
Altis-SYCL: Migrating Altis Benchmarking Suite
from CUDA to SYCL for GPUs and FPGAs

Christoph Weckert
Leonardo Solis-Vasquez

Julian Oppermann
Andreas Koch

Technical University of Darmstadt
Darmstadt, Germany

Oliver Sinnen
University of Auckland
Auckland, New Zealand

ABSTRACT
In this work, we introduce Altis-SYCL, a benchmark suite based on
SYCL for GPUs and FPGAs. For developing Altis-SYCL, we leverage
the oneAPI heterogeneous programming framework in two con-
secutive steps: 1) by using the modern Altis GPGPU benchmark
suite as baseline and migrating it from CUDA to SYCL, and 2) by
exploring several techniques to optimize the performance of the
resulting SYCL code. Our migration-and-optimization methodology
starts targeting GPUs and progressively moves towards FPGAs. In
this process, we discuss the differences between device-specific
strategies as well as detailing the required code refactoring and
optimization efforts. The performance of Altis-SYCL was evaluated
on Stratix 10 and Agilex FPGAs, and for some applications, their
execution runtimes were competitive with those achieved on latest
high-end GPUs. The corresponding code is released as open source
under: https://github.com/esa-tu-darmstadt/altis_sycl.

CCS CONCEPTS
• Computing methodologies → Parallel programming lan-
guages.

KEYWORDS
oneAPI, DPC++ Compatibility Tool, Altis, GPGPU benchmark,
CUDA, SYCL, FPGA, Stratix 10, Agilex
ACM Reference Format:
Christoph Weckert, Leonardo Solis-Vasquez, Julian Oppermann, Andreas
Koch, and Oliver Sinnen. 2023. Altis-SYCL: Migrating Altis Benchmarking
Suite from CUDA to SYCL for GPUs and FPGAs . In Workshops of The
International Conference on High Performance Computing, Network, Storage,
and Analysis (SC-W 2023), November 12–17, 2023, Denver, CO, USA. ACM,
New York, NY, USA, 9 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Since its initial announcement in 2018, Intel has been actively de-
veloping oneAPI [17], whose main objective is to provide a unified
platform for developers to program CPUs, GPUs, and even FPGAs

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SC-W 2023, November 12–17, 2023, Denver, CO, USA
© 2023 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

using a common language called Data Parallel C++. This language,
DPC++, is built on the widely-used ISO C++ standard and incor-
porates the Khronos standard SYCL [19] along with community
extensions.

The appeal of oneAPI lies in its foundation on C++, which is a
preferred programming language in the High Performance Comput-
ing (HPC) community. Consequently, oneAPI has been generating
significant interest within this community, particularly as ongoing
research endeavors aim to efficiently execute GPU-native code on
FPGAs [18, 22, 25]. This objective presents a formidable challenge,
as even moderately-refactored Single-Instruction Multiple-Thread
(SIMT) kernels may not perform optimally on FPGAs. Hence, achiev-
ing FPGA-specific optimization from a high-level design becomes
crucial and deserves further exploration.

In this regard, recent research efforts have developed high-level
benchmark suites for FPGA-based HPC systems. For instance, [20]
proposed a parameterized OpenCL adaptation of the HPCC bench-
mark suite, while [26] discussed an optimized multi-FPGA imple-
mentation based on MPI and a C++ dialect (i.e., Vitis High Level
Synthesis) of the HPCG benchmark suite. Moreover, [1] introduced
HosNa, the first benchmark suite aiming to systematically evaluate
optimization strategies on FPGAs using the SYCL language. While
the SYCL-based implementation of HosNa provides advantages
over previous studies (namely, holistic C++ programming view
over OpenCL and code portability over Vitis HLS), it explores only
Single-Task (i.e., single-threaded) implementations, and thus, it is
not efficiently portable to widespread HPC systems such as those
based on GPUs.

To fill this gap, we have developed Altis-SYCL: a benchmark suite
for both GPUs and FPGAs derived from Altis [7], a modern GPGPU
benchmark suite originally written in CUDA. In this work, we focus
on leveraging the oneAPI ecosystem for migrating and optimizing
Altis-SYCL. In particular, we describe our experience with employ-
ing Intel’s DPC++ Compatibility Tool (DPCT) [9] that automates
the code migration process from CUDA to SYCL, then improving
this GPU-targeted SYCL, and adding FPGA-specific optimizations.
With Altis-SYCL, besides providing a high-level benchmark suite
for GPUs and FPGAs, we aim to present a comprehensive set of prac-
tical guidelines that can be applicable to efforts aiming to quickly
deploy CUDA applications on HPC systems supporting SYCL. Our
contributions are summarized as follows:

• We present our experience using DPCT for migrating the
Altis benchmark suite from CUDA to SYCL.

• We discuss device-specific performance optimization tech-
niques for both GPUs and FPGAs.

https://github.com/esa-tu-darmstadt/altis_sycl
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

SC-W 2023, November 12–17, 2023, Denver, CO, USA Weckert et al.

• We compare the performance achieved on CPUs, GPUs, and
Intel FPGAs including Stratix 10 and Agilex.

2 BACKGROUND
2.1 The DPC++ Compatibility Tool
As part of Intel’s oneAPI ecosystem [14], the DPC++ Compatibil-
ity Tool (DPCT) [9] assists developers by automatically migrat-
ing around 90%-95% of CUDA code into human-readable SYCL
code. Such capabilities also include the migration of 1) API calls of
common CUDA libraries (e.g., cuBLAS, cuDNN, cuFFT, NVIDIA’s
Thrust) and 2) commands for compiling the original CUDA project
(e.g., in CMake files). If required, developers can manually com-
plete the migration by following the hints in the inlined comments
inserted by DPCT that point out required localized code changes.

2.2 The Altis Benchmark Suite
Altis [7] consists of a collection of GPGPU applications written
in CUDA. By adopting and extending applications from existing
benchmark suites such as Rodinia [4] and SHOC [5], as well as
by adding new applications, Altis aims to better represent modern
GPGPU workloads.

Altis offers three main advantages. First, it encompasses emerg-
ing domains, such as DNNs, which are either not covered or handled
with outdated techniques in existing benchmark suites. Second, Al-
tis addresses the dataset size issue comprehensively. It supports
modern default sizes and provides the flexibility to use non-default
sizes as needed. This approach overcomes the limitations of Ro-
dinia, which lacks dataset size guidance, and SHOC, which lacks
flexibility. And finally, Altis incorporates support for new CUDA
features including: unified memory, events, HyperQ (enabling mul-
tiple independent CUDA kernels to run in parallel on the same
GPU), nested parallelism, and grid-level synchronization.

The applications in Altis fall into four categories, of which we
focus here on Level 2, the real-world application kernels shown in
Table 1.

Table 1: Altis’ Level 2 applications

Application Description

CFD
Computational Fluid Dynamics.
3D Euler equation solver for compressible flow

DWT2D
Discrete Wavelet Transform.
2D transform for digital signal processing

FDTD2D
Finite Difference Time Domain.
2D Maxwell equation solver for electrodynamics

KMeans Clustering algorithm for data mining
LavaMD N-body particle interaction in a 3D space
Mandelbrot Fractal image computation

NW
Needleman-Wunsch.
Non-linear optimization for DNA sequence alignment

ParticleFilter (PF) Statistical estimator of location of a target object
Raytracing Image generator based on path-of-light tracing
SRAD Partial differential equation solver for noise reduction
Where Record filtering for data analytics

2.3 Related Work
Here, we discuss related studies leveraging oneAPI for GPUs/FP-
GAs, which we classify into two groups according to the adopted
programming approach.

2.3.1 Direct SYCL Programming. these works study applications
natively developed in SYCL. For instance, HosNa [1] and [6] fol-
lowed a Single-Task (i.e., single-threaded) implementation approach,
while [22] maintained ND-Range (i.e., multi-threaded) configura-
tions for all kernel variants evaluated on FPGAs. In contrast, our
work here evaluates both Single-Task and ND-Range implementa-
tions on FPGAs.

The studies in [18, 23] target not only FPGAs, but also CPUs and
GPUs. On the one hand, [18] proposed a cooperative GPU-FPGA
execution in which the kernels of the resulting unified SYCL appli-
cation were conveniently partitioned between a GPU and an FPGA.
This strategy aimed to leverage specific accelerators’ strengths,
while avoiding the cumbersome usage of different APIs (i.e., CUDA
for GPU, OpenCL for FPGA). On the other hand, [23] indicated that
on FPGA, executions of all ND-Range implementations were faster
than their Single-Task counterparts, while being overall at least 4×
slower wrt. those on a 18-core CPU. In contrast, as reported in Sec-
tion 5, some applications in Altis-SYCL achieve higher performance
on FPGAs over CPUs and GPUs.

2.3.2 DPCT-assisted Migration. similar to our work here, [3, 25]
employed DPCT to automate the migration of applications origi-
nally written in CUDA. [25] proposed device-specific optimization
techniques for ultrasound beamforming. Moreover, although not
targeting FPGAs, [3] is included in this review due to the simi-
larity between its case study (i.e., Rodinia) and ours (i.e., Altis).
[3] reported a detailed DPCT-migration experience for Rodinia as
well as a performance analysis on CPUs and GPUs. Our work here
advances further by migrating the more modern Altis suite and
benchmarking its performance also on Stratix 10 and Agilex FPGAs.

3 MIGRATING ALTIS FROM CUDA TO SYCL
FOR GPUS

In this section, we present our methodology for migrating Altis
(originally written in CUDA) to Altis-SYCL by using DPCT (oneAPI
Base Toolkit v2022.3), initially targeting GPUs, as DPCT does not
support directly migrating to FPGAs.

3.1 Experimental Environment
Table 2 lists all accelerator devices employed in this work: a Xeon
Gold 6128 CPU, {RTX 2080, A100, Max 1100} GPUs, as well as
{Stratix 10, Agilex} FPGAs.

The peak theoretical performance of FPGAs in FLOP/s can be
calculated as follows: Peak FP32 = 𝑁Total

DSP × 2 × 𝐹Max
Kernel [8], where

𝑁Total
DSP is the total number of DSPs on the FPGA (each supporting

a FMA operation, and thus, the above factor of two) and 𝐹Max
Kernel

is the maximum operating frequency of the kernel. Since some
FPGA resources are utilized for the fixed board interface, and the
achievable frequencies of SYCL kernels are much lower than the
theoretical maxima, in Table 2, we report for the FPGA platforms
their peak attainable performance instead. This is calculated using
the above equation and considering the DSPs available for the user
logic and the achieved frequency ranges of SYCL kernels. Therefore,
the peak attainable performance is within {2.4 - 4.2} TFLOP/s for
Stratix 10 and {2.3 - 5.0} TFLOP/s for Agilex.

Altis-SYCL: Migrating Altis Benchmarking Suite from CUDA to SYCL for GPUs and FPGAs SC-W 2023, November 12–17, 2023, Denver, CO, USA

Table 2: Employed Accelerator Devices

Device Process [nm] # Compute Units Peak FP32 [TFLOP/s] Peak Mem. BW [GB/s]

Xeon Gold 6128 CPU 14 6 Cores 1.1 128.0
RTX 2080 GPU 12 46 SMs 10.1 448.0
A100 GPU 7 108 SMs 19.5 1555.0

Max 1100 GPU (i.e., “Ponte Vecchio” [12]) 10 56 Xe-cores 22.2 1229.0
Stratix 10 FPGA (BittWare 520N [2]) 14 4713 DSPs (user logic) 2.4 (250 MHz) - 4.2 (450 MHz) 76.8
Agilex FPGA (DE10 Agilex [24]) 10 4510 DSPs (user logic) 2.3 (250 MHz) - 5.0 (550 MHz) 85.3

3.2 Experiences with DPCT
Initially, we employ DPCT’s intercept-build script to catch all com-
piler commands used in the regular build of an application project
and to store them in a JSON file. Next, we run the dpct utility to
migrate all source-code files to SYCL. DPCT supports the migra-
tion of most CUDA constructs employed in host and device code.
Moreover, by using the above JSON file, DPCT can maintain the
application’s folder structure and even adjust its CMake files.

In this section, we address the main migration challenges of
using DPCT in order to achieve a functionally correct execution of
Altis-SYCL on the RTX 2080 GPU.

3.2.1 DPCT diagnostics. DPCT provides a number of warnings
highlighting issues that need to be addressed by the user. Altis
has roughly 40 k lines of code and DPCT inserted 2,535 warnings.
After addressing them, ∼70% of the migrated applications execute
without errors on the RTX 2080. The most frequent warnings we
encountered were:

Timemeasurements: DPCT translates measurements of kernel
execution times from CUDA events to std::chrono calls. The latter
also accounts for the kernel invocation overhead that involves
several factors, including the just-in-time compilation for GPUs, or
the FPGA reprogramming using the bitstream built ahead-of-time.
Based on that, time measurements in the original CUDA and the
migrated SYCL are not directly comparable, and thus, warnings are
annotated by DPCT. Hence, we manually transform the std::chrono

calls to SYCL events, which emulate the time measurements of
CUDA events more accurately. However, we do this only when
appropriate, as SYCL events are not usable in some cases, e.g.,
together with oneAPI library calls (Section 3.2.2).

Unified Shared Memory: USM is supported in all Altis appli-
cations. The corresponding warnings inserted by DPCT concern
the calls to mem_advise() [10], which is designed to inform the SYCL
runtime how different allocations will be used. The parameters
for this function are device-dependent, and developers must iden-
tify their correct values for the specific target device. Furthermore,
since the selected FPGA boards in Table 2 do not support USM (e.g.,
sycl::malloc_host() queries to both Stratix 10 and Agilex always
return nullptr), we remove any USM usage from Altis-SYCL.

Barriers: their performance can be improved by narrowing the
scope of synchronization. In practice, this can be achieved by ex-
plicitly specifying that the corresponding memory address space
is local, e.g., barrier(sycl::access::fence_space::local_space). Some-
times DPCT fails to detect whether this configuration is appropriate,
and thus, assumes that the memory address space is instead global
(i.e., by omitting the argument from the barrier call). Hence, we
manually check whether the local scope can be used safely, and if
so, we add the respective argument to the barrier call.

3.2.2 Miscellaneous. these encompass issues and migration cases
not handled by DPCT. After addressing these, we achieve functional
correctness in all migrated applications.

DPCTheader files: these provide various functionalities compa-
rable to those in CUDA such as device selection, constant-memory
wrappers, etc. When using the DPCT header files, we found two
problems. 1) The provided device-selection logic does not supply
mechanisms to enable profiling for SYCL queues. Since such queue
configuration is required for retrieving timing data from SYCL
events, this prevented the accurate measurement of kernel exe-
cution times. 2) Occasionally, the data initialization in constant-
memory wrapper objects occurred after their actual usage, causing
segmentation faults. To address these problems, and the FPGA-
specific one discussed later in Section 4, we opt to completely aban-
don the use of the DPCT header files for our code migration study,
and thus, replace the invocation of their helper functions with
standard SYCL code.

Dynamic memory allocation: the C++ new and delete op-
erators can be used in CUDA kernels to allocate and free global
memory, respectively. DPCT does not annotate that these operators
are not supported in SYCL kernels. Hence, we manually move such
memory allocations to the host side.

Polymorphism: DPC++ provides only experimental support for
virtual functions when targeting CPUs. However, DPCT does not
annotate this lack of support in the standard SYCL. For instance,
the CUDA version of Raytracing uses virtual functions for objects
and materials in the scene. Therefore, we completely remove such
functions, and thus, have to significantly refactor Raytracing.

3.3 Optimizing SYCL performance on the
RTX 2080 GPU

Once functional correctness is achieved, we perform a number of
steps to create an optimized SYCL version having a similar perfor-
mance to that of the original CUDA code.

Time measurements: for FDTD2D, we observed that the per-
formance discrepancies between CUDA and SYCL were mostly the
result of an inaccurate time measurement in the original CUDA
code. We address this by adding the missing cudaDeviceSynchronize()

device synchronization call, which brings the performance of both
versions to comparable levels.

NVCC (CUDA) vs. Clang (SYCL): these are different compil-
ers, and consequently, their behavior can diverge significantly in
various situations. In our analysis of Altis, we discover that loop
unrolling and inlining can have a different performance impact on
CUDA and SYCL.

• Loop unrollingmight increase the performance in CUDA, but
it might also have the opposite effect in SYCL. For instance,

SC-W 2023, November 12–17, 2023, Denver, CO, USA Weckert et al.

Total = 4.5 ms

Total = 1.5 ms

CUDA SYCL
0

2

4

6

0.4

2.7

1.1 1.8

Input Size 1Kernel Non-Kernel

Total = 539.1 msTotal = 533.7 ms

CUDA SYCL
0

200

400

600

800

10.0 145.7

523.7
393.4

Input Size 3

Figure 1: Execution-Time [ms] Decomposition of FDTD2D on
the RTX 2080 GPU: CUDA vs. SYCL.

the SYCL version of CFD performed up to 3× worse when
unrolling the main loop than without unrolling it. Hence, we
remove unrolling to attain a more comparable performance
wrt. CUDA.

• The Clang compiler for SYCL seems to act more cautiously
when inlining functions: even if the kernel only calls a single
function, this might not be automatically inlined if it contains
more than a certain number of instructions. We increase
such threshold by passing -finlining-threshold = 10000 as a
compiler option, and observe up to 2× higher performance
for NW (and smaller improvements for other applications).

Power math function: during the migration of ParticleFilter Float,
DPCT replaced a call to pow(a,2) with a × a. This seemingly minor
change resulted in up to 6× higher performance of SYCL com-
pared to CUDA. By applying such transformation back to the
original CUDA codebase, we are able to bring both versions to
a performance-comparable level.

Prefix-sum in oneDPL: Where uses a prefix-sum implemen-
tation from CUDA, which is migrated by DPCT to a correspond-
ing implementation in the oneDPL library. Unfortunately, on the
RTX 2080, this prefix-sum from oneDPL is 50% slower than that
from CUDA. For GPUs, we decided to continue using this oneDPL
implementation, while for FPGAs, we develop a custom prefix-sum
version (Section 5.3).

Discussion: some Altis applications do not just benchmark the
kernel execution, but instead time the entire program (i.e., includ-
ing the kernel invocation overhead and host-device communica-
tion). Thus, in these cases, SYCL shows longer execution times
than CUDA due to the higher overhead introduced by the oneAPI
environment. This is illustrated in Figure 1, where the total exe-
cution time of FDTD2D is decomposed into kernel and non-kernel
regions. For the smaller input size 1, the non-kernel region in SYCL
is 1.5× (= 2.7

1.8) longer than the corresponding kernel region and
∼6.7× (= 2.7

0.4) longer than its CUDA non-kernel counterpart. In
contrast, for the larger input size 3, the kernel execution time in
SYCL is ∼2.7× longer (= 393.4

145.7) than its corresponding non-kernel
one. Profiling on the RTX 2080 reveals that this is mainly due to
the migrated SYCL version invoking some extra underlying CUDA
APIs for context/event management (also observed in [3]).

Figure 2 shows the speedups of SYCL over CUDA achieved on
the RTX 2080 using the baseline (i.e., functionally correct but non-
optimized) and optimized SYCL versions. In terms of performance,

most of the optimized SYCL versions are similar (i.e., speedup = 1×)
or even superior (e.g., Raytracing, speedup = ∼21×) wrt. their CUDA
counterparts, while only Where underperforms for all input sizes
(i.e., speedup = ∼0.3×), which as indicated above, is due to the usage
of the prefix-sum from oneDPL. Overall, the geometric mean of
the speedup achieved with the optimized SYCL wrt. CUDA is 1.0×
(size 1), 1.1× (size 2), and 1.3× (size 3).

It is important to note that the resulting SYCL version of Raytrac-

ing differs significantly from the original CUDA, and hence, their
execution times are not directly comparable. The two main reasons
for that are 1) the different random number generator introduced
by DPCT, namely oneMKL’s philox4x32x10 [15], vs. the original
cuRAND’s XORWOW [21]), and 2) the significant manual code
refactoring we required to cope with CUDA virtual functions (Sec-
tion 3.2.2). Nevertheless, we consider this set of GPU-optimized
SYCL versions a reasonable baseline for subsequent FPGA-specific
refactoring.

4 CODE REFACTORING ALTIS-SYCL FOR
SUCCESSFUL FPGA DESIGN GENERATION

In this section, we discuss the code refactoring applied to the ND-
Range GPU-optimized Altis-SYCL kernels from Section 3 in order
to successfully generate FPGA bitstreams.

DPCT header files: when included, the memcpy function in these
header files is synthesized. Although the resource utilization of the
corresponding kernel on the Stratix 10 is not significant (e.g., up
to 1% of RAM and DSP, while <1% of other resources), this may
still influence the FPGA bitstream generation success of complex
designs. Hence, as already indicated in Section 3.2.2, we remove
the usage of these header files from all our designs.

Congestedmemory ports: some Altis applications, e.g., DWT2D,
perform numerous operations on a single shared-memory array.
The correspondingly large number of required read and write ports,
along with the arbiters needed to schedule the access to these ports,
make the FPGA synthesis challenging. In general, the size of a
shared-memory array depends on the employed work-group size.
Hence, for applications whose syntheses incurred timing viola-
tions, we decrease their work-group sizes, and in turn, reduce the
complexity of their generated memory systems.

Default work-group sizes: due to the SIMT nature of CUDA,
all migrated Altis-SYCL kernels are implemented in an ND-Range
fashion. For generating efficient FPGA hardware, the compiler must
assume a maximum work-group size supported by the design. In
the presence of barriers, this limit is automatically set to 128, while
in other cases, the limit is determined by a default value that de-
pends on compilation time and runtime constraints [13]. How-
ever, the default work-group sizes employed in Altis are gener-
ally larger than the preconfigured limits of the FPGA compiler,
causing runtime errors. To fix this, we specify both the required
and maximum number of work-items for a work-group in a ker-
nel by inserting the sycl::reqd_work_group_size(1, 1, BLOCK_SIZE) and
intel::max_work_group_size(1, 1, BLOCK_SIZE) kernel attributes, respec-
tively.

Multiple kernel versions: some Altis applications contain al-
ternative versions of a kernel for specific algorithms or problem
sizes. By default, the compiler aims to synthesize all these kernel

Altis-SYCL: Migrating Altis Benchmarking Suite from CUDA to SYCL for GPUs and FPGAs SC-W 2023, November 12–17, 2023, Denver, CO, USA

CFD FP32 CFD FP64 DWT2D FDTD2D KMeans LavaMD Mandelbrot NW PF Naive PF Float Raytracing SRAD Where
0.001

1

1000
0.
30 1.

50

0.
70

0.
10 0.
30 0.
80 1.
10

0.
70 1.
10 4.

70 11
.6
0

1.
10

0.
200.
31 1.

50

0.
59

0.
03

0.
38 1.
03

0.
99

0.
57 0.
91

6.
81 18
.5
9

1.
04

0.
25

0.
26

1.
49

0.
89

0.
01

0.
69 1.
05

1.
10

0.
57 1.
05

1.
00

21
.7
1

1.
01

0.
46

BaselineSize1 Size2 Size3

CFD FP32 CFD FP64 DWT2D FDTD2D KMeans LavaMD Mandelbrot NW PF Naive PF Float Raytracing SRAD Where
0.001

1

1000

1.
00 1.
50

0.
90

0.
30 0.
40 0.
80 1.
20

1.
00

1.
10

0.
90

11
.6
0

1.
10

0.
300.
90 1.
50

1.
00

0.
90

0.
70 1.
00

1.
10

1.
00

0.
90 1.
10

18
.6
0

1.
00

0.
300.
90 1.
50

1.
10

1.
00

1.
00

1.
10

1.
00 1.
20

1.
00

1.
00

21
.7
0

1.
00

0.
50

OptimizedSize1 Size2 Size3

Figure 2: Speedup of Altis-SYCL over Altis (CUDA) achieved on the RTX 2080 GPU.

versions into a single FPGA binary. However, this is only possi-
ble for a limited set of kernels due to the constrained hardware
resources. Therefore, for such applications, we synthesize only the
required kernels for the intended use. For instance, DWT2D features
a total of 14 kernels, from which only two are selected in order to
handle the default algorithm and input size 3 with a given FPGA
bitstream.

SYCL accessors: although they are the standard method for
creating shared memory in SYCL, we found that accessors can
cause issues when targeting FPGAs.

• The SYCL accessors introduced by DPCT are dynamically
sized and cannot be statically defined at compile time. Hence,
during synthesis, the compiler must assume a maximum size
of 16 kB for each shared variable, which turned out to be
resource-wasteful across all Altis applications employing
shared memory. For instance, PF Float utilizes only a double

shared scalar, for which the compiler generates a memory
system of 16 kB instead of just 8 B. In the case of ND-Range
kernels, a developer cannot control the degree of banking,
replication, or private copies of the memory system. This
limitation, coupled with the aforementioned high default size
of shared memory, might hinder the success of placement.

• Sporadically, DPCT passes as a kernel argument a SYCL ac-
cessor object rather than a pointer to such accessor (i.e., of
type sycl::local_ptr<T>). On CPUs and GPUs, we observe
no performance difference between these two approaches.
On FPGAs, however, passing an accessor object as kernel
argument causes member functions of the accessor to be
synthesized, leading to higher resource utilization. For in-
stance, the initial design of SRAD passed eleven accessor
objects to the kernel, which exceeded the resource limits
of the Stratix 10 device. By passing instead pointers to the
above accessors, we are able to successfully fit the design on
FPGA.

5 OPTIMIZING ALTIS-SYCL FOR FPGAS
In this section, we apply techniques for increasing the performance
on FPGAs. These techniques are grouped into 1) general optimiza-
tions, and those for 2) FPGA-refactored ND-Range kernels from

Section 4, and for 3) Single-Task kernels reimplemented from the
above ND-Range ones.

5.1 General Optimizations
Besides applying common techniques such as denoting non-aliasing
pointers, precomputing constants on host and afterwards passing
them to device, as well as loop unrolling, our focus here is on
applying two techniques:

Replicating compute units: this can be beneficial to distribute
work among replicated kernels, also called compute units. Depend-
ing on the type of kernel implementation, we perform any of the
following actions:

• Single-Task kernels can be easily replicated by using the
SubmitComputeUnits helper function from Intel’s oneAPI sam-
ples repository [16].

• For ND-Range kernels, while Intel’s OpenCL framework sup-
ports automatic replication, the above oneAPI samples repos-
itory does not provide such functionality. Therefore, we im-
plement a custom helper class, which is used to instantiate
ND-Range kernels a user-defined number of times, and then
to distribute the work-items among them.

It should be noted that replication is often limited by the amount
of available FPGA resources. For instance, kernels in CFD FP64 can
be replicated at most twice. Our strategy is to initially optimize
a single instance of a kernel before considering replication, and
subsequently, to replicate the kernel as often as possible, while
ensuring that each further replication attempt continues to provide
substantial performance improvements.

Datatype optimizations: we noticed that the FPGA compiler
often infers inefficient global and local memory systems when
using a C++ class or struct featuring multiple member variables
of different types. An example is the material class of Raytracing

shown in Listing 1. For the original implementation, the compiler
inferred a complex non stall-free memory system containing several
arbiters as well as load and store ports. This was unexpected as
the corresponding kernel employs only a single write access to the
respective object, but the inferred hardware contained three store
ports. Therefore, we optimize the material class by fusing all its

SC-W 2023, November 12–17, 2023, Denver, CO, USA Weckert et al.

member variables into a single vector member, from which the
compiler can then infer a stall-free memory system instead.� �
1 class material { /* Original */
2 public:
3 enum type: uint8_t {metal , dielectric , lambertian };
4 type m_type;
5 vec3 m_albedo; // lambertian and metal (lam)
6 float m_fuzz; // metal (met)
7 float m_ref_idx ;}; // dielectic (die)
8
9 class material { /* Optimized */
10 public:
11 // data [0]: "fuzz" parameter
12 // data [1]: "ref_idx" parameter
13 // data [2:4]: "albedo" parameter
14 // data [5]: material "type": met (0), die (1), lam (2)
15 // data [6:7]: unused
16 sycl:: float8 data ;};� �

Listing 1: Original and optimized material class.

5.2 Optimizing Migrated ND-Range Kernels
In many cases, ND-Range kernels can provide sufficient perfor-
mance on FPGAs. Therefore, we choose to first optimize the mi-
grated ND-Range kernels before considering their more laborious
reimplementation in Single-Task fashion. Besides further restricting
and tuning work-group sizes of all Altis applications, two more
techniques have proven useful:

Vectorization: multiple work-items can be executed in a SIMD
manner without manually vectorizing the kernel by specifying
the [[intel::num_simd_work_items(V)]] attribute. In addition, in some
cases, we have to rewrite conditional statements as ternary op-
erators for achieving a successful vectorization. We notice that
the resource utilization scales approximately linearly with the vec-
torization factor V, while the performance only scales accordingly
when the available memory bandwidth is sufficient for the increased
number of global memory accesses. For example, the performance
of CFD FP32 only scales up to V = 2.

Shared memory: VTune Profiler reveals a higher pipeline ac-
tivity in sections accessing shared memory. The following are the
three situations we encountered when tackling such potential bot-
tlenecks:

• Case 1: access patterns allow efficient banking and replication
of the memory system. For instance, LavaMD, for which we
successfully unroll by 30× a bottleneck loop (operating on
shared memory), improves its performance almost linearly
with the unrolling factor. Although further unrolling does
not exceed the FPGA resource limitations, it leads to timing
violations during synthesis.

• Case 2: similar to Case 1, but the required resources exceed the
available limit. This was the case of SRAD, whose kernels
employ eleven shared arrays. Unrolling a loop operating on
this many memories, or entirely vectorizing the enclosing
kernel, can lead to excessive resource utilization for large
work-group sizes. For this application, we tested combina-
tions of suitable work-group sizes and vectorization factors,
e.g., a 64×64 work-group size with SIMD = 2 performs ∼4×
faster than a 16×16 work-group size with SIMD = 8.

• Case 3: access patterns prevent efficient banking and replica-
tion. In such situations (e.g., NW), the synthesis tool inserts

arbiters to manage the shared-memory accesses. Further-
more, unrolling a loop accessing such memory is not a viable
option, as it results in timing violations during the place and
route process.

For Intel FPGAs, it is beneficial to replace the default SYCL ac-
cessors with group_local_memory_for_overwrite class objects. While
this is vendor- and device-specific (via the oneAPI FPGA Toolkit,
and not supported on CPUs/GPUs), it allows the implementation
of shared memories with user-defined sizes, in contrast to default
accessors (Section 4). We apply this to all Altis-SYCL ND-Range
kernels employing shared memory, and thus, reduce their resource
utilization.

5.3 Rewriting ND-Range as Single-Task Kernels
We opt to reimplement some ND-Range kernels as Single-Task for
two reasons: 1) to vectorize in cases where is not possible other-
wise (e.g., PF, which contains many execution branches), and 2)
to improve inter-kernel communication by using pipes instead of
global memory (e.g., KMeans). The following techniques have been
beneficial for kernels rewritten into Single-Task form.

Loop optimizations: in contrast to ND-Range kernels, loops
in Single-Task kernels can be pipelined, which introduces two
important loop attributes: initiation interval (ideally II = 1) and
speculated iterations. In Altis, the exit condition of loops often
becomes part of the critical path. To prevent clock-rate degrada-
tion, speculated iterations can be added to loop executions. Such
iterations perform no useful work and their results are discarded
as soon as the exit condition of previous iterations is satisfied. To
put this into perspective, Mandelbrot performs two nested loops in
the main calculation, each having 8,192 iterations. If the inner loop
is scheduled with four speculated iterations (i.e., the compiler de-
fault), then no useful work is performed for up to 8,192×8,192×4
clock cycles. For both loop attributes, the compiler adopts con-
servative default values, which should be lowered whenever pos-
sible. Therefore, we utilize the [[intel::initiation_interval(R)]] and
[[intel::speculated_iterations(S)]] directives on relevant loops.More-
over, for applications containing loops with large iteration counts
(e.g., Mandelbrot), it is advisable to primarily apply the latter directive.

Pipes: Figure 3 shows both baseline and optimized designs of
KMeans. In the baseline one, kernels execute sequentially, each pass-
ing its results to the downstream kernel via global memory. In
the optimized one, the dataflow to/from global memory has been
limited to the mapCenters kernel only. By utilizing pipes, the map-
ping of each data point is immediately passed from mapCenters to
resetAccFin, and once finalized, the resulting center is fed back from
resetAccFin to mapCenters. In other words, our optimized design is
capable of minimizing the data traffic to/from global memory as
well as of running simultaneously both kernels. For KMeans, the us-
age of pipes in the optimized design results in a 510× performance
improvement relative to the baseline design.

Custom prefix-sum for FPGAs: as already discussed in Sec-
tion 3.3, the SYCL and CUDA versions of Where employ different
prefix-sum implementations. SYCL employs that from oneDPL,
which on the RTX 2080, is 50% slower than its counterpart from the
CUDA library. At the time of writing, oneDPL does not provide an
FPGA-optimized implementation, and hence, instead of using the

Altis-SYCL: Migrating Altis Benchmarking Suite from CUDA to SYCL for GPUs and FPGAs SC-W 2023, November 12–17, 2023, Denver, CO, USA

mapCenters reset accumulate finalize

Global Memory (DDR)

(a) Baseline: kernel communication via global memory

mapCenters resetAccFin

Global Memory (DDR)

(b) Optimized: kernel communication via global memory and pipes

Figure 3: Designs of KMeans.

GPU-specialized one from oneDPL, we develop a custom prefix-sum
in SYCL for FPGAs, shown in Listing 2. On the Stratix 10, this cus-
tom implementation exhibits up to 100× performance improvement
relative to the GPU version from oneDPL.� �
1 queue.submit ([&](sycl:: handler &cgh) {
2 sycl:: accessor results
3 {results_buff , cgh , sycl:: read_only };
4 sycl:: accessor prefix
5 {prefix_buff , cgh , sycl::write_only , sycl:: noinit };
6
7 cgh.single_task <class exclusive_scan_id >(
8 [=]() [[intel :: kernel_args_restrict ,
9 intel :: max_global_work_dim (0) ,
10 intel :: no_global_work_offset (1)]] {
11 prefix [0] = 0;
12 #pragma unroll 2
13 for (int i = 1; i < size; i++)
14 prefix[i] = prefix[i - 1] + results[i];
15 }); });� �

Listing 2: Custom prefix-sum in SYCL for FPGAs.

5.4 Benchmarking on GPUs and Stratix 10
FPGA

While attempting to optimize the ND-Range implementation of
DWT2D, we found that its shared memory suffered from high con-
gestion that we were unable to remove. For increasing its perfor-
mance on FPGAs, our impression is that a complete device-specific
algorithmic rewrite would be required. Hence, for DWT2D on FP-
GAs, we currently provide only a baseline (i.e., fully functional, but
non-optimized) version.

Figure 4 shows the performance improvements attained by em-
ploying the previously discussed optimization techniques (Sec-
tions 5.1, 5.2, 5.3) on the Stratix 10 (designs built with Quartus v19.2).
Such improvements are moderate in some cases, e.g, CFD FP64 (2.1×,
size 1) and SRAD (2.1×, size 1), but substantial in others, e.g., Mandel-

brot (∼476×, size 3) and KMeans (∼510×, size 3). For each Altis-SYCL
application, we apply a different combination of techniques, e.g.,
in CFD FP32 and CFD FP64, we decouple memory accesses by using
pipes as well as replicate compute units. By doing so, we improve
the performance of CFD FP32 on the Stratix 10 by up to 4.7× (size 3)
wrt. the baseline (i.e., non-optimized) version. The geometric mean
of the achieved optimized vs. baseline speedups on the Stratix 10 is
∼10.7× (size 1), ∼20.7× (size 2), and ∼35.6× (size 3).

Figure 5 shows the relative speedups (vs. the Xeon CPU, whose
speedup = 1.0×) achieved on GPUs and FPGAs. At smaller sizes 1
and 2, for KMeans, LavaMD, PF Naive, PF Float, Where, the Stratix 10

exhibits comparable or superior performance wrt. the RTX 2080
and even the A100 and Max 1100. However, at the larger size 3, the
advantage of the Stratix 10 diminishes. Profiling reveals that this is
primarily caused by the growing demand of memory bandwidth for
larger sizes. For CFD FP32 and CFD FP64, FPGA designs experience
poor pipeline occupancy due to stalls in global memory access.
Despite the fact that these were mitigated by employing pipes and
replication, their performance on the Stratix 10 is lower compared
to that on CPU and GPUs. Furthermore, at size 2 and 3, NW also
exhibits half the performance wrt. the CPU. This is attributed to the
complex access patterns to local memory, which forces the compiler
to insert arbiters that can stall execution.

5.5 Retargeting from Stratix 10 to Agilex FPGAs
We use the code optimized for Stratix 10 as baseline for Agilex (de-
signs built with Quartus v21.2). For fitting or increasing the perfor-
mance on Agilex, we adjust some optimization parameters by, e.g.,
increasing the work-group size (16→32 in SRAD), scaling up/down
the compute-unit replication factors (4×→8× in CFD FP32, 2×→4×
and 20×→25× in Where, 16×→8× in NW, 10×→4× and 50×→24×
in both PF Naive and PF Float), reducing either the unrolling factor
(30×→16× in both LavaMD and Raytracing) or vectorization factor
(2×→1× in CFD FP64). Furthermore, our execution attempts of Where

with size 3 resulted in crashes on Agilex, and thus, the correspond-
ing speedups are not shown in Figure 5. Overall, the geometric
mean of the achieved relative speedups (vs. the Xeon CPU, whose
speedup = 1.0×) on {RTX 2080, A100, Max 1100, Stratix 10, Agilex}
is respectively {5.07×, 4.91×, 6.12×, 2.16× 2.55×} (size 1), {7.00×,
9.40×, 12.44×, 2.29× 2.25×} (size 2), and {8.61×, 23.14×, 21.11×,
1.44×, 1.48×} (size 3).

By comparing the selected FPGA devices (Table 2), we note
that the Stratix 10 GX 2800 provides a larger total number of re-
sources (+47.7%ALMs, +39.3% BRAMs, +21.7%DSPs) wrt. the Agilex
AGF 014. As shown in Table 3, in most cases, the resource utiliza-
tion percentage in Agilex is thus higher than that on the Stratix 10,
while for all cases the designs targeting Agilex achieved a higher
operating frequency. In particular, for Mandelbrot, we generate three
different bitstreams, each specialized to the current input size com-
bining a different number of compute units and unrolling factors.

6 CONCLUSIONS AND FUTUREWORK
In this work, we have leveraged oneAPI to migrate and optimize
the CUDA-based Altis benchmark suite into Altis-SYCL. For au-
tomating the CUDA-to-SYCL migration process, we have employed
the DPC++ Compatibility Tool and resolved the tool-reported code
migration warnings. For performance optimization, we have ap-
plied a number of device-specific techniques targeting preliminarily
GPUs, and then using this GPU-optimized code as baseline towards
FPGA-adapted code.

Altis-SYCL aims to provide a portable C++-based benchmark
suite useful for characterizing the performance of HPC systems
based on GPUs as well as FPGAs. For some FPGA designs of Altis-
SYCL, we observed that their performance was limited by the avail-
able platform memory bandwidth. Hence, as a future work, we
plan to investigate the performance of Altis-SYCL on HBM-enabled
Agilex FPGAs [11].

SC-W 2023, November 12–17, 2023, Denver, CO, USA Weckert et al.

CFD FP32 CFD FP64 FDTD2D KMeans LavaMD Mandelbrot NW PF Naive PF Float Raytracing SRAD Where

1

10

100

1000

4.
1

2.
1 5.

9

48
9.
4

3.
6

24
0.
0

5.
6

0.
9

4.
1

27
.1

2.
1

90
.8

4.
2

2.
2 5.

5

50
0.
5

23
.1

46
9.
9

18
.1

14
.6

11
.5 34

.7

2.
6

84
.3

4.
7

2.
2 5.

4

51
0.
3

25
.2

47
6.
2

17
.6

27
2.
6

36
8.
0

39
.5

5.
4

33
.5

Size1 Size2 Size3

Figure 4: Speedup of the “FPGA Optimized” over “FPGA Baseline” implementations for Altis-SYCL achieved on Stratix 10.

CFD FP32 CFD FP64 FDTD2D KMeans LavaMD Mandelbrot NW PF Naive PF Float Raytracing SRAD Where
0.001

1

1000

11
.2
4

1.
64

26
.8
4

11
.2
2

0.
55

17
.7
8

3.
80

0.
47 3.

60 8.
30 18
.6
5

5.
2716
.4
0

18
.1
1

14
.5
8

7.
21

1.
70

21
.4
6

1.
66

0.
18

2.
17 7.
29 9.
48

3.
7635

.7
5

9.
67

16
.2
9

10
.6
4

3.
23 24

.1
8

2.
77

0.
42 1.
27 5.
12 24
.9
5

2.
22

0.
63

0.
34

6.
69 28
.3
4

3.
82

2.
97

1.
37

0.
15

3.
39

1.
57 2.
37 8.
67

1.
09

0.
37

9.
32 28
.7
1

5.
33

3.
57

2.
79

0.
08

1.
89

1.
77 3.
64 13
.1
2

Size 1

RTX 2080 A100 Max 1100 Stratix 10 Agilex

CFD FP32 CFD FP64 FDTD2D KMeans LavaMD Mandelbrot NW PF Naive PF Float Raytracing SRAD Where
0.001

1

1000

10
.2
0

2.
33 11
.2
6

45
.1
4

1.
28 11

.9
6

4.
37

2.
57

1.
72 16

.2
4

42
.7
6

5.
5120
.4
7

24
.7
1

26
.9
2

23
.6
6

3.
13 14
.5
4

1.
99

1.
56 1.
86 21

.8
1

66
.2
7

3.
9145

.9
7

15
.9
6

23
.3
5

21
.7
7

23
.9
9

19
.9
2

3.
71

2.
16

2.
08 21

.1
1

94
.2
5

2.
32

0.
55

0.
47 1.
31

26
.0
4

2.
72 3.
25

0.
70 3.
23

3.
14

2.
02 2.
69 7.
00

1.
00

0.
53 1.
42

26
.4
9

2.
89

2.
87

1.
16 1.
54

1.
39 2.
15

2.
10 9.
38

Size 2

CFD FP32 CFD FP64 FDTD2D KMeans LavaMD Mandelbrot NW PF Naive PF Float Raytracing SRAD Where
0.001

1

1000

16
.5
1

3.
02 14
.3
1 99
.7
1

1.
23 11

.3
0

5.
26

2.
37 4.
64 18
.1
8

17
.2
6

9.
2448

.2
6

34
.5
1

40
.6
1

69
.8
1

5.
66 24
.5
6

2.
89 13
.9
0

32
.3
0

30
.2
5

36
.8
4

24
.8
2

34
.1
1

17
.7
2

42
.9
2

29
.8
9

41
.7
2

18
.7
8

5.
41

5.
70 18
.0
0

32
.5
6

34
.6
1

20
.5
5

0.
81

0.
62 1.
61

25
.6
3

2.
25 2.
72

0.
50 0.
69 1.
48 2.
27

0.
76

0.
731.
59

0.
68 1.
55

26
.1
6

2.
34

1.
97

0.
78

0.
41 0.
80 2.
34

0.
62

Size 3

Figure 5: Relative speedup achieved on {RTX 2080, A100, Max 1100} GPUs and {Stratix 10, Agilex} FPGAs over Xeon CPU.

Table 3: Resource utilization (%) and frequency (MHz) achieved on Stratix 10 and Agilex FPGAs.

Application
ALM BRAM DSP Freq (MHz)

ImplementationStratix 10 Agilex Stratix 10 Agilex Stratix 10 Agilex Stratix 10 AgilexT: 933120 T: 487200 T: 11721 T: 7110 T: 5760 T: 4510

CFD FP32 35.9% 79.7% 16.3% 43.7% 28.6% 70.4% 295.8 425.2 ND-Range & Single-Task
CFD FP64 65.7% 90.7% 30.0% 46.6% 21.7% 22.1% 256.3 373.3 ND-Range
FDTD2D 22.0% 28.6% 7.9% 15.7% 2.4% 3.1% 416.7 554.3 ND-Range
KMeans 25.3% 29.0% 7.0% 14.7% 10.8% 13.8% 347.5 370.6 Single-Task
LavaMD 76.7% 76.0% 15.0% 21.0% 22.9% 16.2% 320.8 519.2 ND-Range
Mandelbrot (size 1) 61.8% 58.8% 4.0% 14.2% 71.4% 39.7% 335.0 539.3

Single-TaskMandelbrot (size 2) 48.4% 65.1% 3.6% 10.5% 71.2% 56.8% 379.2 539.3
Mandelbrot (size 3) 45.3% 53.1% 3.9% 8.3% 71.1% 45.4% 375.0 544.4
NW 45.6% 45.5% 63.9% 59.4% 1.5% 1.0% 216.0 414.1 ND-Range
PF Naive 48.3% 80.4% 26.3% 37.6% 0.0% 0.0% 107.8 108.4 Single-Task
PF Float 60.1% 67.9% 32.9% 31.2% 3.6% 4.5% 101.9 123.7 Single-Task
Raytracing 71.4% 84.2% 37.5% 43.2% 53.4% 40.0% 321.9 457.9 ND-Range
SRAD 31.9% 44.8% 46.4% 33.5% 3.5% 4.5% 280.0 463.2 Single-Task
Where 32.3% 60.2% 15.3% 51.8% 0.0% 0.0% 308.3 461.7 ND-Range & Single-Task

ACKNOWLEDGMENTS
We thank Paderborn Center for Parallel Computing (PC2) for pro-
viding access and support during our experiments on the Stratix 10
FPGA. The access to the Max 1100 GPU has been granted by Intel
through the oneAPI Center of Excellence Research Award granted
to Technical University of Darmstadt.

REFERENCES
[1] Najmeh Nazari Bavarsad, Hosein Mohammadi Makrani, Hossein Sayadi,

Lawrence Landis, Setareh Rafatirad, and Houman Homayoun. 2021. HosNa:
A DPC++ Benchmark Suite for Heterogeneous Architectures. In 2021 IEEE 39th
International Conference on Computer Design (ICCD). IEEE, 509–516. https:
//doi.org/10.1109/ICCD53106.2021.00084

[2] BittWare. 2023. 520N Stratix 10 FPGA PCIe Board. https://www.bittware.com/
products/520n

https://doi.org/10.1109/ICCD53106.2021.00084
https://doi.org/10.1109/ICCD53106.2021.00084
https://www.bittware.com/products/520n
https://www.bittware.com/products/520n

Altis-SYCL: Migrating Altis Benchmarking Suite from CUDA to SYCL for GPUs and FPGAs SC-W 2023, November 12–17, 2023, Denver, CO, USA

[3] GermánCastaño, Youssef Faqir-Rhazoui, Carlos García, andManuel Prieto-Matías.
2022. Evaluation of Intel’s DPC++ Compatibility Tool in heterogeneous comput-
ing. Journal of Parallel and Distributed Computing (JPDC) 165 (2022), 120–129.
https://doi.org/10.1016/j.jpdc.2022.03.017

[4] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, JeremyW. Sheaffer, Sang-
Ha Lee, and Kevin Skadron. 2009. Rodinia: A benchmark suite for heterogeneous
computing. In 2009 IEEE International Symposium on Workload Characterization
(IISWC). IEEE, 44–54. https://doi.org/10.1109/IISWC.2009.5306797

[5] Anthony Danalis, Gabriel Marin, Collin McCurdy, Jeremy S. Meredith, Philip C.
Roth, Kyle Spafford, Vinod Tipparaju, and Jeffrey S. Vetter. 2010. The Scalable
Heterogeneous Computing (SHOC) Benchmark Suite. In Proceedings of the 3rd
Workshop on General-Purpose Computation on Graphics Processing Units. ACM,
63–74. https://doi.org/10.1145/1735688.1735702

[6] Atharva Gondhalekar, Thomas Twomey, and Wu-chun Feng. 2022. On the
Characterization of the Performance-Productivity Gap for FPGA. In 2022 IEEE
High Performance Extreme Computing Conference (HPEC). IEEE, 1–8. https:
//doi.org/10.1109/HPEC55821.2022.9926404

[7] Bodun Hu and Christopher J. Rossbach. 2020. Altis: Modernizing GPGPU Bench-
marks. In 2020 IEEE International Symposium on Performance Analysis of Systems
and Software (ISPASS). IEEE, 1–11. https://doi.org/10.1109/ISPASS48437.2020.
00011

[8] Intel. 2019. Understanding Peak Floating-Point Performance Claims. https:
//www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/wp/
wp-01222-understanding-peak-floating-point-performance-claims.pdf

[9] Intel. 2021. Intel DPC++ Compatibility Tool. https://www.intel.com/content/
www/us/en/developer/tools/oneapi/dpc-compatibility-tool.html

[10] Intel. 2023. DPC++ Runtime - Runtime libraries for oneAPI DPC++.
https://intel.github.io/llvm-docs/doxygen/classsycl_1_1__V1_1_1queue.html#
abc43813da13473a0c47e92c7d334dc5a

[11] Intel. 2023. Intel Agilex 7 FPGA and SoC FPGA M-Series. https://www.intel.
com/content/www/us/en/products/details/fpga/agilex/7/m-series.html

[12] Intel. 2023. Intel Data Center GPU Max 1100. https://www.intel.com/
content/www/us/en/products/sku/232876/intel-data-center-gpu-max-
1100/specifications.html

[13] Intel. 2023. Intel FPGA Optimization Guide for Intel oneAPI Toolk-
its. https://www.intel.com/content/www/us/en/docs/oneapi-fpga-add-on/
optimization-guide/2023-1/overview.html

[14] Intel. 2023. oneAPI: A New Era of Heterogeneous Computing. https://www.
intel.com/content/www/us/en/developer/tools/oneapi/overview.html

[15] Intel. 2023. oneMKL - Data Parallel C++ Developer Reference:
oneapi::mkl::rng::philox4x32x10. https://www.intel.com/content/www/
us/en/docs/onemkl/developer-reference-dpcpp/2023-1/oneapi-mkl-rng-
philox4x32x10.html

[16] Intel. 2023. Samples for Intel oneAPI Toolkits. https://github.com/oneapi-
src/oneAPI-samples

[17] Intel. 2023. Why oneAPI? https://www.oneapi.io
[18] Ryuta Kashino, Ryohei Kobayashi, Norihisa Fujita, and Taisuke Boku. 2022. Multi-

Hetero Acceleration by GPU and FPGA for Astrophysics Simulation on OneAPI
Environment. In International Conference on High Performance Computing in Asia-
Pacific Region (HPCAsia). ACM, 84–93. https://doi.org/10.1145/3492805.3492817

[19] Khronos Group. 2023. SYCL. https://www.khronos.org/sycl
[20] Marius Meyer, Tobias Kenter, and Christian Plessl. 2020. Evaluating FPGA Ac-

celerator Performance with a Parameterized OpenCL Adaptation of Selected
Benchmarks of the HPCChallenge Benchmark Suite. In 2020 IEEE/ACM Interna-
tional Workshop on Heterogeneous High-performance Reconfigurable Computing
(H2RC). IEEE, 10–18. https://doi.org/10.1109/H2RC51942.2020.00007

[21] NVIDIA. 2023. CUDA Toolkit v12.1.1: cuRAND. https://docs.nvidia.com/cuda/
curand/host-api-overview.html#generator-types

[22] Paul Sathre, Atharva Gondhalekar, and Wu-chun Feng. 2022. Edge-Connected
Jaccard Similarity for Graph Link Prediction on FPGA. In 2022 IEEE High Perfor-
mance Extreme Computing Conference (HPEC). IEEE, 1–10. https://doi.org/10.
1109/HPEC55821.2022.9926326

[23] Christopher Siefert, Stephen L. Olivier, Gwendolyn Voskuilen, and Jeffrey Young.
2022. MultiGrid on FPGA Using Data Parallel C++. In 2022 IEEE International
Parallel and Distributed Processing Symposium Workshops (IPDPSW). IEEE, 907–
910. https://doi.org/10.1109/IPDPSW55747.2022.00147

[24] Terasic. 2023. DE10-Agilex Development Board. https://www.terasic.com.tw/cgi-
bin/page/archive.pl?Language=English&CategoryNo=115&No=1252#contents

[25] Yong Wang, Yongfa Zhou, Qi Scott Wang, Yang Wang, Qing Xu, Chen Wang,
Bo Peng, Zhaojun Zhu, Katayama Takuya, and Dylan Wang. 2021. Developing
medical ultrasound beamforming application on GPU and FPGA using oneAPI. In
2021 IEEE International Parallel and Distributed Processing Symposium Workshops
(IPDPSW). IEEE, 360–370. https://doi.org/10.1109/IPDPSW52791.2021.00064

[26] Alberto Zeni, Kenneth O’Brien, Michaela Blott, and Marco D. Santambrogio.
2021. Optimized Implementation of the HPCG Benchmark on Reconfigurable
Hardware. In Euro-Par 2021: Parallel Processing. Springer, 616–630. https://doi.
org/10.1007/978-3-030-85665-6_38

https://doi.org/10.1016/j.jpdc.2022.03.017
https://doi.org/10.1109/IISWC.2009.5306797
https://doi.org/10.1145/1735688.1735702
https://doi.org/10.1109/HPEC55821.2022.9926404
https://doi.org/10.1109/HPEC55821.2022.9926404
https://doi.org/10.1109/ISPASS48437.2020.00011
https://doi.org/10.1109/ISPASS48437.2020.00011
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/wp/wp-01222-understanding-peak-floating-point-performance-claims.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/wp/wp-01222-understanding-peak-floating-point-performance-claims.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/wp/wp-01222-understanding-peak-floating-point-performance-claims.pdf
https://www.intel.com/content/www/us/en/developer/tools/oneapi/dpc-compatibility-tool.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/dpc-compatibility-tool.html
https://intel.github.io/llvm-docs/doxygen/classsycl_1_1__V1_1_1queue.html#abc43813da13473a0c47e92c7d334dc5a
https://intel.github.io/llvm-docs/doxygen/classsycl_1_1__V1_1_1queue.html#abc43813da13473a0c47e92c7d334dc5a
https://www.intel.com/content/www/us/en/products/details/fpga/agilex/7/m-series.html
https://www.intel.com/content/www/us/en/products/details/fpga/agilex/7/m-series.html
https://www.intel.com/content/www/us/en/products/sku/232876/intel-data-center-gpu-max-1100/specifications.html
https://www.intel.com/content/www/us/en/products/sku/232876/intel-data-center-gpu-max-1100/specifications.html
https://www.intel.com/content/www/us/en/products/sku/232876/intel-data-center-gpu-max-1100/specifications.html
https://www.intel.com/content/www/us/en/docs/oneapi-fpga-add-on/optimization-guide/2023-1/overview.html
https://www.intel.com/content/www/us/en/docs/oneapi-fpga-add-on/optimization-guide/2023-1/overview.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/overview.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/overview.html
https://www.intel.com/content/www/us/en/docs/onemkl/developer-reference-dpcpp/2023-1/oneapi-mkl-rng-philox4x32x10.html
https://www.intel.com/content/www/us/en/docs/onemkl/developer-reference-dpcpp/2023-1/oneapi-mkl-rng-philox4x32x10.html
https://www.intel.com/content/www/us/en/docs/onemkl/developer-reference-dpcpp/2023-1/oneapi-mkl-rng-philox4x32x10.html
https://github.com/oneapi-src/oneAPI-samples
https://github.com/oneapi-src/oneAPI-samples
https://www.oneapi.io
https://doi.org/10.1145/3492805.3492817
https://www.khronos.org/sycl
https://doi.org/10.1109/H2RC51942.2020.00007
https://docs.nvidia.com/cuda/curand/host-api-overview.html#generator-types
https://docs.nvidia.com/cuda/curand/host-api-overview.html#generator-types
https://doi.org/10.1109/HPEC55821.2022.9926326
https://doi.org/10.1109/HPEC55821.2022.9926326
https://doi.org/10.1109/IPDPSW55747.2022.00147
https://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=115&No=1252#contents
https://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=115&No=1252#contents
https://doi.org/10.1109/IPDPSW52791.2021.00064
https://doi.org/10.1007/978-3-030-85665-6_38
https://doi.org/10.1007/978-3-030-85665-6_38

	Abstract
	1 Introduction
	2 Background
	2.1 The DPC++ Compatibility Tool
	2.2 The Altis Benchmark Suite
	2.3 Related Work

	3 Migrating Altis from CUDA to SYCL for GPUs
	3.1 Experimental Environment
	3.2 Experiences with DPCT
	3.3 Optimizing SYCL performance on the RTX 2080 GPU

	4 Code Refactoring Altis-SYCL for successful FPGA Design Generation
	5 Optimizing Altis-SYCL for FPGAs
	5.1 General Optimizations
	5.2 Optimizing Migrated ND-Range Kernels
	5.3 Rewriting ND-Range as Single-Task Kernels
	5.4 Benchmarking on GPUs and Stratix 10 FPGA
	5.5 Retargeting from Stratix 10 to Agilex FPGAs

	6 Conclusions and Future Work
	Acknowledgments
	References

