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ABSTRACT not match this progress, which is why building software-

Future cellular networks will be programmable and increas-
ingly software-defined with APIs to hook into the commu-
nication stack closer and closer to the physical layer. This
allows operators, for example, to plug-in third-party ma-
chine learning algorithms to optimize performance. At the
same time, this flexibility implies that compute resources
cannot be provisioned statically but have to be distributed
dynamically during runtime. While the hardware platforms
for such systems are available, we lack suitable software
frameworks that help to realize such systems. In this demon-
stration, we present two Open Source projects that fill this
gap: FutureSDR, a portable real-time signal processing frame-
work with native support for accelerators (like GPUs and
FGPAs); and IPEC, which enables fully automatic compo-
sition of multi-accelerator FPGA designs. We believe that
these tools — especially in combination with each other -
can provide the base for building research prototypes and
allow experimentation with software-defined wireless com-
munication systems.

1 INTRODUCTION

With the trend towards softwarized, disaggregated Radio
Access Networks (RANs) [2], Software Defined Radio (SDR)
will become a key technology for telecommunication net-
works. This goes beyond traditional applications, where
an SDR framework interacts directly with the radio but
extends to (near) real-time control loops in O-RAN appli-
cations [1], which require high-performance stream-data
processing systems. Yet, while SDR hardware made great
leaps forward, the required programming frameworks did
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defined wireless communication systems remains a chal-
lenge. General-purpose SDR frameworks like GNU Radio [3]
have conceptual limitations that cannot easily be overcome
and, thus, lose relevance for complex state-of-the-art appli-
cations with non-trivial compute and timing requirements.

2 FUTURESDR

FutureSDR! is designed and implemented from scratch, tak-
ing a fresh look at many long-standing issues. Yet, the main
abstractions of FutureSDR are familiar to people working in
the application domain. It uses Blocks that implement a step
in the signal processing chain, e.g., a filter, an arithmetic op-
eration, or a synchronizer. The blocks have input and output
ports that are connected to form a Flowgraph. The ports are
either message ports (for asynchronous message passing) or
stream ports (for streams of samples). In addition, FutureSDR
uses the concept of a Runtime that has a Scheduler associated
with it and that is able to run flowgraphs.

To achieve this, FutureSDR is based on a runtime for asyn-
chronous tasks, which eases I/O integration and allows full
control over scheduling decisions. This can be regarded as
a switch from threads to tasks and, hence, from parallelism
to concurrency. Furthermore, using tasks instead of threads
allows us to control scheduling, since the asynchronous task
executor is implemented in user space as part of the appli-
cation. Threads, in turn, are managed by the operating sys-
tem scheduler with limited control by the application. Cus-
tom asynchronous executors can exploit knowledge of the
application’s flowgraph topology to make better decisions.
Plugging in different schedulers, we can optimize for archi-
tectures, applications, or configure the trade-off between
metrics like throughput and latency.

Furthermore, FutureSDR has native support for heteroge-
neous systems. This refers to three dimensions: heterogene-
ity in terms of platforms (e.g., Android, Windows, Linux, the
web), architectures (e.g., x86, ARM, and WebAssembly), and
compute (e.g., CPU, FPGA, and GPU). Support for this wide
range of systems is not added as an afterthought but part of
the core design of the framework.

Thttps://www.futuresdr.org/
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Figure 1: Photo of demonstration setup.

3 IPEC

Inter-Processing Element Communication (IPEC) [4] is a
framework that simplifies the development of complex Sys-
tem on Chips (SoCs) with heterogeneous Processing Ele-
ments (PEs), together with their supporting interconnect
structures and memory hierarchies. As FPGAs continue to
grow in size, they can hold a large number of complex PEs.
Tools for building individual PEs exist and have improved
significantly in recent years (e.g., powerful hardware con-
struction languages, such as Chisel or Bluespec). However,
building an SoC composed of many interconnected PEs re-
mains a challenge that IPEC tries to solve.

IPEC views the communication between PEs and memory
as a data-flow graph that can be described in a Python-based
Domain-Specific Language (DSL). For the communication
between PEs, it supports multiple protocols, such as AXI4,
AXI4Lite, and AXI4Stream, as well as more abstract stream-
based operations, such as reductions or atomic operations
for inter-PE-synchronization. Furthermore, IPEC allows to
combine PEs for stream-based and task-based processing,
as well as software-programmable PEs for those parts of
an application where flexibility is more important than raw
performance. The user can choose from a library of generic
PEs provided by IPEC (e.g., various soft-core processors),
or can include their own PEs, which are imported in the
industry standard IP-XACT format. IPEC reads the data-flow
description and generates a complete SoC, containing the
required PEs and interconnect structures, which can then be
synthesized and programmed onto an FPGA.

IPEC simplifies testing hardware designs for wireless com-
munications, allowing the user to input pre-recorded IQ
traces or samples that are generated with existing software
implementations. This enables detection of functional errors
in the implementation before having to synthesize the entire
system down to hardware.

4 DEMONSTRATION SETUP

The demonstration setup is shown in Figure 1. To highlight
the main features of our frameworks, we have the same
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Figure 2: Different stages in the protocol implementa-
tion.

FutureSDR receiver running on three very different plat-
forms: (1) on a normal laptop, interfacing an Aaronia Spec-
tran v6 SDR, (2) on a web browser, compiled to WebAssembly
and interfacing a HackRF SDR through WebUSB, (3) on a
AMD/Xilinx RFSoC ZCU111 evaluation board.

Figure 2 shows a high-level overview of the receiver struc-
ture. The same protocol is implemented both in software
(using FutureSDR) and in hardware (using IPEC). Since both
implementations have the same structure, we can configure
during runtime after which decoding stage to switch from
FPGA to CPU processing. When selecting the third split, for
example, IQ-samples from the RFSoCs ADCs are processed
in the demodulation and clock recovery stage in hardware.
The result is then streamed into DRAM, where the software
implementation takes over and processes the remaining two
stages. At our booth, the visitor can set this dynamically and
observe the change in CPU load on the processor.

5 CONCLUSION

We present two Open Source projects that can be used to
build portable, reconfigurable, real-time signal processing
systems. To this end, we implement the same receiver on
various platforms, including the Xilinx ZCU111, where it is
utilizing both the FPGA and the CPU cores of the RFSoC.
Both the software and hardware implementation cover the
full protocol, with the ability to switch between interme-
diate stages during runtime. Together, this highlights two
important features: (1) We show the portability of FutureSDR,
having the same receiver running on very different platforms
(PC, WebAssembly, RFSoC). (2) We show that the software
implementation is capable of offloading different parts of
the computation depending on the situation. Releasing the
software as Open Source, we hope that it will prove useful
to build research prototypes for software-defined wireless
communication systems.
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