Experiences Migrating CUDA to SYCL: A Molecular Docking Case Study

Leonardo Solis-Vasquez
solis@esa.tu-darmstadt.de
Technical University of Darmstadt
Darmstadt, Germany

Edward Mascarenhas
edward.mascarenhas@intel.com
Intel Corporation
Santa Clara, USA

Andreas Koch
koch@esa.tu-darmstadt.de
Technical University of Darmstadt
Darmstadt, Germany

ABSTRACT
In recent years, Intel introduced oneAPI as a unified and cross-architecture programming model based on the Data Parallel C++ (DPC++) language, which in turn, is based on the C++ and SYCL standard languages. In order to facilitate the migration of legacy CUDA code originally written for NVIDIA GPUs, developers can employ the Intel DPC++ Compatibility Tool, which aims to automatically migrate code from CUDA to SYCL. While this tool-assisted code migration is a good starting point for leveraging the Intel oneAPI ecosystem, manual steps for code completion and tuning are still required. In this paper, we present our experiences migrating AutoDock-GPU, a widely-used molecular docking application, from CUDA to SYCL. Our discussion focuses on: (1) the use of this automated source-code migration tool, (2) the required manual code refinement for functionality and optimization, and (3) the comparison of the performance achieved in this manner on multi-core CPUs as well as on high-end GPUs, such as NVIDIA A100 and the recently-launched Intel Data Center Max 1550 device.

CCS CONCEPTS
• Computing methodologies➝Parallel programming languages; • Applied computing➝Chemistry.

KEYWORDS
Intel oneAPI, SYCL, molecular docking, AutoDock, CPU, A100 GPU, Intel Data Center GPU Max Series

1 INTRODUCTION
Intel created oneAPI to allow developers to program a wide spectrum of heterogeneous architectures using the common Data Parallel C++ language (DPC++) [22]. DPC++ is based on ISO C++, and incorporates the Khronos standard SYCL [16] along with community extensions to simplify data parallel programming. Current research efforts on leveraging and improving oneAPI are taking place at several recently-established Centers of Excellence in different academic institutions [8].

The Intel DPC++ Compatibility Tool [6] (from now on simply referred to as Compatibility Tool) released as part of oneAPI can be used to minimize the effort of code migration from CUDA to SYCL. According to Intel’s estimates as of September 20211, Compatibility Tool is able to automatically migrate 90%-95% of CUDA code into human-readable SYCL code. In addition, Compatibility Tool provides inline comments to assist developers in manually completing the migration by pointing out required localized code changes.

Compatibility Tool can be leveraged in High Performance Computing (HPC), Artificial Intelligence, Medical Imaging, embedded applications, and other scenarios, where CUDA applications are traditionally employed for tackling many challenging tasks in science and engineering [19]. In fact, recent studies have assessed the effectiveness of Compatibility Tool at porting applications of different domains, e.g., tsunami simulation [2], ultrasound beamforming [31], sequence alignment [4], as well as those from the Rodinia and SHOC benchmark suites [1, 15]. In particular, studies in [1, 2, 4] report specific limitations of Compatibility Tool, agreeing in that most frequent tool-reported warnings point to code sections performing error handling of API return codes, as well as kernel invocation. To gain further insights into the capabilities and limitations of Compatibility Tool for more complex irregular algorithms, we are investigating its use on a state-of-the-art molecular docking code.

Molecular docking is an interesting application domain. Being a key method in computer-aided drug design, it simulates the close-distance interactions of two molecules of known three-dimensional structure, and aims to predict their binding poses (i.e., spatial arrangements) that are energetically strong. These two molecules are known as ligand (small molecule) and receptor (macromolecule). Molecular docking is used to identify ligands with anti-viral properties against a receptor modeling a given biological target (e.g., a protein or nucleic acid) [5]. One of the most widely-used molecular docking applications is AutoDock [18]. It explores the pose space through a systematic search consisting of multiple irregular nested loops with variable upper bounds. The search refinement is driven by the score of each pose, which quantifies the strength of the molecular interaction. The score is based on compute-intensive models and is typically evaluated 10^6 times within these search iterations.

1Based on measurements on a set of 70 HPC benchmarks and samples, with examples including Rodinia, SHOC, and PENNANT. Other results may vary.
These high-computing requirements of the molecular docking algorithm in AutoDock have spurred interest in parallelizing and accelerating this application. For that purpose, the official parallel-code development of AutoDock, called AutoDock-GPU [24], has been originally implemented in OpenCL [23], and afterwards migrated to CUDA to run on the Summit supercomputer for COVID-19 research [17]. Other authors have implemented a miniapp version of AutoDock-GPU using alternative heterogeneous programming languages, such as HIP and Kokkos [30]. Since its release, AutoDock-GPU has been under several performance enhancements for CPUs and GPUs [28, 29], as well as ported to different heterogeneous architectures including FPGAs [27] and vector processors [26]. As another example of its relevance, AutoDock-GPU is nowadays being used as the docking engine in OpenPandemics: COVID-19, a grid-computing project aiming to study proteins from the SARS-CoV-2 virus [32].

With its challenging code structure and high practical relevance, AutoDock-GPU is thus a promising case study for evaluating the automated CUDA-to-SYCL code migration, e.g., to target new Intel devices such as the Data Center Max 1550 GPU (code-named Ponte Vecchio). Our contributions are summarized as follows:

(1) We present our experiences migrating the molecular docking code of AutoDock-GPU from CUDA to SYCL. For this purpose, we employ Compatibility Tool, with the migrated (and manually refined) SYCL code being released as open source\(^3\).

(2) We evaluate the performance of different code versions of AutoDock-GPU, i.e., the original OpenCL and CUDA as well as the newly migrated SYCL, on Intel Xeon Platinum 8360Y CPU, NVIDIA A100 GPU, and Intel Data Center Max 1550 GPU.

(3) We compare our work here to previous studies in terms of migration cases addressed when employing Compatibility Tool.

The remainder of this paper is structured as follows. Section 2 provides a background on AutoDock-GPU. Section 3 discusses the code migration process, while Section 4 evaluates the performance achieved on CPUs and GPUs. Section 5 compares our work to previous studies. Finally, Section 6 concludes this paper with a summary and outlook to future work.

2 BACKGROUND ON AUTODOCK-GPU

In this work, we use AutoDock-GPU v1.5.3 as our baseline, which corresponds to the latest stable release at the time of experimentation. Extensive descriptions on AutoDock-GPU’s fundamentals and the evolution of the code base can be found in [23, 28, 29].

2.1 Functionality Overview

AutoDock-GPU performs a systematic search based on genetic evolution heuristics, where each of the ligand poses is treated as an individual of a population. Each individual is represented by its genotype, comprising in turn a set of genes, which describe the translation, orientation, and torsion experienced by the ligand during docking.

\(^3\)https://github.com/ccsb-scripps/AutoDock-GPU/pull/183

The computational core of AutoDock-GPU is an irregular Lamarckian Genetic Algorithm (LGA) that performs a hybrid search combining a genetic algorithm (GA) and a local search (LS). Both LGA phases generate new individuals from the current population, however they employ different methods. The genetic algorithm applies genetic operations (i.e., crossover, mutation, and selection), while the local search aims to further improve (i.e., minimize) scores. As shown in Algorithm 1, AutoDock-GPU executes several independent LGA runs (default: \(N_{\text{LGA-runs}} = 100\)). AutoDock-GPU can enforce that each of these LGA runs terminates whenever any of the predefined upper bounds for the number of score evaluations (default: \(N_{\text{score-evals}}^\text{MAX} = 25 \times 10^6\)) or generations (default: \(N_{\text{gens}}^\text{MAX} = 27 \times 10^3\)) is reached.

Algorithm 1: Lamarckian Genetic Algorithm (LGA)

```plaintext
1 Function AutoDock-GPU
2 /* Coarse-Level Parallelism */
3 for each LGA-run in \(N_{\text{LGA-runs}}\) do
4   while \((N_{\text{score-evals}} < N_{\text{score-evals}}^\text{MAX})\) and \((N_{\text{gens}} < N_{\text{gens}}^\text{MAX})\) do
5     /* Medium-Level Parallelism */
6     GA (population)
7     /* Coarse-Level Parallelism */
```

For measuring the strength (i.e., energy) of molecular interactions, scores (expressed in kcal/mol) are computed for every pose during both LGA phases. Algorithm 2 shows the code structure of the scoring function (SF), which consists of three components. PoseCalculation transforms the genotypes into atomic coordinates, which are then used for computing the ligand-receptor (InterScore) and ligand-ligand (IntraScore) score components. The upper bounds of the corresponding loops depend on the molecular structure of the input, i.e., the number of elements in the rotation list (\(N_{\text{rot-list}}\)), the number of ligand atoms (\(N_{\text{atom}}\)), and the number of intramolecular contributor-pairs (\(N_{\text{intra-contrib}}\)).

Algorithm 2: Scoring Function (SF)

```plaintext
1 Function SF (genotype)
2   /* Fine-Level Parallelism */
3     for each rot-atom in \(N_{\text{rot-list}}\) do
4       PoseCalculation
5     for each lig-atom in \(N_{\text{atom}}\) do
6       InterScore
7     for each intra-pair in \(N_{\text{intra-contrib}}\) do
8       IntraScore
```

The most time-consuming phase of AutoDock-GPU is the local search, whose execution corresponds to >90% of the total execution time. AutoDock-GPU features several alternative methods that can be chosen for local search. Each of these methods minimizes the score through a number of adaptive iterations. Similarly to the original AutoDock program, AutoDock-GPU implements as local search the method of Solis-Wets [25]. As shown in Algorithm 3, in each iteration, Solis-Wets starts generating a new genotype by adding small changes (i.e., a constrained random amount) to each gene of an initial genotype (Algorithm 3: lines 4, 5). Correspondingly, the scores of the aforementioned genotypes are
computed and compared (Algorithm 3: line 6). If the score is not minimized, a second new genotype is generated similarly as in the case above. In this case, however, a subtraction (Algorithm 3: lines 10, 11) is applied instead of an addition. The outcome of every comparison updates the number of successful and failed minimization attempts. Besides its divergent execution, Solis-Wets employs an irregular termination criterion (Algorithm 3: line 2) that depends on the maximum number of iterations (default: \(N_{\text{MAX-its}} = 300\)), as well as the minimum step change (default: \(\text{step}_{\text{MIN}} = 0.01\)).

Algorithm 3: Solis-Wets (SW) local search

/* Fine-Level Parallelism */

```plaintext
1 Function SW (genotype)
2 while \((N_{\text{LS-its}} < N_{\text{MAX-its}})\) and \((\text{step} > \text{step}_{\text{MIN}})\) do
3     delta = create-delta (step)
4         // new-genotype1
5             for each gene in \(N_{\text{misc}}\) do
6                 new-gen1 = gene + delta
7                     if \(\Delta f\) (new-genotype1) < \(\Delta f\) (genotype) then
8                         genotype = new-genotype1
9                             success++; fail = 0
10                        else
11                            // new-genotype2
12                                for each gene in \(N_{\text{misc}}\) do
13                                    new-gen2 = gene - delta
14                                        if \(\Delta f\) (new-genotype2) < \(\Delta f\) (genotype) then
15                                            genotype = new-genotype2
16                                                success++; fail = 0
17                                                else
18                                                    success = 0; fail++
19                                            end if
20                                    end if
21                                end for
22                        end if
23                    end for
24                end while
25
26 /* Fine-Level Parallelism */
```

Stepping forward with respect to the original AutoDock, AutoDock-GPU has incorporated improved local-search methods beyond Solis-Wets. Algorithm 4 describes one of these, ADADELTA [33], which generates a new genotype by using the gradients of the current genotype’s score (Algorithm 4: line 4). Then, if the score of the new genotype is improved, the latter becomes the current genotype (Algorithm 4: line 6). ADADELTA terminates if the number of iterations reaches a maximum (default: \(N_{\text{LS-its}} = 300\)).

Algorithm 4: ADADELTA (AD) local search

/* Fine-Level Parallelism */

```plaintext
1 Function AD (genotype)
2 while \((N_{\text{LS-its}} < N_{\text{MAX-its}})\) do
3     gradient = GC (genotype)
4         new-genotype = update-rule (genotype, gradient)
5         if \(\Delta f\) (new-genotype) < \(\Delta f\) (genotype) then
6             genotype = new-genotype
7         end if
8     end while
9
10 /* Fine-Level Parallelism */
```

The gradient calculation (GC) employed by ADADELTA is described in Algorithm 5. The code structure resembles that of the scoring function in Algorithm 2. First, the PoseCalculation computes the atomic coordinates, which in turn, are used for computing the numerical (InterGradient) and analytical (IntraGradient) derivatives of the corresponding score components. At this point, such derivatives are expressed as a list of atomic contributions. However, as the overall LGA search works on genotypes, it is required to convert those atom-based into gene-based contributions. This conversion is achieved with Translational, Grigidrot, and Grotbond (Algorithm 5: lines 8-10), which are loops performing data-dependent operations for computing the translational, orientational, and rotational components of the gradient.

Algorithm 5: Gradient Calculation (GC)

/* Fine-Level Parallelism */

```plaintext
1 Function GC (genotype)
2 /* Gradients in atomic space */
3 for each rot-item in \(N_{\text{rot-Itm}}\) do
4     Grigidrot // Rigid-body rotation gradients
5 for each lig-atom in \(N_{\text{atom}}\) do
6     InterGradient
7     for each intra-pair in \(N_{\text{int-pair}}\) do
8         IntraGradient
9     end for
10 /* Convert from atomic into genetic space */
11 Gtrans // Translational gradients
12 Grotbond // Rotatable-bond gradients
```

2.2 Parallelization

As already indicated, AutoDock-GPU was originally developed in OpenCL [23], and thereafter ported to CUDA [17]. Both implementations follow a Single Instruction Multiple Thread (SIMT) programming style. Table 1 shows how AutoDock-GPU’s computations are mapped onto OpenCL and CUDA processing elements at different parallelization levels.

In general, AutoDock-GPU performs \(N_{\text{LGA-runs}}\) independent LGA runs with indices \(\text{Run}_{\text{ID}} = \{0, 1, 2, \ldots, N_{\text{LGA-runs}} - 1\}\). In each LGA run, the genetic algorithm and local search process a population of \(\text{Pop}_{\text{size}}\) individuals with indexes \(\text{Ind}_{\text{ID}} = \{0, 1, 2, \ldots, \text{Pop}_{\text{size}} - 1\}\). The main idea of AutoDock-GPU’s parallelization is to process simultaneously individuals from different LGA runs. Based on this, \(N_{\text{LGA-runs}} \times \text{Pop}_{\text{size}}\) individuals are mapped each to an OpenCL work-group (CUDA block), where the index of an OpenCL work-group (CUDA block) can be expressed as: \(\text{WD}_{\text{ID}} = \text{Run}_{\text{ID}} \times \text{Pop}_{\text{size}} + \text{Ind}_{\text{ID}}\). Moreover, the fine-grained tasks such as the genotype generation and score evaluation are carried out by OpenCL work-items (CUDA threads).

Table 1: Mapping of AutoDock-GPU’s computations onto OpenCL and CUDA processing elements.

The corresponding parallelism is also indicated as comments in Algorithms 1, 2, 3.

<table>
<thead>
<tr>
<th>Computation</th>
<th>OpenCL (CUDA) element</th>
<th>Parallelization level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genetic algorithm /</td>
<td>Kernel</td>
<td>Coarse</td>
</tr>
<tr>
<td>Local search</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Individual</td>
<td>Work-Group (Block)</td>
<td>Medium</td>
</tr>
<tr>
<td>Generation /</td>
<td>Work-Item (Thread)</td>
<td>Fine</td>
</tr>
<tr>
<td>Scoring</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3 MIGRATING AUTODOCK-GPU TO SYCL

In our case, we have two options to migrate to SYCL:

1. Migrate from the original OpenCL version.
2. Migrate from the recently-created CUDA version.

Since one of our goals is the performance comparison of new SYCL-programmable GPUs such as Intel’s Data Center Max 1550 with state-of-the-art NVIDIA GPUs, we employed the second approach consisting of two main steps:

- First, using as much as possible the output of Compatibility Tool v2021.2.0\(^5\), namely the SYCL migrated code created from the CUDA code of AUTODOCK-GPU (v1.5.3). As a baseline, common CUDA API concepts and their automatically migrated equivalents in SYCL\(^6\) are shown in Table 2.
- Second, reviewing and manually completing the tool-assisted migration by using the tool guidelines provided as code comments.

In this section, we discuss the migration cases addressed in this work, categorized in two groups according to their purpose: functional correctness and performance optimization. Examples for the cases in these two groups are illustrated in listings showing the manually-edited SYCL code.

3.1 Migration Cases for Functional Correctness

3.1.1 Reductions. AUTODOCK-GPU employs integer reductions to keep track of the total number of score evaluations. In the CUDA version of AUTODOCK-GPU, these reductions are implemented as multi-line macros performing shuffles. However, Compatibility Tool could not migrate these correctly, warning that it could not handle mask options for shuffle (e.g., Listing 2: line 15). By inspecting the CUDA code, we realized that it was easier to manually use the equivalent built-in SYCL reduce_over_group function directly. Listing 1 shows that by using this collective function, we greatly simplify this macro in the SYCL version. In general, collectives should be leveraged whenever possible.

3.1.2 Shuffles. The CUDA version of AUTODOCK-GPU employs a block of threads performing shuffles to find the minimum score. In this case, Compatibility Tool could not determine that a mask was used, and thus, it performed incorrect variable substitution. Listing 2 shows that to fix this, we had to manually insert the equivalent SYCL sub-group shuffles (lines 21, 22). Compatibility Tool reported the corresponding warning (e.g., Listing 1: line 15), which is due to the fact that the SYCL sub-group shuffle function used for migration does not support the extra mask argument required in the CUDA counterpart.

3.1.3 Synchronization. In the CUDA version of AUTODOCK-GPU, _threadfence() is always followed by _syncthreads() (e.g., Listing 1: lines 22, 23). Compatibility Tool leaves _threadfence() as is, while it migrates CUDA _syncthreads() into SYCL work_item.barrier(). From a semantics perspective, this migration step makes sense as a SYCL barrier() performs two things [3]. First, it ensures that each work-item within a work-group reaches the barrier call. In this way, the barrier synchronizes the work-group at a certain point in the code, acting equivalently to CUDA _syncthreads(). Second, the barrier emits a memory fence ensuring that the specified space is consistent across all work-items within the work-group, acting equivalently to CUDA _threadfence(). Therefore, we manually migrate _threadfence() as a no-op, and keep the tool-migrated work_item.barrier() statement (e.g., Listing 1: line 31). Moreover, cudaDeviceSynchronize() was manually migrated to dpct::get_default_queue().wait_and_throw().

Listing 1: Migration of reduction macro

```c
// CUDA
#define REDUCEINTEGERSUM(val, pAccumulator) \n  if (threadIdx.x == 0) \n  { \n    // AtomicAdd
    // SYCL
    int myval = sycl::reduce_over_group(wi.get_group(), val, std::plus<>());
    *pAccumulator = myval;
  }
```  

Listing 2: Migration of shuffles

```c
// CUDA
#define WARPMINIMUMEXCHANGE(tgx, v0, k0, mask) \n  \n  // SYCL
  /*
   * float v0 = v0; int k1 = k0;
   * int otgx = otgx;
   * float v2 = __shfl_sync(0xffffffff, v0, otgx);
   * int k2 = __shfl_sync(0xffffffff, k0, otgx);
   * int flag = ((v1<v2) ^ (tgx^otgx)) && (v1!=v2);
   * v0 = flag ? v1 : v2;
   * 
   * k0 = flag ? k1 : k2;
   * 
   * ...
   */
```
3.1.5 Memory layout for vector data types. The CUDA version of AutoDock-GPU relies on memory allocated using `sizeof(float3)` while doing pointer arithmetic in kernels. While Compatibility Tool does correctly migrate CUDA `float3` to SYCL `sycl::float3`, a different number of bytes is allocated in each case: 12 for CUDA vs. 16 for SYCL. This particular discrepancy in the allocated memory between CUDA and SYCL led to a silent memory corruption overwriting portions of the shared memory reserved for other variables in AutoDock-GPU, which in turn, led to incorrect score evaluations. This error was pinpointed through extensive debugging, and corrected by explicitly propagating – from host to device – the size of the allocated memory (based on e.g., `sycl::float3` or `sycl::int3`) via the pointer to its corresponding SYCL accessor.

3.1.6 Query for available memory on device. The CUDA version of AutoDock-GPU calls `cudaMemGetInfo()` during host setup. However, Compatibility Tool does not migrate it. For this reason, we manually insert the get_device_info() and `get_global_mem_size()` calls.

3.1.7 Assembly code. The CUDA version of AutoDock-GPU contains few lines of inline PTX assembly code. Likely, this was carried out for performance optimization reasons, as inline PTX enables the access to instructions not exposed via CUDA intrinsics. Compatibility Tool does not support the migration of inline PTX. However, Listing 4 shows how we easily manually convert inline PTX in CUDA into SYCL.

<table>
<thead>
<tr>
<th>CUDA</th>
<th>SYCL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thread</td>
<td><code>sycl::nd_item<3></code> (work-item)</td>
</tr>
<tr>
<td>Warp</td>
<td><code>sycl::sub_group<3></code> (work-group)</td>
</tr>
<tr>
<td>Block</td>
<td><code>sycl::group<3></code> (work-group)</td>
</tr>
<tr>
<td>threadIdx.x</td>
<td><code>itemCtl.get_local_id(2)</code> (for three-dimensional range)</td>
</tr>
<tr>
<td>blockIdx.x</td>
<td><code>itemCtl.get_group(2)</code> (for three-dimensional range)</td>
</tr>
<tr>
<td>cudaMalloc</td>
<td><code>sycl::malloc_device</code></td>
</tr>
<tr>
<td>cudaMemcpy</td>
<td><code>sycl::accessor<int, 0, sycl::access::mode::read_write, sycl::access::target::local></code></td>
</tr>
<tr>
<td>cudaMemcpy</td>
<td><code>dpcpt::get_default_queue().memcpy(...).wait()</code></td>
</tr>
<tr>
<td>shared</td>
<td><code>sycl::accessor<int, 0, sycl::access::mode::read_write, sycl::access::target::local></code></td>
</tr>
<tr>
<td>kernel<blocks, threadsPerBlock>();</td>
<td><code>dpcpt::get_default_queue().submit([&](sycl::handler &cgh){</code></td>
</tr>
<tr>
<td>cgh.parallel_for (sycl::nd_range<3>(1, 1, threadsPerBlock), sycl::range<3>(1, 1, blocks) * sycl::range<3>(1, 1, threadsPerBlock)), [w](sycl::nd_item<3> itemCtl){`</td>
<td></td>
</tr>
<tr>
<td>kernel(itemCtl);`</td>
<td></td>
</tr>
</tbody>
</table>

Listing 3: Specification of sub-group size

```c
// SYCL
cgh.parallel_for(
    sycl::nd_range<3>(
        sycl::range<3>(1, 1, blocks) *
        sycl::range<3>(1, 1, threadsPerBlock),
        sycl::range<3>(1, 1, blocks)
    ), [w](sycl::nd_item<3> w1){
        // SYCL
        inline uint64_t llitoulli(int64_t l) {
            unsigned long u;
            asm("mov.b64 %0, %1;": "=l"(u): "l"(l));
            return u;
        }
    }
);`)
```

Listing 4: Migration of assembly code

```c
// CUDA
__device__ inline uint64_t llitoulli(int64_t l) {
    uint64_t u;
    asm("movb.64 $0, %1;": "=l"(u): "l"(l));
    return u;
}
```

```c
// SYCL
inline uint64_t llitoulli(int64_t l) {
    uint64_t u;
    u = 1;
    return u;
}
```

3.2 Migration Cases for Performance Optimization

3.2.1 Atomics and barriers. Compatibility Tool assumes that the memory address space to perform atomic operations is always declared as `global`. However, this is not strictly required in all cases, and hence, `local` address space could be used instead to reduce the synchronization effort. Listing 5 shows how we manually specify the `local_space` (line 11) for the SYCL atomic addition on the `pAccumulator` variable. Moreover, Compatibility Tool makes assumptions on the memory order and scope. Similarly, the initially tool-migrated `async()` and `device_scope` are manually replaced with `relaxed` (line 9) and `work_group` (line 10), respectively. As already described in Section 3.1.3, any CUDA `__syncthreads()` is automatically migrated as a SYCL `work_item.barrier()`. However, in order to properly configure it for local memory space, we have to manually add the `sycl::access::fence_space::local_space specifer as an argument to the barrier call (Listing 1: line 31).
3.2.2 Native math functions. Compatibility Tool migrates CUDA single-precision math functions into their SYCL equivalents. For higher performance, the OpenCL version of AutoDock-GPU leverages native math functions as much as possible. For the same purpose, we manually replace the automatically-migrated calls to default SYCL math functions (e.g., `sycl::sqrt()`) with their native counterparts (e.g., `sycl::native::sqrt()`).

3.3 Summary of Migration Cases and Required Actions

Table 3 summarizes the generic actions, required from an application developer, for resolving each of the migration cases discussed in Sections 3.1 and 3.2.

On the one hand, most migration cases require manual code fixes for achieving a functionally-correct program. Of these, some cases are not enforced by Compatibility Tool: e.g., that of sub-group sizes (Section 3.1.4), for which the developer must understand if the code depends on a given feature, and manually add it, if needed. An outlier case is that of shuffle migration (Section 3.1.2), originally requiring us to manually insert SYCL sub-group shuffles for attaining working code. This is due to a limitation of v2021.2.0 of Compatibility Tool used in this work. However, newer versions of Compatibility Tool have resolved this issue, and thus, such manual fix is not necessary anymore. Furthermore, the migration of `cudaMemGetInfo()` (Section 3.1.6) could be resolved in the future, e.g., when the underlying software layers in drivers provide the function calls needed for querying device characteristics.

On the other hand, only two migration cases, i.e., atomics and barriers (Section 3.2.1) and native math (Section 3.2.2), aim for performance optimization. Since successfully dealing with these two cases indicates their number of rotatable bonds (N_{rot}) and atoms (N_{atom}).

4.1 Experimental Setup

4.1.1 Dataset. We use a set of five ligand-receptor test cases from the AutoDock-GPU GitHub repository [24]. Table 4 shows these cases indicating their number of rotatable bonds (N_{rot}) and atoms (N_{atom}).

4.1.2 Accelerator devices. We compare the performance of OpenCL, CUDA, and SYCL versions of AutoDock-GPU achieved on datacenter-grade CPUs and GPUs. Table 5 lists relevant characteristics of the employed devices: Intel Xeon Platinum 8360Y CPU [7], NVIDIA A100 GPU [20], and Intel Data Center Max 1550 (from now on abbreviated as Max 1550) GPU [13].

4.2 Performance Comparison

For a fair comparison, we disregard the different host platforms holding the two GPUs. Specifically, we include only the GPU-side kernel configuration and execution, plus all required host-GPU data movements in our measurements. These time measurements are collectively reported as docking time. Host-side operations, such as file I/O and results processing, were not included and are considered as idle time (from the GPU perspective). All charts shown here report the docking time ratios achieved per ligand-receptor test case on all selected devices. Furthermore, these charts compare side-by-side the performance achieved by AutoDock-GPU’s local-search methods: Solis-Wets (left) vs. ADADelta (right).

We start comparing two hardware configurations for the Max 1550 GPU: 1S vs. 2S, which respectively leverage a single and both Stacks available in this GPU. From a hardware perspective, an X$^*_{-}$stack contains up to four X$^*_{-}$slices [12]. Each X$^*_{-}$slice mainly contains 16 X$^*_{-}$cores. Such core is the fundamental compute unit on the X$^*_{-}$GPU architecture. Therefore, a 2S configuration can apply double the hardware resources of the 1S one. Specifically, a 2S configuration contains two X$^*_{-}$stacks, i.e., eight X$^*_{-}$slices, which in turn, comprise a total of 128 X$^*_{-}$cores (plus additional supporting

3.2.2 Native math functions. Compatibility Tool migrates CUDA single-precision math functions into their SYCL equivalents. For higher performance, the OpenCL version of AutoDock-GPU leverages native math functions as much as possible. For the same purpose, we manually replace the automatically-migrated calls to default SYCL math functions (e.g., `sycl::sqrt()`) with their native counterparts (e.g., `sycl::native::sqrt()`).

3.3 Summary of Migration Cases and Required Actions

Table 3 summarizes the generic actions, required from an application developer, for resolving each of the migration cases discussed in Sections 3.1 and 3.2.

On the one hand, most migration cases require manual code fixes for achieving a functionally-correct program. Of these, some cases are not enforced by Compatibility Tool: e.g., that of sub-group sizes (Section 3.1.4), for which the developer must understand if the code depends on a given feature, and manually add it, if needed. An outlier case is that of shuffle migration (Section 3.1.2), originally requiring us to manually insert SYCL sub-group shuffles for attaining working code. This is due to a limitation of v2021.2.0 of Compatibility Tool used in this work. However, newer versions of Compatibility Tool have resolved this issue, and thus, such manual fix is not necessary anymore. Furthermore, the migration of `cudaMemGetInfo()` (Section 3.1.6) could be resolved in the future, e.g., when the underlying software layers in drivers provide the function calls needed for querying device characteristics.

On the other hand, only two migration cases, i.e., atomics and barriers (Section 3.2.1) and native math (Section 3.2.2), aim for performance optimization. Since successfully dealing with these two cases indicates their number of rotatable bonds (N_{rot}) and atoms (N_{atom}).

4.1 Experimental Setup

4.1.1 Dataset. We use a set of five ligand-receptor test cases from the AutoDock-GPU GitHub repository [24]. Table 4 shows these cases indicating their number of rotatable bonds (N_{rot}) and atoms (N_{atom}).

4.1.2 Accelerator devices. We compare the performance of OpenCL, CUDA, and SYCL versions of AutoDock-GPU achieved on datacenter-grade CPUs and GPUs. Table 5 lists relevant characteristics of the employed devices: Intel Xeon Platinum 8360Y CPU [7], NVIDIA A100 GPU [20], and Intel Data Center Max 1550 (from now on abbreviated as Max 1550) GPU [13].

4.2 Performance Comparison

For a fair comparison, we disregard the different host platforms holding the two GPUs. Specifically, we include only the GPU-side kernel configuration and execution, plus all required host-GPU data movements in our measurements. These time measurements are collectively reported as docking time. Host-side operations, such as file I/O and results processing, were not included and are considered as idle time (from the GPU perspective). All charts shown here report the docking time ratios achieved per ligand-receptor test case on all selected devices. Furthermore, these charts compare side-by-side the performance achieved by AutoDock-GPU’s local-search methods: Solis-Wets (left) vs. ADADelta (right).

We start comparing two hardware configurations for the Max 1550 GPU: 1S vs. 2S, which respectively leverage a single and both Stacks available in this GPU. From a hardware perspective, an X$^*_{-}$stack contains up to four X$^*_{-}$slices [12]. Each X$^*_{-}$slice mainly contains 16 X$^*_{-}$cores. Such core is the fundamental compute unit on the X$^*_{-}$GPU architecture. Therefore, a 2S configuration can apply double the hardware resources of the 1S one. Specifically, a 2S configuration contains two X$^*_{-}$stacks, i.e., eight X$^*_{-}$slices, which in turn, comprise a total of 128 X$^*_{-}$cores (plus additional supporting
Experiences Migrating CUDA to SYCL: A Molecular Docking Case Study

Wets and ADADELTA, all SYCL executions are faster than OpenCL with SYCL vs. that with the native parallel programming language (i.e., horizontal red line), indicating that on this CPU, for both Solis-Wets and the smallest test case (∼1ac8), which means that their respective SYCL executions, achieving maximum speedup factors of 1.47× (Solis-Wets, 2S configuration) and 1.12× (ADADELTA, 2S configuration) and A100 (Figure 3). For both Solis-Wets and ADADELTA, in all test cases, the usage of two X^x^-links realizing a high-speed coherent fabric in multi-GPU configurations. From a software perspective, no changes to source code are required to run on both stacks; the default is to enable and run on both stacks. An environment variable (i.e., ZE_AFFINITY_MASK) can be set (to either 0, 0 or 8, 1) in order to restrict runs to one stack [9].

Figure 1 reports the docking time ratios between these two configurations: higher 1S/2S ratios correspond to faster executions of the 2S configuration. For both Solis-Wets and ADADELTA, in all test cases, the usage of two X^x^-links in the Max 1550 result in faster executions, achieving maximum speedup factors of 1.47× (Solis-Wets, 1stp) and 1.38× (ADADELTA, 7cpa). With respect to the ideal 1S/2S speedup factor of 2x, we attribute the achieved lower ratios to the required synchronization effort (Section 3.2.1) in compute-intensive regions, i.e., the scoring function (Algorithm 2) and the gradient calculation (Algorithm 5).

The following two charts compare the performance achieved with SYCL vs. that with the native parallel programming language of the device: OpenCL for Xeon 8360Y CPU (Figure 2), and CUDA for A100 (Figure 3).

Figure 2 reports the SYCL/OpenCL docking time ratios achieved on the Xeon 8360Y CPU. All test cases yield ratios lower than 1 (i.e., horizontal red line), indicating that on this CPU, for both Solis-Wets and ADADELTA, all SYCL executions are faster than OpenCL ones. We attribute the improved SYCL performance to optimization pipelines that are specific to SYCL, such as pre-SPIR-V optimizations, inlining heuristics, and others. The performance advantage factor of SYCL over OpenCL ranges within \(-1.06× (\frac{1}{1.07})\) for 7cpa), \(-1.20× (\frac{1}{1.07})\) for Solis-Wets, and within \(-1.03× (\frac{1}{1.07})\), for 1ac8), \(-1.20× (\frac{1}{1.07})\) for 1stp) when running ADADELTA.

Figure 3 reports the SYCL/CUDA docking time ratios achieved on the A100 CPU. Most test cases yield ratios higher than 1 (i.e., horizontal red line), which means that their respective SYCL executions are slower than the CUDA ones. The only exception occurs for Solis-Wets and the smallest test case 1ac8, where SYCL is \(-1.09× (\frac{1}{0.91})\) faster than CUDA. For all test cases in ADADELTA, SYCL is slower than CUDA in factors ranging within \([1.24× (1ac8), 2.38× (7cpa)]\).

In order to understand more where to focus optimizing our SYCL version on the A100, we profile AutoDock-GPU executions using the NVIDIA Nsight Compute tool [21]. For instance, Table 6 reports relevant metrics collected from a single ADADELTA local-search kernel execution. In this case, CUDA is 1.6× faster despite the fact SYCL achieves a slightly higher peak FP32 performance (11% vs. 10%). While not depicted here, Nsight Compute shows that both the SYCL and CUDA versions fall in the compute-bound region on the roofline chart. Based on the achieved arithmetic intensity (FLOP/byte) and performance (GFLOP/s), it seems that the SYCL version is performing more computations than its CUDA counterpart. We believe this is possible due to a non-evident mismatch in the arithmetic precision employed in some parts of both versions.

Regarding the GPU scheduler statistics reported in Table 6, specifically on the number of theoretical warps, SYCL achieves only half of those by CUDA (4 vs. 8, respectively). This scheduler metric is limited by the launch configuration, in which we find noticeable differences: SYCL uses 1.9× more registers per thread as well as 95.8× more static shared memory. Surprisingly, while neither the original CUDA nor our migrated SYCL version allocate dynamic shared memory in kernels, Nsight Compute reports 1.8 kbytes/block being dynamically allocated from the SYCL code. Furthermore, the higher register pressure in SYCL (127 vs. 64) causes its lower kernel occupancy (19.3% vs. 38.8%). A way to alleviate this is to prevent the compiler from allocating too many registers. For SYCL code targeting NVIDIA GPUs, this is possible e.g., by passing down to the underlying nvcc compiler the –maxrregcount option, which allows setting the maximum number of registers to be allocated per thread. On this point, we will evaluate different –maxrregcount configurations seeking those increasing the SYCL performance.

A performance comparison between the selected GPU devices is shown in Figure 4, where the docking time ratios between the executions on Max 1550 (SYCL, 2S configuration) and A100 (CUDA) are depicted. For Solis-Wets, smaller test cases result in \(~1.42× (\frac{1}{1.07})\), for 1ac8) and \(~1.19× (\frac{1}{1.07})\) for 1stp) faster executions on the Max 1550, whereas larger test cases result in 1.12× (for 3ce3), 1.24× (for 3tmn), and 1.48× (for 7cpa) faster executions on the

<table>
<thead>
<tr>
<th>Table 5: Employed accelerator devices</th>
</tr>
</thead>
<tbody>
<tr>
<td>Characteristics</td>
</tr>
<tr>
<td>-------------------------------------</td>
</tr>
<tr>
<td>Release Date</td>
</tr>
<tr>
<td>Form Factor</td>
</tr>
<tr>
<td>Architecture</td>
</tr>
<tr>
<td>Process Size [um]</td>
</tr>
<tr>
<td>TDP [W]</td>
</tr>
<tr>
<td>Frequency [GHz]</td>
</tr>
<tr>
<td>Number of Cores</td>
</tr>
<tr>
<td>Memory Capacity [GB]</td>
</tr>
<tr>
<td>Memory Bandwidth [GB/s]</td>
</tr>
<tr>
<td>Memory Type</td>
</tr>
<tr>
<td>Memory Capacity [GB]</td>
</tr>
<tr>
<td>L1 Cache</td>
</tr>
<tr>
<td>L2 Cache</td>
</tr>
<tr>
<td>L3 Cache</td>
</tr>
</tbody>
</table>

units such as tracing units, hardware contexts, HBM2e controllers, and 16 X^x^-links realizing a high-speed coherent fabric in multi-GPU configurations. From a software perspective, no changes to source code are required to run on both stacks; the default is to enable and run on both stacks. An environment variable (i.e., ZE_AFFINITY_MASK) can be set (to either 0, 0 or 8, 1) in order to restrict runs to one stack [9].
A100. For ADADELTA, all test cases achieve faster executions on the Max 1550, where speedups range within \(∼ 1.16 \times \) (for 1ac8), \(∼ 1.88 \times \) (for 7cpa), \(∼ 2.67 \times \) (for 1ac8), all the achieved values are below the expected ratio of \(∼ 2.67 \times \) (for 1ac8), which is calculated using the theoretical FP32 performance capabilities (TFLOP/s) of both GPUs (Table 5). Based on the aforementioned compute boundness of AutoDock-GPU’s algorithm, we can attribute these lower-than-expected ratios to a possible inefficient usage of compute resources in the SYCL version, specifically on the compute-intensive calls, i.e., scoring function (Algorithm 2) and gradient calculation (Algorithm 5).

As already described, these results are still preliminary, with the following limitations being present: While larger test cases provide more parallelism (i.e., more rotatable bonds and atoms) and typically result in higher speedups, this was not always the case in our experiments. Additionally, regarding the employed local-search methods (Solis-Wets and ADADELTA), we still need to investigate the performance impact of their algorithmic differences: Solis-Wets suffers from more thread divergence, while ADADELTA performs...
more compute-intensive calls and requires heavier synchronization. These questions can be resolved by a more thorough performance analysis on the Max 1550 GPU. This is still work-in-progress, as the Intel profiling tools (e.g., roofline) still have some limitations for the very recent Max 1550 GPU, making such analysis difficult.

5 RELATED WORK

In this section, we compare our work to previous studies in terms of the migration cases addressed when employing Compatibility Tool. For this purpose, Table 7 includes different migration efforts involving code refinements for functional correctness and/or performance optimization.

As discussed in [1], the most frequently-encountered cases involve work-group/sub-group size setup (resulting in tool warnings pointing to kernel invocations) and error handling. Both cases have been addressed in three previous studies ([1, 2, 4]). In our work here, we explicitly address the case of work-group/sub-group sizes, but do not discuss the case of error handling. This is because Compatibility Tool correctly migrated the latter case, and thus, the corresponding migrated SYCL code required no manual intervention. Less frequent cases are synchronization, memory allocation and layout, queries of device properties, as well as atomics and barriers. All these cases are addressed in our work here as well as in two other studies per case. To the best of our knowledge, AutoDock-GPU presents two cases not previously discussed in the literature, namely the handling of assembly code and of native math functions.

Compatibility Tool is being continually enhanced. However, there is no single application that covers all possible migration cases. In fact, new issues in the tool, i.e., opportunities for tool enhancement, are discovered as more applications are migrated. For completeness, we show some examples of additional cases in Table 7 that were not encountered when migrating AutoDock-GPU.

Regarding time measurements, [2] replaces manually the CUDA events with std::chrono functions calls. This is not required for AutoDock-GPU, as it already uses that library. Image data is not processed in AutoDock-GPU, but [1, 4] require manual adjustments in that area, as SYCL supports only a 4-channel image format. Device selection code needed to be manually reviewed in [1], while for AutoDock-GPU, it was already indirectly handled with dpct::get_default_queue() (Section 3.1.3). Loop unrolling is employed in [15] to fully allocate data on a GPU execution unit. Furthermore, the SYCL extension called explicit SIMD is leveraged in [31] to gain more control over the generated code instead of relying on compiler optimizations. Migrating AutoDock-GPU did not require these two latter steps.

6 CONCLUSIONS

In this work, we have migrated AutoDock-GPU from CUDA to SYCL by employing the Intel DPC++ Compatibility Tool, which automates the migration of most CUDA into human-readable SYCL code. While Compatibility Tool greatly reduces the effort of code migration, for complex programs such as AutoDock-GPU, a developer still needs to closely analyze, manually complete, and fine-tune the migrated code. In particular, we show that the manual modifications we performed on the original tool-migrated SYCL code resulted in competitive performance on a multi-core CPU and high-end GPUs. On a 36-core × 2 sockets Intel Xeon 8360Y CPU, the migrated SYCL code is now faster than the original OpenCL for all local-search methods and test cases. On this CPU, the highest speedup factor achieved with SYCL compared to OpenCL was ∼1.20×. For GPUs, we found that by using the two X^2-stacks available in the Intel Max 1550 GPU, it is possible to further reduce docking times by factors of up to 1.88× compared to those on an NVIDIA A100 GPU.

Table 6: Profiles of a single ADADELTA local-search kernel execution (test case: 7cpa) on NVIDIA A100 GPU

<table>
<thead>
<tr>
<th>Metrics</th>
<th>CUDA</th>
<th>SCYCL</th>
<th>SCYCL/CUDA Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time [ms]</td>
<td>96.4</td>
<td>150.9</td>
<td>1.6</td>
</tr>
<tr>
<td>Achieved Peak</td>
<td>10</td>
<td>11</td>
<td>1</td>
</tr>
<tr>
<td>FP32 Performance [%]</td>
<td>989.8</td>
<td>1583.8</td>
<td>1.6</td>
</tr>
<tr>
<td>Performance [GFLOP/s]</td>
<td>1111</td>
<td>1228</td>
<td>1.1</td>
</tr>
<tr>
<td>Theoretical Warps per Scheduler</td>
<td>8</td>
<td>4</td>
<td>0.5</td>
</tr>
<tr>
<td>Registers per Thread</td>
<td>64</td>
<td>127</td>
<td>1.9</td>
</tr>
<tr>
<td>Static Shared Memory per Block [byte/block]</td>
<td>7.4</td>
<td>512</td>
<td>95.8</td>
</tr>
<tr>
<td>Dynamic Shared Memory per Block [byte/block]</td>
<td>0</td>
<td>1.8</td>
<td>+∞</td>
</tr>
<tr>
<td>Achieved Occupancy [%]</td>
<td>38.8</td>
<td>19.3</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Figure 4: Docking Time Ratios: Intel Max 1550 [2S] / A100 [CUDA]. Ratios below 1 (i.e., horizontal red line) correspond to faster executions on the Intel Max 1550 GPU
In future work, we plan to further increase the efficiency of the SYCL version on the Intel Max 1550 GPU, as well as to analyze its portability to a variety of high-end accelerator platforms. These porting efforts could be carried out, e.g., by also considering the interplay of docking algorithms and data-structures with the device-specific memory hierarchies, such as that on the recently-launched Intel Xeon CPU Max Series featuring on-package HBM2e memory (code-named Sapphire Rapids HBM) [14].

ACKNOWLEDGMENTS

This work has been supported by Intel under the oneAPI Center of Excellence Research Award granted to Technical University of Darmstadt.

REFERENCES

Table 7: Migration cases addressed in this work vs. those in previous studies

<table>
<thead>
<tr>
<th>Migration cases for functional correctness</th>
<th>3.1.1, 3.1.2 Built-in functions (reductions, shuffles, etc)</th>
<th>✓</th>
<th>–</th>
<th>–</th>
<th>–</th>
<th>–</th>
<th>–</th>
<th>–</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3.1.3 Synchronization</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>3.1.4 Work-group/sub-group sizes</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>3.1.5 Memory (allocation, layout, etc)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>3.1.6 Query of device properties</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>3.1.7 Assembly code</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>– Error handling</td>
<td>–</td>
<td>✓</td>
<td>✓</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>– Timing measurements</td>
<td>–</td>
<td>✓</td>
<td>✓</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>– Image format</td>
<td>–</td>
<td>✓</td>
<td>✓</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>– Device selection</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Migration cases for performance optimization</th>
<th>3.2.1 Memory space in atomics and barriers</th>
<th>✓</th>
<th>–</th>
<th>–</th>
<th>–</th>
<th>–</th>
<th>–</th>
<th>–</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3.2.2 Native math functions</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>3.2.3 Loop unrolling</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>3.2.4 Explicit SIMD</td>
<td>✓</td>
<td>✓</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

A AUTODOCK-GPU’S EXECUTION CONFIGURATION

For all executions, we set the number of LGA runs as follows: \(N_{\text{LGA-\text{\text{runs}}}^{\text{TOTAL}}} = 100 \). Additionally, we disable the default early-termination mechanisms of AutoDock-GPU [29], i.e., autostop and heuristic, in order to process similar workloads across executions using the same local-search method and test case. The SYCL version of AutoDock-GPU used here is available under https://github.com/ccsb-scripps/AutoDock-GPU/pull/183 (commit hash: 72e4309).