
QDMA or Corundum [14] typically achieve speeds of 100
Gb/s which equates to 11.6415 GiB/s for single-direction
transfers. The difference to our NIPS80 example can be ex-
plained by imperfect overlapping of the data transfers and the
interference with the actual computation. Since the upcoming
PCIe generations are specified to double the bandwidth with
each generation, it is likely that corresponding DMA-engines

will allow single-direction bandwidths of approx. 23 GiB/s,
46 GiB/s and 92 GiB/s for PCIe 4.0, 5.0 and 6.0 respectively.
While this is still not comparable to the bandwidth of the on-
chip HBM, it would definitively allow scaling much further.

In addition, this problem could also be circumvented by
different approaches, where host-to-device data-transfers can
be omitted due to shared memory, such as the Intel HARP
prototype which unifies a high-performance FPGA with a
server-grade CPU.

Last but not least, it is important to consider different
approaches for delivering data to the SPN accelerators. In
[7] for example, we used a streaming-based version of our
accelerators to integrate them into a 100G network for in-
network inference. The experimental results show that using
a reasonable degree of replication, the SPN-accelerators are
perfectly capable of performing inference at line rate. In light
of the recent advancements in networking and shared memory
systems, the potential of HBM becomes even more interesting
as a reasonable option for buffering, especially when multiple
100G links are used to transport data in between multiple
nodes.

D. End-to-End Performance

In the previous sections, we have discussed the performance
results achieved in this work in the context of HBM perfor-
mance and scaling properties. While the scaling potential is
not fully exploited due to the bottleneck imposed by the host-
to-device data-transfers, we still want to give a perspective on



NIPS10 NIPS20 NIPS30 NIPS40 NIPS50 NIPS60 NIPS70 NIPS80
Example

0

1

2

3

4

5

6

Sa
m

pl
es

 p
er

 S
ec

on
d

1e8 Samples per Second by Platforms
AWS V100
CPU
AWS F1
HBM

Fig. 6. Peak performance measurements for the different benchmark SPNs
on different target platforms. The number of samples per second is calculated
from the end-to-end execution time. For AWS F1, V100 and HBM, host-to-
device data transfers are included in the runtime.

the overall end-to-end inference performance achieved with
the HBM-based architecture.

To this end, we use the performance data including host-
to-device data-transfers and compare it against the results
reported by [8]. In this work, the AWS F1-based accelerator
is evaluated against a Nvidia Tesla V100, as well as a 12-core
Xeon E5-2680 v3 CPU. Both here and in [8], large inference
runs are executed to measure the runtime. From the resulting
total runtime and the known size of the datasets, the number of
samples processed per second can be calculated. The resulting
number of samples per second is shown in Fig. 6. The figure
gives the best-case result for each target platform and each
benchmark from this and the prior work [8].

From these results, it is clear that the Nvidia Tesla V100
is unsuitable for SPN inference due to its much lower over-
all performance. In contrast, the CPU baseline is able to
outperform the AWS F1-based as well as the HBM-based
implementation for the small NIPS10 benchmark. The reason
for this is the lower compute intensity of smaller SPNs. Since
NIPS10 just has a small number of nodes, the cost of the
data transfers outweighs the increased compute performance,
which results in the CPU outperforming GPUs and FPGAs.
However, the CPU’s advantage vanishes for increasing SPN
sizes: For NIPS20, our HBM-based implementation is already
able to outperform the CPU by a speedup of 1.21x. From
NIPS20 to NIPS80 the advantage of the FPGA becomes even
greater, yielding a maximum speedup of 2.46x for NIPS80.
The geometrical mean of the speedups is 1.6x for the CPU.
Regarding the V100, the maximum speedup of the HBM-
FPGA is 8.4x, and the geometrical mean of the speedups is
6.9x.

In comparison to the previous FPGA-implementation, the
speedup of using HBM is similar for almost all examples, and
close to the geo.-mean speedup of 1.29x. This is somewhat
disappointing, given that our implementation here uses at least
twice as many accelerator instances. This less-than-expected
speedup can be explained by the scaling limitations due to
the limited PCIe bandwidth, as discussed in Section V-B. For
the largest SPN (NIPS80), the prior work was not able to use
more than two accelerator-cores (instead of four for the smaller

benchmarks). In this case we achieve a speedup of 1.5x.
In context of the adapted architecture from [7], we can get

a perspective on the maximum performance of the NIPS80
accelerator: With the 99.078 Gbit/s peak throughput described
there, and the 88 bytes of data per sample, we derive a
theoretical peak performance of 140,748,580 samples per
second. Comparing that to the measured peak performance
of 116,565,604 samples per second we achieve in this paper,
we see that the streaming-based architecture delivers about
17% increased performance. The reason for this is the much
more streamlined architecture, which does not require any
memory accesses. In addition, refresh cycles of the HBM
also play a role at this level of performance. Taking these
factors into account, the HBM-based architecture is very close
to its theoretical peak performance, which is capped by the
maximum PCIe throughput. Lastly, it is important to realize
that the HBM-based architecture targets a different use-case
than the streaming-based one: While the in-network streaming
implementation makes sense on a very large scale (i.e. data-
centers), the HBM-based architecture could be used in smaller
high-performance setups. This would also remove the neces-
sity of costly 100G networking infrastructure associated with
the streaming approach.

VI. RELATED WORK

While SPNs are still a lesser known machine learning
model, they are gaining traction in the field of machine
learning. As discussed in Section II-A, they have recently been
used in the context of databases, specifically for cardinality
estimation as well as approximate query processing [15]. To
our knowledge, there is no prior work on accelerating SPN
inference (independent of specific applications) apart from our
own prior work. Our own prior work begins with [6], which
introduced an automatic toolflow to map SPNs to the FPGA.
In subsequent publications [4], [11], we looked into the impact
of the arithmetic number formats. To this end, [11] introduced
a custom logarithmic number system, which enables the
computation of very small probability values, and decreases
the number of hardware resources required. [4] introduces
a customized floating point format, as well as posit number
format based on PaCoGen [16]. In [4], the different number
formats are optimized towards the SPN use-case and evaluated
against each other. In [8], we adapted the original framework
from [6] to the UltraScale+-based FPGAs in the Amazon AWS
F1 instances. The evaluation showed that the reconfigurable
cloud offers high inference performance without the need for
expensive on-site FPGA-accelerator cards. Additionally, the F1
instances are able to outperform other state-of-the-art cloud-
based hardware, such as a Xeon E5 CPU, and a Nvidia Tesla
V100 GPU, for the more compute-intensive SPNs. In our
most recent work [7], we adapted the SPN-accelerators to
a streaming-based architecture, which in turn allowed us to
integrate them into a 100G network for in-network processing
of SPN inference. The corresponding work shows the potential
of 100G networking for data-delivery to network-attached
accelerators, as well as potential performance achievable using



our SPN accelerators. It also shows inference throughput of
99.089 Gbit/s, coming very close to the practical limitations
of 100G networking.

While there is (to our knowledge) no other work on
hardware-acceleration of SPNs, there is similar work targeting
Arithmetic Circuits (AC). Similar to SPNs, ACs are proba-
bilistic graphical models. Both models share similarities and
ACs can be transformed into SPNs under certain conditions.
Shah et al. [3] have presented a custom processor architecture
based on ACs that is able to outperform the Nvidia Jetson
TX2 embedded GPU by 12x.

Regarding the use of HBM, the available FPGA-specific
research is still rather sparse. This is mainly due to the
fact that HBM-enabled FPGA-accelerator cards are relatively
new and typically come at a rather high cost. Despite this,
there are two important works that explore the advantages
and disadvantages of HBM. The work by Lu et al. [17]
uses a number of micro-benchmarks to explore the different
available memory technologies in recent FPGA-accelerator
cards. Specifically, off-chip DRAM is compared against the
on-chip HBM memory in a Xilinx Alveo U280 accelerator-
card, which features a similar FPGA chip as the one used in
our work. The paper goes into detail, how HBM and DRAM
can best be used to achieve maximum bandwidth. The other
work by Kara et al. [18] examines the use of HBM in the
context of a columnar database. Using three database-specific
workloads (selection, join, and stochastic gradient descent),
the combination of FPGA and HBM is compared against a
14-core Xeon E5 and a dual-socket POWER9 system. In their
work, they are able to outperform the server-grade CPU-based
implementations by up to 12.9x for the join operation.

VII. CONCLUSION

In this work we presented an improved accelerator architec-
ture that exploits the parallelism of multiple HBM channels to
speed-up inference on SPNs. While the overall performance
of our adaption yields speedups of up to 1.5x over the prior
work, as well as speedups of 2.46x and 8.4x over a data-center
CPU and GPU respectively, the results still fell short of our
expectations. We explored this issue and discovered host-to-
device DMA transfers via PCIe to be the hard bottleneck.

From our experiments, we conclude that without the host-
to-device data-transfers, and disregarding logic and routing re-
source limitations, almost linear scaling is possible for at least
eight accelerators. This trend can likely be continued for up to
64 or even 128 accelerators. While our expectations for the use
of HBM have not been met, the current implementation still
outperforms prior implementations using the same approach,
with CPU-inference of the small NIPS10 benchmark being
the only exception. It is important to note that the accelerator
card used, was attached using PCIe 3.0 x16. While this is
the current de-facto standard, the first PCIe 4.0 devices are
already available for end-users. Next-generation PCIe 5.0 and
6.0 devices are also planned to ship within the next two years.
Given the ongoing effort in improving PCIe in the future, it is
only a matter of time until the full potential of on-chip HBM

can be fully exploited for even faster SPN inference. If we
take other advancements like 100G networking into account, it
becomes clear that the data-delivery is a very important issue.
Especially the combination of HBM and 100G networking
could be very interesting for high-throughput data-processing
in the context of machine learning and artificial intelligence.

REFERENCES

[1] K. Guo, S. Zeng, J. Yu, Y. Wang, and H. Yang, “A survey of FPGA
based neural network accelerator,” CoRR, 2017. [Online]. Available:
http://arxiv.org/abs/1712.08934

[2] H. Poon and P. Domingos, “Sum-Product Networks: a New Deep
Architecture,” Proc. of UAI, 2011.

[3] N. Shah, L. I. Galindez Olascoaga, W. Meert, and M. Verhelst, “Acceler-
ation of probabilistic reasoning through custom processor architecture,”
in 2020 Design, Automation Test in Europe Conference Exhibition
(DATE), 2020.

[4] L. Sommer, L. Weber, M. Kumm, and A. Koch, “Comparison of
arithmetic number formats for inference in sum-product networks on
fpgas,” in Intl. Symposium on Field-Programmable Custom Computing
Machines (FCCM), 2020.

[5] L. Sommer, C. Axenie, and A. Koch, “Spnc: An open-source mlir-based
compiler for fast sum-product network inference on cpus and gpus,”
in 2022 IEEE/ACM International Symposium on Code Generation and
Optimization (CGO), 2022.

[6] L. Sommer, J. Oppermann, A. Molina, C. Binnig, K. Kersting, and
A. Koch, “Automatic Mapping of the Sum-Product Network Inference
Problem to FPGA-Based Accelerators,” in 36th Intl. Conf. on Computer
Design (ICCD), Oct 2018.

[7] M. Hartmann, L. Weber, J. Wirth, L. Sommer, and A. Koch, “Optimizing
a hardware network stack to realize an in-network ml inference appli-
cation,” in 2021 IEEE/ACM International Workshop on Heterogeneous
High-performance Reconfigurable Computing (H2RC), 2021.

[8] M. Ober, J. Hofmann, L. Sommer, L. Weber, and A. Koch, “High-
throughput multi-threaded sum-product network inference in the re-
configurable cloud,” in Workshop on Heterogeneous High-performance
Reconfigurable Computing (H2RC), 2019.

[9] R. Peharz, A. Vergari, K. Stelzner, A. Molina, M. Trapp, K. Kersting, and
Z. Ghahramani, “Probabilistic deep learning using random sum-product
networks,” 2018.

[10] A. Molina, A. Vergari, N. D. Mauro, F. Esposito, S. Natarajan, and
K. Kersting, “Mixed Sum-Product Networks: A Deep Architecture for
Hybrid Domains,” in Proceedings of the AAAI Conference on Artificial
Intelligence (AAAI), 2018.

[11] L. Weber, L. Sommer, J. Oppermann, A. Molina, K. Kersting, and
A. Koch, “Resource-Efficient Logarithmic Number Scale Arithmetic for
SPN Inference on FPGAs,” in Intl. Conference on Field-Programmable
Technology (FPT), 2019.

[12] A. Molina, A. Vergari, K. Stelzner, R. Peharz, P. Subramani, N. D.
Mauro, P. Poupart, and K. Kersting, “Spflow: An easy and extensible
library for deep probabilistic learning using sum-product networks,”
2019.

[13] J. Korinth, J. Hofmann, C. Heinz, and A. Koch, “The TaPaSCo Open-
Source Toolflow for the Automated Composition of Task-Based Parallel
Reconfigurable Computing Systems,” in Applied Reconfig. Comp., 2019.

[14] A. Forencich, A. C. Snoeren, G. Porter, and G. Papen, “Corundum:
An open-source 100-gbps nic,” in 2020 IEEE 28th Annual Interna-
tional Symposium on Field-Programmable Custom Computing Machines
(FCCM), 2020.

[15] B. Hilprecht, A. Schmidt, M. Kulessa, A. Molina, K. Kersting, and
C. Binnig, “Deepdb: learn from data, not from queries!” arXiv preprint
arXiv:1909.00607, 2019.

[16] M. K. Jaiswal and H. K. H. So, “PACoGen: A Hardware Posit Arithmetic
Core Generator,” IEEE Access, vol. 7, pp. 74 586–74 601, 2019.

[17] A. Lu, Z. Fang, W. Liu, and L. Shannon, Demystifying the Memory Sys-
tem of Modern Datacenter FPGAs for Software Programmers through
Microbenchmarking. Association for Computing Machinery, 2021.

[18] K. Kara, C. Hagleitner, D. Diamantopoulos, D. Syrivelis, and G. Alonso,
“High bandwidth memory on fpgas: A data analytics perspective,” in
2020 30th International Conference on Field-Programmable Logic and
Applications (FPL), 2020.


