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ABSTRACT

In recent years, Intel introduced oneAPI as a unified and cross-
architecture programming model based on the Data Parallel C++
(DPC++) language, which in turn, is based on the C++ and SYCL
standard languages. In order to facilitate the migration of legacy
CUDA code originally written for NVIDIA GPUs, developers can
employ the Intel DPC++ Compatibility Tool, which aims to automat-
ically migrate code from CUDA to SYCL. While this tool-assisted
code migration is a good starting point for leveraging the Intel
oneAPI ecosystem, manual steps for code completion and tuning
are still required. In this paper, we present our experiences migrat-
ing AutoDock-GPU, a widely-used molecular docking application,
from CUDA to SYCL. Our discussion focuses on: (1) the use of
this automated source-code migration tool, (2) the required manual
code refinement for functionality and optimization, and (3) the com-
parison of the performance achieved in this manner on multi-core
CPUs as well as on high-end GPUs, such as NVIDIA A100 and the
recently-launched Intel Data Center Max 1550 device.
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• Computing methodologies → Parallel programming lan-

guages; • Applied computing→ Chemistry.
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1 INTRODUCTION

Intel created oneAPI to allow developers to program a wide spec-
trum of heterogeneous architectures using the common Data Paral-
lel C++ language (DPC++) [22]. DPC++ is based on ISO C++, and
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incorporates the Khronos standard SYCL [16] along with commu-
nity extensions to simplify data parallel programming. Current
research efforts on leveraging and improving oneAPI are taking
place at several recently-established Centers of Excellence in differ-
ent academic institutions [8].

The Intel DPC++ Compatibility Tool [6] (from now on simply
referred to as Compatibility Tool) released as part of oneAPI can be
used to minimize the effort of code migration from CUDA to SYCL.
According to Intel’s estimates as of September 20211, Compatibility
Tool is able to automatically migrate 90%-95% of CUDA code into
human-readable SYCL code. In addition, Compatibility Tool pro-
vides inline comments to assist developers in manually completing
the migration by pointing out required localized code changes.

Compatibility Tool can be leveraged in High Performance Com-
puting (HPC), Artificial Intelligence, Medical Imaging, embedded
applications, and other scenarios, where CUDA applications are
traditionally employed for tackling many challenging tasks in sci-
ence and engineering [19]. In fact, recent studies have assessed
the effectiveness of Compatibility Tool at porting applications of
different domains, e.g., tsunami simulation [2], ultrasound beam-
forming [31], sequence alignment [4], as well as those from the
Rodinia and SHOC benchmark suites [1, 15]. In particular, studies
in [1, 2, 4] report specific limitations of Compatibility Tool, agreeing
in that most frequent tool-reported warnings point to code sections
performing error handling of API return codes, as well as kernel
invocation. To gain further insights into the capabilities and limita-
tions of Compatibility Tool for more complex irregular algorithms,
we are investigating its use on a state-of-the-art molecular docking
code.

Molecular docking is an interesting application domain. Being a
key method in computer-aided drug design, it simulates the close-
distance interactions of two molecules of known three-dimensional
structure, and aims to predict their binding poses (i.e., spatial ar-
rangements) that are energetically strong. These two molecules are
known as ligand (small molecule) and receptor (macromolecule).
Molecular docking is used to identify ligands with anti-viral prop-
erties against a receptor modeling a given biological target (e.g., a
protein or nucleid acid) [5]. One of the most widely-used molec-
ular docking applications is AutoDock [18]. It explores the pose
space through a systematic search consisting of multiple irregular
nested loops with variable upper bounds. The search refinement is
driven by the score of each pose, which quantifies the strength of
the molecular interaction. The score is based on compute-intensive
models and is typically evaluated 106 times within these search
iterations.

1Based on measurements on a set of 70 HPC benchmarks and samples, with examples
including Rodinia, SHOC, and PENNANT. Other results may vary.
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These high-computing requirements of the molecular docking
algorithm in AutoDock have spurred interest in parallelizing and
accelerating this application. For that purpose, the official parallel-
code development of AutoDock, called AutoDock-GPU [24], has
been originally implemented in OpenCL [23], and afterwards mi-
grated to CUDA to run on the Summit supercomputer for COVID-
19 research [17]. Other authors have implemented a miniapp ver-
sion of AutoDock-GPU using alternative heterogeneous program-
ming languages, such as HIP and Kokkos [30]. Since its release,
AutoDock-GPU has been under several performance enhance-
ments for CPUs and GPUs [28, 29], as well as ported to different
heterogeneous architectures including FPGAs [27] and vector pro-
cessors [26]. As another example of its relevance, AutoDock-GPU
is nowadays being used as the docking engine in OpenPandemics:
COVID-19, a grid-computing project aiming to study proteins from
the SARS-CoV-2 virus [32].

With its challenging code structure and high practical relevance,
AutoDock-GPU is thus a promising case study for evaluating the
automated CUDA-to-SYCL code migration, e.g., to target new Intel
devices such as the Data Center Max 1550 GPU (code-named Ponte
Vecchio). Our contributions are summarized as follows:

(1) We present our experiences migrating the molecular dock-
ing code of AutoDock-GPU from CUDA to SYCL. For this
purpose, we employ Compatibility Tool, with the migrated
(and manually refined) SYCL code being released as open
source2.

(2) We evaluate the performance of different code versions of
AutoDock-GPU, i.e., the original OpenCL and CUDA as
well as the newly migrated SYCL, on Intel Xeon Platinum
8360Y CPU, NVIDIA A100 GPU, and Intel Data Center Max
1550 GPU.

(3) We compare our work here to previous studies in terms of
migration cases addressed when employing Compatibility
Tool.

The remainder of this paper is structured as follows. Section 2
provides a background on AutoDock-GPU. Section 3 discusses the
code migration process, while Section 4 evaluates the performance
achieved on CPUs and GPUs. Section 5 compares our work to
previous studies. Finally, Section 6 concludes this paper with a
summary and outlook to future work.

2 BACKGROUND ON AUTODOCK-GPU

In this work, we use AutoDock-GPU v1.5.3 as our baseline, which
corresponds to the latest stable release at the time of experimen-
tation. Extensive descriptions on AutoDock-GPU’s fundamentals
and the evolution of the code base can be found in [23, 28, 29].

2.1 Functionality Overview

AutoDock-GPU performs a systematic search based on genetic
evolution heuristics, where each of the ligand poses is treated as
an individual of a population. Each individual is represented by
its genotype, comprising in turn a set of genes, which describe
the translation, orientation, and torsion experienced by the ligand
during docking.

2https://github.com/ccsb-scripps/AutoDock-GPU/pull/183

The computational core of AutoDock-GPU is an irregular
Lamarckian Genetic Algorithm (LGA) that performs a hybrid search
combining a genetic algorithm (GA) and a local search (LS). Both
LGA phases generate new individuals from the current population,
however they employ different methods. The genetic algorithm
applies genetic operations (i.e., crossover, mutation, and selection),
while the local search aims to further improve (i.e., minimize) scores.
As shown in Algorithm 1, AutoDock-GPU executes several inde-
pendent LGA runs (default: 𝑁TOTAL

LGA−runs = 100). AutoDock-GPU
can enforce that each of these LGA runs terminates whenever any
of the predefined upper bounds for the number of score evalua-
tions (default: 𝑁MAX

score−evals = 25 × 106) or generations (default:
𝑁MAX
gens = 27 × 103) is reached.

Algorithm 1: Lamarckian Genetic Algorithm (LGA)
1 Function AutoDock-GPU

/* Coarse-Level Parallelism */

2 for each LGA-run in 𝑁 TOTAL
LGA−runs do

3 while (𝑁score−evals < 𝑁MAX
score−evals) and (𝑁gens < 𝑁MAX

gens ) do
/* Medium-Level Parallelism */

4 GA (population)
5 LS (population)

For measuring the strength (i.e., energy) of molecular inter-
actions, scores (expressed in kcal/mol) are computed for every
pose during both LGA phases. Algorithm 2 shows the code struc-
ture of the scoring function (SF), which consists of three compo-
nents. PoseCalculation transforms the genotypes into atomic co-
ordinates, which are then used for computing the ligand-receptor
(InterScore) and ligand-ligand (IntraScore) score components. The
upper bounds of the corresponding loops depend on the molecular
structure of the input, i.e., the number of elements in the rotation
list (𝑁rot−list), the number of ligand atoms (𝑁atom), and the number
of intramolecular contributor-pairs (𝑁intra−contrib).

Algorithm 2: Scoring Function (SF)
/* Fine-Level Parallelism */

1 Function SF (genotype)
2 for each rot-item in 𝑁rot−list do
3 PoseCalculation

4 for each lig-atom in 𝑁atom do

5 InterScore

6 for each intra-pair in 𝑁intra−contrib do
7 IntraScore

The most time-consuming phase of AutoDock-GPU is the local
search, whose execution corresponds to >90% of the total execution
time. AutoDock-GPU features several alternative methods that
can be chosen for local search. Each of these methods minimizes
the score through a number of adaptive iterations.

Similarly to the original AutoDock program, AutoDock-GPU
implements as local search the method of Solis-Wets [25]. As shown
in Algorithm 3, in each iteration, Solis-Wets starts generating a
new genotype by adding small changes (i.e., a constrained random
amount) to each gene of an initial genotype (Algorithm 3: lines 4, 5).
Correspondingly, the scores of the aforementioned genotypes are
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computed and compared (Algorithm 3: line 6). If the score is not min-
imized, a second new genotype is generated similarly as in the case
above. In this case, however, a subtraction (Algorithm 3: lines 10,
11) is applied instead of an addition. The outcome of every com-
parison updates the number of successful and failed minimization
attempts. Besides its divergent execution, Solis-Wets employs an
irregular termination criterion (Algorithm 3: line 2) that depends
on the maximum number of iterations (default: 𝑁MAX

LS−iters = 300), as
well as the minimum step change (default: stepMIN = 0.01).

Algorithm 3: Solis-Wets (SW) local search
/* Fine-Level Parallelism */

1 Function SW (genotype)
2 while (𝑁LS−iters < 𝑁MAX

LS−iters) and (step > stepMIN) do
3 delta = create-delta (step)

// new-genotype1

4 for each gene in 𝑁genes do
5 new-gene1 = gene + delta

6 if SF (new-genotype1) < SF (genotype) then
7 genotype = new-genotype1
8 success++; fail = 0

9 else

// new-genotype2

10 for each gene in 𝑁genes do
11 new-gene2 = gene - delta

12 if SF (new-genotype2) < SF (genotype) then
13 genotype = new-genotype2
14 success++; fail = 0

15 else

16 success = 0; fail++

17 step = update-step (success, fail)

Stepping forward with respect to the original AutoDock,
AutoDock-GPU has incorporated improved local-search meth-
ods beyond Solis-Wets. Algorithm 4 describes one of these,
ADADELTA [33], which generates a new genotype by using the
gradients of the current genotype’s score (Algorithm 4: line 4).
Then, if the score of the new genotype is improved, the latter be-
comes the current genotype (Algorithm 4: line 6). ADADELTA
terminates if the number of iterations reaches a maximum (default:
𝑁MAX
LS−iters = 300).

Algorithm 4: ADADELTA (AD) local search
/* Fine-Level Parallelism */

1 Function AD (genotype)
2 gradient = GC (genotype)
3 while (𝑁LS−iters < 𝑁MAX

LS−iters) do
4 new-genotype = update-rule (genotype, gradient)
5 if SF (new-genotype) < SF (genotype) then
6 genotype = new-genotype

7 gradient = GC (genotype)

The gradient calculation (GC) employed by ADADELTA is de-
scribed in Algorithm 5. The code structure resembles that of the
scoring function in Algorithm 2. First, the PoseCalculation com-
putes the atomic coordinates, which in turn, are used for comput-
ing the numerical (InterGradient) and analytical (IntraGradient)
derivatives of the corresponding score components. At this point,

such derivatives are expressed as a list of atomic contributions. How-
ever, as the overall LGA search works on genotypes, it is required
to convert those atom-based into gene-based contributions. This
conversion is achieved with Gtrans, Grigidrot, and Grotbond (Algo-
rithm 5: lines 8-10), which are loops performing data-dependent
operations for computing the translational, orientational, and rota-
tional components of the gradient.

Algorithm 5: Gradient Calculation (GC)
/* Fine-Level Parallelism */

1 Function GC (genotype)
/* Gradients in atomic space */

2 for each rot-item in 𝑁rot−list do
3 PoseCalculation

4 for each lig-atom in 𝑁atom do

5 InterGradient

6 for each intra-pair in 𝑁intra−contrib do
7 IntraGradient

/* Convert from atomic into genetic space */

8 Gtrans // Translational gradients

9 Grigidrot // Rigid-body rotation gradients

10 Grotbond // Rotatable-bond gradients

2.2 Parallelization

As already indicated, AutoDock-GPU was originally developed
in OpenCL [23], and thereafter ported to CUDA [17]. Both im-
plementations follow a Single Instruction Multiple Thread (SIMT)
programming style. Table 1 shows how AutoDock-GPU’s compu-
tations are mapped onto OpenCL and CUDA processing elements
at different paralellization levels.

In general, AutoDock-GPU performs 𝑁TOTAL
LGA−runs independent

LGA runs with indices RunID = {0, 1, 2, . . . , 𝑁TOTAL
LGA−runs − 1}.

In each LGA run, the genetic algorithm and local search pro-
cess a population of Popsize individuals with indexes IndID =

{0, 1, 2, . . . , Popsize − 1}. The main idea of AutoDock-GPU’s par-
allelization is to process simultaneously individuals from differ-
ent LGA runs. Based on this, 𝑁TOTAL

LGA−runs × Popsize individuals are
mapped each to an OpenCL work-group (CUDA block), where the
index of an OpenCL work-group (CUDA block) can be expressed as:
WGID = RunID × Popsize + IndID. Moreover, the fine-grained tasks
such as the genotype generation and score evaluation are carried
out by OpenCL work-items (CUDA threads).

Table 1: Mapping of AutoDock-GPU’s computations onto

OpenCL and CUDA processing elements. The correspond-

ing parallelism is also indicated as comments in Algo-

rithms 1, 2, 3

Computation OpenCL (CUDA) element Parallelization level

Genetic algorithm / Kernel CoarseLocal search

Individual Work-Group (Block) Medium

Generation / Work-Item (Thread) FineScoring
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3 MIGRATING AUTODOCK-GPU TO SYCL

In our case, we have two options to migrate to SYCL:
(1) Migrate from the original OpenCL version.
(2) Migrate from the recently-created CUDA version.

Since one of our goals is the performance comparison of new SYCL-
programmable GPUs such as Intel’s Data Center Max 1550 with
state-of-the-art NVIDIA GPUs, we employed the second approach
consisting of two main steps:

• First, using as much as possible the output of Compatibil-
ity Tool v2021.2.03, namely the SYCL migrated code created
from the CUDA code of AutoDock-GPU (v1.5.3). As a base-
line, common CUDA API concepts and their automatically
migrated equivalents in SYCL4are shown in Table 2.

• Second, reviewing andmanually completing the tool-assisted
migration by using the tool guidelines provided as code
comments.

In this section, we discuss the migration cases addressed in this
work, categorized in two groups according to their purpose: func-
tional correctness and performance optimization. Examples for the
cases in these two groups are illustrated in listings showing the
manually-edited SYCL code.

3.1 Migration Cases for Functional Correctness

3.1.1 Reductions. AutoDock-GPU employs integer reductions to
keep track of the total number of score evaluations. In the CUDA
version of AutoDock-GPU, these reductions are implemented as
multi-linemacros performing shuffles. However, Compatibility Tool
could not migrate these correctly, warning that it could not handle
mask options for shuffle (e.g., Listing 2: line 15). By inspecting
the CUDA code, we realized that it was easier to manually use
the equivalent built-in SYCL reduce_over_group() function directly.
Listing 1 shows that by using this collective function, we greatly
simplify this macro in the SYCL version. In general, collectives
should be leveraged whenever possible.

3.1.2 Shuffles. The CUDA version of AutoDock-GPU employs
a block of threads performing shuffles to find the minimum score.
In this case, Compatibility Tool could not determine that a mask
was used, and thus, it performed incorrect variable substitution.
Listing 2 shows that to fix this, we had to manually insert the
equivalent SYCL sub-group shuffles (lines 21, 22). Compatibility
Tool reported the corresponding warning (line 15), which is due to
the fact that the SYCL sub-group shuffle function used for migration
does not support the extra mask argument required in the CUDA
counterpart.

3.1.3 Synchronization. In the CUDA version of AutoDock-GPU,
__threadfence() is always followed by __syncthreads() (e.g., Listing 1:
lines 22, 23). Compatibility Tool leaves __threadfence() as is, while it
migrates CUDA __syncthreads() into SYCL work_item.barrier(). From
a semantics perspective, this migration step makes sense as a SYCL
3Our migration of AutoDock-GPU to SYCL used the Intel DPC++ Compatibility Tool.
This work predates the release of SYCLomatic [11], which is based on Compatibility
Tool. Any improvements made to SYCLomatic through community efforts will be also
incorporated in the Intel DPC++ Compatibility Tool product.
4Compatibility Tool generates 3D nd_range kernels by default as it works in general
for migrating most CUDA kernels and does not incur a performance penalty compared
to 1D.

barrier() performs two things [3]. First, it ensures that each work-
item within a work-group reaches the barrier call. In this way,
the barrier synchronizes the work-group at a certain point in the
code, acting equivalently to CUDA __syncthreads(). Second, the
barrier emits a memory fence ensuring that the specified space
is consistent across all work-items within the work-group, act-
ing equivalently to CUDA __threadfence(). Therefore, we manu-
ally migrate __threadfence() as a no-op, and keep the tool-migrated
work_item.barrier() statement (e.g., Listing 1: line 31). Moreover,
cudaDeviceSynchronize() was manually migrated to
dpct::get_default_queue().wait_and_throw().

Listing 1: Migration of reduction macro� �
1 // CUDA
2 #define REDUCEINTEGERSUM(val , pAccumulator) \
3 if (threadIdx.x == 0) \
4 { \
5 *pAccumulator = 0; \
6 } \
7 __threadfence (); \
8 __syncthreads (); \
9 if (__any_sync (0 xffffffff), val != 0)) \
10 { \
11 uint32_t tgx = threadIdx.x & cData.warpmask; \
12 val += __shfl_sync (0xffffffff , val , tgx^1); \
13 val += __shfl_sync (0xffffffff , val , tgx^2); \
14 val += __shfl_sync (0xffffffff , val , tgx^4); \
15 val += __shfl_sync (0xffffffff , val , tgx^8); \
16 val += __shfl_sync (0xffffffff , val , tgx ^16); \
17 if (tgx == 0) \
18 { \
19 atomicAdd(pAccumulator , val); \
20 } \
21 } \
22 __threadfence (); \
23 __syncthreads (); \
24 val = *pAccumulator; \
25 __syncthreads ();
26
27 // SYCL
28 #define REDUCEINTEGERSUM(val , pAccumulator) \
29 int myval = sycl:: reduce_over_group(wi.get_group (), val ,

std::plus <>()); \
30 *pAccumulator = myval; \
31 wi.barrier(sycl:: access :: fence_space :: local_space);� �

Listing 2: Migration of shuffles� �
1 // CUDA
2 #define WARPMINIMUMEXCHANGE(tgx , v0, k0, mask) \
3 { \
4 float v1 = v0; int k1 = k0; \
5 int otgx = tgx ^ mask; \
6 float v2 = __shfl_sync (0xffffffff , v0, otgx); \
7 int k2 = __shfl_sync (0xffffffff , k0, otgx); \
8 int flag = ((v1<v2) ^ (tgx >otgx)) && (v1!=v2); \
9 k0 = flag ? k1 : k2; \
10 v0 = flag ? v1 : v2; \
11 }
12
13 // SYCL
14 /*
15 DPCT1023 :57: The DPC++ sub -group does not support mask options

for shuffle.
16 */
17 #define WARPMINIMUMEXCHANGE(tgx , v0, k0, mask) \
18 { \
19 float v1 = v0; int k1 = k0; \
20 int otgx = tgx ^ mask; \
21 float v2 = wi.get_sub_group ().shuffle(v0, otgx); \
22 int k2 = wi.get_sub_group ().shuffle(k0, otgx); \
23 ...
24 }� �
3.1.4 Sub-group sizes. A SYCL sub-group represents a short range
of consecutive work-items that are processed together as a SIMD
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Table 2: Examples for automatic CUDA-to-SYCL migrations using Intel DPC++ Compatibility Tool

CUDA SYCL

Thread sycl::nd_item (work-item)
Warp sycl::sub-group (sub-group)
Block sycl::group (work-group)
threadIdx.x item_ct1.get_local_id(2) (for three-dimensional range)
blockDim.x item_ct1.get_local_range().get(2) (for three-dimensional range)
blockIdx.x item_ct1.get_group(2) (for three-dimensional range)
cudaMalloc sycl::malloc_device
cudaMallocManaged sycl::malloc_shared
cudaFree sycl::free
cudaMemcpy dpct::get_default_queue().memcpy(. . . ).wait()
__shared__ sycl::accessor<int, 0, sycl::access::mode::read_write, sycl::access::target::local>
kernel«<blocks, threadsPerBlock»>(); dpct::get_default_queue().submit([&](sycl::handler &cgh){

cgh.parallel_for (sycl::nd_range<3>(
sycl::range<3>(1, 1, blocks) * sycl::range<3>(1, 1, threadsPerBlock),
sycl::range<3>(1, 1, threadsPerBlock)),
[=](sycl::nd_item<3> item_ct1){
kernel(item_ct1);

});
});

vector [10]. Since SYCL allows alternative sub-group size configura-
tions, Compatibility Tool does not generate any size. Hence, when
SYCL sub-group functions are used (e.g., shuffles), sub-group sizes
must be explicitly specified as in Listing 3 (line 8).

Listing 3: Specification of sub-group size� �
1 // SYCL
2 cgh.parallel_for(
3 sycl::nd_range <3>(
4 sycl::range <3>(1,1, blocks) *
5 sycl::range <3>(1,1, threadsPerBlock),
6 sycl::range <3>(1,1, threadsPerBlock)
7 ), [=]( sycl::nd_item <3> wi)
8 [[intel :: reqd_sub_group_size (32)]] {
9 gpu_gen_and_eval_newpops_kernel (...)
10 ...
11 }
12 );� �
3.1.5 Memory layout for vector data types. The CUDA version of
AutoDock-GPU relies on memory allocated using sizeof(float3)

(= 3*sizeof(float)) while doing pointer arithmetic in kernels. While
Compatibility Tool does correctly migrate CUDA float3 to SYCL
sycl::float3, a different number of bytes is allocated in each case:
12 for CUDA vs. 16 for SYCL. This particular discrepancy in the
allocated memory between CUDA and SYCL led to a silent memory
corruption overwriting portions of the shared memory reserved for
other variables in AutoDock-GPU, which in turn, led to incorrect
score evaluations. This error was pinpointed through extensive
debugging, and corrected by explicitly propagating – from host to
device – the size of the allocated memory (based on e.g., sycl::float3
or sycl::int3) via the pointer to its corresponding SYCL accessor.

3.1.6 Query for available memory on device. The CUDA version of
AutoDock-GPU calls cudaMemGetInfo() during host setup. However,
Compatibility Tool does not migrate it. For this reason, we manually
insert the get_device_info() and get_global_mem_size() calls.

3.1.7 Assembly code. The CUDA version of AutoDock-GPU con-
tains few lines of inline PTX assembly code. Likely, this was carried
out for performance optimization reasons, as inline PTX enables

the access to instructions not exposed via CUDA intrinsics. Compat-
ibility Tool does not support the migration of inline PTX. However,
Listing 4 shows how we easily manually convert inline PTX in
CUDA into SYCL.

Listing 4: Migration of assembly code� �
1 // CUDA
2 __device__ inline uint64_t llitoulli(int64_t l) {
3 uint64_t u;
4 asm("mov.b64 %0, %1;" : "=l"(u) : "l"(l));
5 return u;
6 }
7
8 // SYCL
9 inline uint64_t llitoulli(int64_t l) {
10 uint64_t u;
11 u = l;
12 return u;
13 }� �
3.2 Migration Cases for Performance

Optimization

3.2.1 Atomics and barriers. Compatibility Tool assumes that the
memory address space to perform atomic operations is always de-
clared as global. However, this is not strictly required in all cases,
and hence, local address space could be used instead to reduce the
synchronization effort. Listing 5 shows how we manually spec-
ify the local_space (line 11) for the SYCL atomic addition on the
pAccumulator variable. Moreover, Compatibility Tool makes assump-
tions on the memory order and scope. Similarly, the initially tool-
migrated acq_rel order and device scope are manually replaced with
relaxed (line 9) and work_group (line 10), respectively. As already de-
scribed in Section 3.1.3, any CUDA __syncthreads() is automatically
migrated as a SYCL work_item.barrier(). However, in order to prop-
erly configure it for local memory space, we have to manually add
the sycl::access::fence_space::local_space specifier as an argument
to the barrier call (Listing 1: line 31).
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Listing 5: Migration of atomic operation� �
1 // CUDA
2 #define ATOMICADDI32(pAccumulator , value) \
3 atomicAdd(pAccumulator , (value))
4
5 // SYCL
6 #define ATOMICADDI32(pAccumulator , value) \
7 sycl::atomic_ref < \
8 int , \
9 sycl:: memory_order ::relaxed , \
10 sycl:: memory_scope ::work_group , \
11 sycl:: access :: address_space :: local_space > \
12 (* pAccumulator) += ((int)(value))� �
3.2.2 Native math functions. Compatibility Tool migrates CUDA
single-precision math functions into their SYCL equivalents. For
higher performance, the OpenCL version of AutoDock-GPU lever-
ages native math functions as much as possible. For the same
purpose, we manually replace the automatically-migrated calls
to default SYCL math functions (e.g., sycl::sqrt()) with their native
counterparts (e.g., sycl::native::sqrt()).

3.3 Summary of Migration Cases and Required

Actions

Table 3 summarizes the generic actions, required from an applica-
tion developer, for resolving each of the migration cases discussed
in Sections 3.1 and 3.2.

On the one hand, most migration cases require manual code
fixes for achieving a functionally-correct program. Of these, some
cases are not enforced by Compatibility Tool: e.g., that of sub-group
sizes (Section 3.1.4), for which the developer must understand if
the code depends on a given feature, and manually add it, if needed.
An outlier case is that of shuffle migration (Section 3.1.2), origi-
nally requiring us to manually insert SYCL sub-group shuffles for
attaining working code. This is due to a limitation of v2021.2.0 of
Compatibility Tool used in this work. However, newer versions of
Compatibility Tool have resolved this issue, and thus, such man-
ual fix is not necessary anymore. Furthermore, the migration of
cudaMemGetInfo() (Section 3.1.6) could be resolved in the future, e.g.,
when the underlying software layers in drivers provide the function
calls needed for querying device characteristics.

On the other hand, only two migration cases, i.e., atomics and
barriers (Section 3.2.1) and native math (Section 3.2.2), aim for per-
formance optimization. Since successfully dealing with these two
cases requires a deeper understanding of the algorithmic needs of
a program, Compatibility Tool cannot migrate them fully automati-
cally, and hence, we need to fix them manually.

4 EVALUATION

In this section, we report the relative performance achieved with
our migrated (and manually refined) SYCL version of AutoDock-
GPUwith respect to their original CUDA and OpenCL counterparts.
The numbers reported here are interim5 as our performance opti-
mization work is still ongoing.

5This document contains information on products, services and/or processes in devel-
opment. All information provided here is subject to change without notice. Contact
your Intel representative to obtain the latest forecast, schedule, specifications and
roadmaps. Intel technologies’ features and benefits depend on system configuration
and may require enabled hardware, software or service activation. Performance varies
depending on system configuration.

Table 3: Migration cases and required actions for AutoDock-

GPU when using Compatibility Tool v2021.2.0

Migration cases for functional correctness Required action

3.1.1 Reductions Manual fix
3.1.2 Shuffles Manual fix /

None (for newer tool versions)
3.1.3 Synchronization Manual fix
3.1.4 Sub-group sizes Manual fix
3.1.5 Memory layout for vector data types Manual fix
3.1.6 Query of available memory on device Manual fix
3.1.7 Assembly code Manual fix

Migration cases for performance optimization Required action

3.2.1 Atomics and barriers Manual fix
3.2.2 Native math functions Manual fix

Table 4: Employed test cases

Ligand-Receptor 1ac8 1stp 3ce3 3tmn 7cpa
Test Case

𝑁rot 0 5 5 1 15
𝑁atom 8 18 37 27 43

4.1 Experimental Setup

4.1.1 Dataset. We use a set of five ligand-receptor test cases from
the AutoDock-GPU GitHub repository [24]. Table 4 shows these
cases indicating their number of rotatable bonds (𝑁rot) and atoms
(𝑁atom).

4.1.2 Accelerator devices. We compare the performance of OpenCL,
CUDA, and SYCL versions of AutoDock-GPU achieved on
datacenter-grade CPUs and GPUs. Table 5 lists relevant character-
istics of the employed devices: Intel Xeon Platinum 8360Y CPU [7],
NVIDIA A100 GPU [20], and Intel Data Center Max 1550 (from
now on abbreviated as Max 1550) GPU [13].

4.2 Performance Comparison

For a fair comparison, we disregard the different host platforms
holding the two GPUs. Specifically, we include only the GPU-side
kernel configuration and execution, plus all required host-GPU data
movements in our measurements. These time measurements are
collectively reported as docking time. Host-side operations, such as
file I/O and results processing, were not included and are considered
as idle time (from the GPU perspective). All charts shown here
report the docking time ratios achieved per ligand-receptor test
case on all selected devices. Furthermore, these charts compare
side-by-side the performance achieved by AutoDock-GPU’s local-
search methods: Solis-Wets (left) vs. ADADELTA (right).

We start comparing two hardware configurations for the
Max 1550 GPU: 1S vs. 2S, which respectively leverage a single
and both Stacks available in this GPU. From a hardware perspective,
an X𝑒 -stack contains up to four X𝑒 -slices [12]. Each X𝑒 -slice mainly
contains 16 X𝑒 -cores. Such core is the fundamental compute unit
on the X𝑒 GPU architecture. Therefore, a 2S configuration can ap-
ply double the hardware resources of the 1S one. Specifically, a 2S
configuration contains two X𝑒 -stacks, i.e., eight X𝑒 -slices, which in
turn, comprise a total of 128 X𝑒 -cores (plus additional supporting
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Table 5: Employed accelerator devices

Intel NVIDIA Intel

Xeon Platinum 8360Y A100 Data Center Max 1550

Characteristics CPU GPU GPU

Release Date April 2021 June 2021 January 2023
Form Factor - PCIe Add-in-Card (AIC) OCP Accelerator Module (OAM)
Architecture Ice Lake-SP Ampere X𝑒 -HPC
Process Size [nm] 10 7 Multi-tile package
TDP [W] 250 250 600

Frequency [GHz] 2.40 ( base) 0.76 ( base) 0.90 ( base)
3.50 (boost) 1.41 (boost) 1.60 (boost)

Number of Cores 36 × 2 sockets (two threads per core) 108 SMs 128 X𝑒 -cores
FP32 Performance [TFLOP/s] 5.5 19.5 52
Memory Type DDR4 HBM2e HBM2e
Memory Bandwidth [GB/s] 410 1555 3200
Memory Capacity [GB] 256 80 128
L1 Cache 64 kB (per core) 192 kB (per SM) 512 kB (per X𝑒 -core)
L2 Cache 1 MB (per core) 40 MB (shared) 408 MB (shared)
L3 Cache 54 MB (shared) - -

units such as tracing units, hardware contexts, HBM2e controllers,
and 16 X𝑒 -links realizing a high-speed coherent fabric in multi-GPU
configurations). From a software perspective, no changes to source
code are required to run on both stacks; the default is to enable and
run on both stacks. An environment variable (i.e., ZE_AFFINITY_MASK)
can be set (to either 0.0 or 0.1) in order to restrict runs to one
stack [9].

Figure 1 reports the docking time ratios between these two con-
figurations: higher 1S/2S ratios correspond to faster executions of
the 2S configuration. For both Solis-Wets and ADADELTA, in all
test cases, the usage of two X𝑒 -stacks in the Max 1550 result in
faster executions, achieving maximum speedup factors of 1.47×
(Solis-Wets, 1stp) and 1.58× (ADADELTA, 7cpa). With respect to
the ideal 1S/2S speedup factor of 2×, we attribute the achieved
lower ratios to the required synchronization effort (Section 3.2.1) in
compute-intensive regions, i.e., the scoring function (Algorithm 2)
and the gradient calculation (Algorithm 5).

The following two charts compare the performance achieved
with SYCL vs. that with the native parallel programming language
of the device: OpenCL for Xeon 8360Y CPU (Figure 2), and CUDA
for A100 (Figure 3).

Figure 2 reports the SYCL/OpenCL docking time ratios achieved
on the Xeon 8360Y CPU. All test cases yield ratios lower than 1
(i.e., horizontal red line), indicating that on this CPU, for both Solis-
Wets and ADADELTA, all SYCL executions are faster than OpenCL
ones. We attribute the improved SYCL performance to optimization
pipelines that are specific to SYCL, such as pre-SPIR-V optimizations,
inlining heuristics, and others. The performance advantage factor of
SYCL over OpenCL ranges within {∼1.06× (= 1

0.94 , for 7cpa), ∼1.20×
(= 1

0.84 , for 1stp)} for Solis-Wets, and within {∼1.03× (= 1
0.97 , for 1ac8),

∼1.20× (= 1
0.84 , for 1stp)} when running ADADELTA.

Figure 3 reports the SYCL/CUDA docking time ratios achieved
on the A100 GPU. Most test cases yield ratios higher than 1 (i.e.,
horizontal red line), which means that their respective SYCL execu-
tions are slower than the CUDA ones. The only exception occurs
for Solis-Wets and the smallest test case 1ac8, where SYCL is ∼1.09×
(= 1

0.91 ) faster than CUDA. For all test cases in ADADELTA, SYCL is

slower than CUDA in factors ranging within {1.24× (1ac8), 2.38×
(7cpa)}.

In order to understand more where to focus optimizing our SYCL
version on the A100, we profile AutoDock-GPU executions using
the NVIDIA Nsight Compute tool [21]. For instance, Table 6 reports
relevant metrics collected from a single ADADELTA local-search
kernel execution. In this case, CUDA is 1.6× faster despite the fact
SYCL achieves a slightly higher peak FP32 performance (11% vs.
10%). While not depicted here, Nsight Compute shows that both
the SYCL and CUDA versions fall in the compute-bound region
on the roofline chart. Based on the achieved arithmetic intensity
(FLOP/byte) and performance (GFLOP/s), it seems that the SYCL
version is performing more computations than its CUDA counter-
part. We believe this is possibly due to a non-evident mismatch in
the arithmetic precision employed in some parts of both versions.

Regarding the GPU scheduler statistics reported in Table 6, specif-
ically on the number of theoretical warps, SYCL achieves only half
of those by CUDA (4 vs. 8, respectively). This scheduler metric is
limited by the launch configuration, in which we find noticeable
differences: SYCL uses 1.9× more registers per threads as well as
95.8× more static shared memory. Surprisingly, while neither the
original CUDA nor our migrated SYCL version allocate dynamic
sharedmemory in kernels, Nsight Compute reports 1.8 kbytes/block
being dynamically allocated from the SYCL code. Furthermore, the
higher register pressure in SYCL (127 vs. 64) causes its lower kernel
occupancy (19.3% vs. 38.8%). A way to alleviate this is to prevent
the compiler from allocating too many registers. For SYCL code
targeting NVIDIA GPUs, this is possible e.g., by passing down to
the underlying nvcc compiler the –maxrregcount option, which
allows setting the maximum number of registers to be allocated
per thread. On this point, we will evaluate different –maxrregcount
configurations seeking those increasing the SYCL performance.

A performance comparison between the selected GPU devices
is shown in Figure 4, where the docking time ratios between the
executions on Max 1550 (SYCL, 2S configuration) and A100 (CUDA)
are depicted. For Solis-Wets, smaller test cases result in ∼1.42×
(= 1

0.70 , for 1ac8) and ∼1.19× (= 1
0.84 , for 1stp) faster executions on

the Max 1550, whereas larger test cases result in 1.12× (for 3ce3),
1.24× (for 3tmn), and 1.48× (for 7cpa) faster executions on the
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Figure 1: Docking Time Ratios (single [1S] stack / dual [2S] stack) achieved on Intel Max 1550 GPU. Ratios above 1 (i.e., horizontal

red line) correspond to faster executions of the dual stack configuration
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Figure 2: Docking Time Ratios (SYCL / OpenCL) achieved on Intel Xeon 8360Y CPU. Ratios below 1 (i.e., horizontal red line)

correspond to faster executions of the SYCL version
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Figure 3: Docking TimeRatios (SYCL / CUDA) achieved onNVIDIAA100GPU. Ratios below 1 (i.e., horizontal red line) correspond

to faster executions of the SYCL version

A100. For ADADELTA, all test cases achieve faster executions on
the Max 1550, where speedups range within {∼1.16× (= 1

0.86 , for
7cpa), ∼1.88× (= 1

0.53 , for 1ac8)}. All the achieved values are be-
low the expected ratio of ∼2.67× (= 52

19.5 ), which is calculated using
the theoretical FP32 performance capabilities (TFLOP/s) of both
GPUs (Table 5). Based on the aforementioned compute boundness
of AutoDock-GPU’s algorithm, we can attribute these lower-than-
expected ratios to a possible inefficient usage of compute resources
in the SYCL version, specifically on the compute-intensive calls,

i.e., scoring function (Algorithm 2) and gradient calculation (Algo-
rithm 5).

As already described, these results are still preliminary, with
the following limitations being present: While larger test cases
provide more parallelism (i.e., more rotatable bonds and atoms) and
typically result in higher speedups, this was not always the case in
our experiments. Additionally, regarding the employed local-search
methods (Solis-Wets and ADADELTA), we still need to investigate
the performance impact of their algorithmic differences: Solis-Wets
suffers from more thread divergence, while ADADELTA performs
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Figure 4: Docking Time Ratios: Intel Max 1550 [2S] / A100 [CUDA]. Ratios below 1 (i.e., horizontal red line) correspond to faster

executions on the Intel Max 1550 GPU

Table 6: Profiles of a single ADADELTA local-search kernel

execution (test case: 7cpa) on NVIDIA A100 GPU

Metrics CUDA SYCL
SYCL/CUDA

Ratio

Time [ms] 96.4 150.9 1.6
Achieved Peak 10 11 1.1FP32 Performance [%]
Arithmetic Intensity [FLOP/byte] 989.8 1583.8 1.6
Performance [GFLOP/s] 1111 1228 1.1
Theoretical Warps 8 4 0.5per Scheduler
Registers per Thread 64 127 1.9
Static Shared Memory 7.4 512 95.8per Block [byte/block]
Dynamic Shared Memory 0 1.8 +∞per Block [kbyte/block]
Achieved Occupancy [%] 38.8 19.3 0.5

more compute-intensive calls and requires heavier synchronization.
These questions can be resolved by a more thorough performance
analysis on the Max 1550 GPU. This is still work-in-progress, as
the Intel profiling tools (e.g., roofline) still have some limitations
for the very recent Max 1550 GPU, making such analysis difficult.

5 RELATEDWORK

In this section, we compare our work to previous studies in terms of
the migration cases addressed when employing Compatibility Tool.
For this purpose, Table 7 includes different migration efforts involv-
ing code refinements for functional correctness and/or performance
optimization.

As discussed in [1], the most frequently-encountered cases in-
volve work-group/sub-group size setup (resulting in tool warnings
pointing to kernel invocations) and error handling. Both cases have
been addressed in three previous studies ([1, 2, 4]). In our work here,
we explicitly address the case of work-group/sub-group sizes, but do
not discuss the case of error handling. This is because Compatibility
Tool correctly migrated the latter case, and thus, the corresponding
migrated SYCL code required nomanual intervention. Less frequent
cases are synchronization, memory allocation and layout, queries of
device properties, as well as atomics and barriers. All these cases are
addressed in our work here as well as in two other studies per case.
To the best of our knowledge, AutoDock-GPU presents two cases

not previously discussed in the literature, namely the handling of
assembly code and of native math functions.

Compatibility Tool is being continually enhanced. However,
there is no single application that covers all possible migration
cases. In fact, new issues in the tool, i.e., opportunities for tool en-
hancement, are discovered as more applications are migrated. For
completeness, we show some examples of additional cases in Table 7
that were not encountered when migrating AutoDock-GPU.

Regarding time measurements, [2] replaces manually the CUDA
events with std::chrono functions calls. This is not required for
AutoDock-GPU, as it already uses that library. Image data is not
processed in AutoDock-GPU, but [1, 4] require manual adjust-
ments in that area, as SYCL supports only a 4-channel image for-
mat. Device selection code needed to be manually reviewed in [1],
while for AutoDock-GPU, it was already indirectly handled with
dpct::get_default_queue() (Section 3.1.3). Loop unrolling is employed
in [15] to fully allocate data on a GPU execution unit. Furthermore,
the SYCL extension called explicit SIMD is leveraged in [31] to gain
more control over the generated code instead of relying on compiler
optimizations. Migrating AutoDock-GPU did not require these
two latter steps.

6 CONCLUSIONS

In this work, we have migrated AutoDock-GPU from CUDA to
SYCL by employing the Intel DPC++ Compatibility Tool, which
automates the migration of most CUDA into human-readable SYCL
code. While Compatibility Tool greatly reduces the effort of code
migration, for complex programs such as AutoDock-GPU, a devel-
oper still needs to closely analyze, manually complete, and fine-tune
the migrated code. In particular, we show that the manual modi-
fications we performed on the original tool-migrated SYCL code
resulted in competitive performance on a multi-core CPU and high-
end GPUs. On a 36-core × 2 sockets Intel Xeon 8360Y CPU, the
migrated SYCL code is now faster than the original OpenCL for
all local-search methods and test cases. On this CPU, the high-
est speedup factor achieved with SYCL compared to OpenCL was
∼1.20×. For GPUs, we found that by using the two X𝑒 -stacks avail-
able in the Intel Max 1550 GPU, it is possible to further reduce
docking times by factors of up to 1.88× compared to those on an
NVIDIA A100 GPU.
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Table 7: Migration cases addressed in this work vs. those in previous studies

Our work [2] (2020) [15] (2021) [31] (2021) [1] (2022) [4] (2022)

Molecular Tsunami Rodinia Ultrasound
Rodinia

Sequence

docking simulation & SHOC beamforming alignment

Migration cases for functional correctness

3.1.1, 3.1.2 Built-in functions (reductions, shuffles, etc) ✓ – – – – ✓
3.1.3 Synchronization ✓ ✓ ✓ – – –
3.1.4 Work-group/sub-group sizes ✓ ✓ – – ✓ ✓
3.1.5 Memory (allocation, layout, etc) ✓ ✓ – – ✓ –
3.1.6 Query of device properties ✓ – – – ✓ ✓
3.1.7 Assembly code ✓ – – – – –
– Error handling – ✓ – – ✓ ✓
– Timing measurements – ✓ – – ✓ –
– Image format – – – – ✓ ✓
– Device selection – – – – ✓ –

Migration cases for performance optimization

3.2.1 Memory space in atomics and barriers ✓ – ✓ – – ✓
3.2.2 Native math functions ✓ – – – – –
– Loop unrolling – – ✓ – – –
– Explicit SIMD – – – ✓ – –

In future work, we plan to further increase the efficiency of the
SYCL version on the Intel Max 1550 GPU, as well as to analyze its
portability to a variety of high-end accelerator platforms. These
porting efforts could be carried out, e.g., by also considering the
interplay of docking algorithms and data-structures with the device-
specific memory hierarchies, such as that on the recently-launched
Intel Xeon CPU Max Series featuring on-package HBM2e memory
(code-named Sapphire Rapids HBM) [14].
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CONFIGURATION

For all executions, we set the number of LGA runs as follows:
𝑁TOTAL
LGA−runs = 100. Additionally, we disable the default early-

termination mechanisms of AutoDock-GPU [29], i.e., autostop
and heuristic, in order to process similar workloads across exe-
cutions using the same local-search method and test case. The
SYCL version of AutoDock-GPU used here is available under
https://github.com/ccsb-scripps/AutoDock-GPU/pull/183 (commit
hash: 72e4309).
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