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This paper introduces DANSEN, the hardware accelerator component for neoDBMS, a full-stack computational
storage system designed to manage on-device execution of database queries/transactions as a Near-Data
Processing (NDP)-operation. The proposed system enables Database Management Systems (DBMS) to offload
NDP-operations to the storage while maintaining control over data through a native storage interface. DANSEN
provides an NDP-engine that enables DBMS to perform both low-level database tasks, such as performing
database administration, as well as high-level tasks like executing SQL, on the smart storage device while
observing the DBMS concurrency control. Furthermore, DANSEN enables the incorporation of custom acceler-
ators as an NDP-operation, e.g., to perform hardware-accelerated ML inference directly on the stored data. We
built the DANSEN storage prototype and interface on an Ultrascale+HBM FPGA and fully integrated it with
PostgreSQL 12. Experimental results demonstrate that the proposed NDP approach outperforms software-only
PostgreSQL using a fast off-the-shelf NVMe drive, and significantly improves the end-to-end execution time of
an aggregation operation (similar to Q6 from CH-benCHmark, 150 million records) by ≈10.6×. The versatility
of the proposed approach is also validated by integrating a compute-intensive data analytics application with
multi-row results, outperforming PostgreSQL by ≈1.5×.

CCS Concepts: • Hardware → Reconfigurable logic and FPGAs; Hardware-software codesign; Hard-
ware accelerators; External storage; • Information systems→ Database query processing.

Additional Key Words and Phrases: Near-Data Processing, Computational Storage, FPGA, Database Manage-
ment Systems.

1 Introduction
Data movements have become a limiting factor in modern Database Management Systems (DBMS)
as they use traditional (data-to-code) system architectures to process data by triggering massive
data transfers. As an alternative, moving computation close to the storage devices (code-to-data)
gains the potential of significant throughput improvement due to shorter / wide connections of
high(er) performance busses. In addition, DBMS are working on hybrid workloads that combine
long-running analytical (reading) transactions/queries and frequent and low-latency modifying
(update) transactions [35]. However, analytical queries also operate on rarely accessed data that
resides on slower “cold” persistent storage. Operating on cold storage causes massive data transfers
from storage systems in the traditional stack [44].
Offloading computations from the host to the storage device, known as Near-Data Processing

(NDP), is used to save bandwidth and increase performance. Active Disks [1] and DatabaseMachines
[12] as a pioneer in this era were not successful due to I/O boundedness and bandwidth limitations,
and the high cost of the special hardware. However, with modern semiconductor technologies,

Authors’ Contact Information: Sajjad Tamimi, tamimi@esa.tu-darmstadt.de, Technical University of Darmstadt, Darmstadt,
Germany; Arthur Bernhardt, arthur.bernhardt@reutlingen-university.de, Reutlingen University, Reutlingen, Germany;
Florian Stock, stock@esa.tu-darmstadt.de, Technical University of Darmstadt, Darmstadt, Germany; Ilia Petrov, ilia.petrov@
reutlingen-university.de, Reutlingen University, Reutlingen, Germany; Andreas Koch, koch@esa.tu-darmstadt.de, Technical
University of Darmstadt, Darmstadt, Germany.



1:2 Tamimi, et al.

it is now economical to fabricate combinations of powerful compute units and storage (e.g., non-
volatile memories) close to or co-allocated in the same device (known as computational storage).
Co-allocating computation and storage on the same device results in shorter access latency, higher
bandwidth, and a higher level of parallelism for the internal compute unit (device-internal) compared
to the external one (host-to-device). This is due to the independent channels between the on-device
processing element and storage unit as well as the limited simultaneous access provided by the
interconnect, i.e., PCI Express (short: PCIe). Leveraging the hardware properties and moving
computation closer to the storage significantly enhances system performance, as device-internal
bandwidth and latency are better than device-to-host. For example, the shorter access latency
between the processing element and the physical storage unit facilitates leveraging the byte-
addressability of novel non-volatile memory to improve further system performance, an approach
that is less efficient when relying on the PCIe interface, which is optimized for bulk transfers.
Offloading computation to storage is even more promising for DBMS systems operating under
hybrid workloads, as it reduces resource contention and prevents performance interference between
concurrently running host and device processes. By executing long-running analytical workloads
on cold data, which exceeds the main memory capacity, on the device, and optimizing the execution
of frequent and low-latency update workloads on hot data within main memory, system efficiency
is significantly enhanced. This strategy improves performance, minimizes data transfers, and
reduces memory pollution. These trends leverage the way for NDP-capable storage and overcome
limitations of prior approaches like Active Disks or Database Machines. Please see Section 5 for an
in-depth discussion of prior work.
This paper presents DANSEN, the hardware component of neoDBMS [8, 44], which together

form an end-to-end system architecture for accelerating database applications on computational
storage through the use of NDP techniques. The storage solution is PCIe-based and employs NVM,
emulated on DRAM, for storage and an FPGA as the computing unit that handles queries and
transactions from DBMS as NDP-operations. The DBMS is designed to perform NDP-operations on
persistent storage to improve database performance while running hybrid workloads. To enable
the DBMS to directly access and store database data on the device, as well as efficient push-down
of NDP-operations to the device, we utilize Native Storage [18, 19, 37], which makes the DBMS
aware of the specifics of the underlying storage medium. The concept of the Native Storage and
DANSEN’s implementation of an Native Storage Interface (NSI) is described Section 3.2.
The offloaded operations will be executed on an NDP-engine that is comprised of a pool of

software-programmable soft-cores extended with custom hardware that acts as a front-end to
the DBMS and interprets the data layout and concurrency mechanisms of the database. As the
front-end required significant engineering effort and frequent changes due to the lack of existing
best practices on how to directly integrate NDP into PostgreSQL, a more flexible software-based
implementation was used here instead of hardwired acceleration. For performance, we leverage up
to twenty 64-bit cores working in parallel to feed the NDP back-end with raw data, which then
employs actual hardware-accelerated processing for aggregations or inference. The native storage
approach leverages the byte-addressability of NVM to reduce read-amplification and improve
overall system performance that would not be possible using page-addressed storage such as
Flash. Read amplification is a phenomenon characterized by retrieving (much) more data from
physical storage than is actually requested by the processing component, e.g., by the query executor.
For instance, if the executor requests a single record of 100 B, the buffer manager will load the
8 KiB page containing that record, while the underlying file-system may load multiple blocks.
Read-amplification results primarily from introducing levels of indirection, the data-organization
or abstractions such as the block-device interface, file-systems and file-based storage.
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To evaluate the proposed architecture, we build a prototype of the smart storage system on
an AMD / Xilinx UltraScale+ FPGA, attached in the form of a Xilinx Alveo U280 PCIe board. We
extended PostgreSQL 12 with the capability to perform NDP-operations using the FPGA on the
persistent storage, enabling us to conduct a thorough evaluation of the system performance. The
FPGA not only performs computational operations from database queries, but also directly pro-
cesses the database internal formats while maintaining the transactional integrity of the database.
This is achieved by creating a transactionally consistent snapshot of the database on the device
and executing the NDP operation against it, thus enabling DANSEN to execute intervention-free
(autonomously) from the host DBMS. Our evaluation shows that DANSEN improves system perfor-
mance by decreasing costly data movement and enhancing the degree of computational parallelism.
In addition, we use an ML-inference application from data analytics as an NDP operation to show
how easy custom hardware can be integrated into the back-end pipeline of the proposed NDP-
engine. As the NDP back-end is isolated from the DBMS specifics by the NDP front-end, it just has
to deal with streams of raw data.

The novel contributions of this paper are as follows:
(i) We propose a PCIe-based computational storage that enables efficient “push-down” of the NDP-

operation from the DBMS query engine to the NDP storage device. The interaction between
the storage and DBMS is realized in the form of NSI and so eliminates costly intermediate
abstraction layers (e.g., file systems, block devices) that are present in traditional DBMS stacks.
In addition, we extended the DBMS to handle NDP on computational storage while running
hybrid workloads.

(ii) We propose an NDP-engine architecture that is capable of performing in-situ data process-
ing without any interaction with the host as an intervention-free NDP-operation. The pro-
posed NDP-engine exploits the byte-addressable nature of NVM technologies to reduce read-
amplification. The NDP-engine is not only designed and optimized for NDP-operations but
also enables the user to easily integrate custom hardware and arbitrary software functions.

(iii) We investigate the generality and flexibility of the proposed architecture by the in-depth
benchmarking of a compute-intensive application from the data analytics domain, in an
end-to-end scenario (PostgreSQL DBMS down to FPGA-based hardware).

Note that since DANSEN was developed in an interdisciplinary research project between database
researchers and computer architects, we sometimes have to use a mix of the two different commu-
nities’ terminologies. For example, the term “push-down” from the DBMS research community
could be seen to mean “hardware-acceleration” from the computer architects’ perspective.
This text focuses on a detailed description of the hardware architecture and hardware/software

interfaces, while our previous work in [8, 44] primarily focused on the database architecture and
design principles/aspects. This work thus discusses three key contributions by the DANSEN system:
(i) the architecture of an NDP-capable computational storage along with its implementation of NSI,
(ii) the design of a novel hardware-accelerated NDP engine processing pipeline, and (iii) a detailed
evaluation of a full-stack end-to-end usage scenario reaching from the full-scale host-side DBMS
down to hardware-accelerated NDP for ML inference while maintaining transactional consistency
in the presence of ongoing DBMS updates.

This discussion starts with a general introduction of some DBMS basics in Section 2. Afterward,
the overall system architecture of DANSEN including the required modifications to PostgreSQL and
the actual hardware architecture are explained in Section 3. Details of the experimental setup are
given in Section 4.1, while Section 4.2 discusses the actual evaluation results. Prior related work is
surveyed in Section 5, before we conclude in Section 6.
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2 A Brief Introduction to Database Systems
As this is an interdisciplinary work, we give a necessarily brief introduction into DBMS for computer
architects here down to the level we require to discuss the actual DANSEN system architecture in
Section 3.
Modern DBMS handle thousands of transactions per second, while they are at the same time

processing and analyzing large datasets. This advancement in technology has had several notable
implications. First, especially in cloud settings, sudden workload changes from transactional (mostly
writing) to analytical (mostly reading) and vice versa are inevitable. These changes cannot be
anticipated as they occur due to user behavior and may happen frequently. Therefore, both types of
processing typically co-exist on the same dataset and system. Second, modern DBMS do not limit
their operations to processing hot data that can easily fit into large main memories. Concurrent
analytical processing operates on both the hot, but also the much larger and cold, persistent portion
of the dataset that typically resides in the persistent storage (much larger, but far slower than
main memory). Especially in such cases, massive and slow cold data transfers severely impact
system performance and scalability and hurt resource efficiency. These are inevitable because of the
scarce I/O bandwidth in combination with poor data locality and traditional system architectures,
mandating that data must be transferred to the host DBMS to be processed there (data-to-code).
To tackle these challenges, NDP can be utilized to reduce data transfers by offloading parts of
data-intensive processing to computational (sometimes also called smart) storage.
We now discuss these aspects in greater detail before considering how data is actually stored

and accessed in a modern DBMS. The latter will have direct impact on the HW/SW architecture of
DANSEN.

2.1 Workload
In database systems, sequentially handling individual operations is not the primary focus. Instead,
these systems are designed to handle and process a multitude of concurrent transactions. A transac-
tion refers to a sequence of database operations (i.e., SQL statements) that constitutes an atomic
unit of work, demarcated by a beginning (i.e., begin work) and an end (i.e., commit/rollback work).
Database workloads [16] encompass a predefined and parameterized set of different transaction
types, involving modification operations and/or queries, that operate on a dataset with a schema
describing one or more database objects (e.g., SQL tables).

Transactions are best described through their distinctive properties [17]. Atomicity, which refers
to the all-or-nothing execution of a transaction, ensures that all operations are either successfully
executed or are all automatically undone in case of failure. This guarantees that the dataset is
in the same state as it was prior to the beginning of the transaction. Isolation mandates that
concurrent transactions are executed by the DBMS as though they were processed individually
and are unaffected by other modifications. This eliminates concurrency control anomalies [10]
like the dirty read, which involves reading data modified by an active and concurrent transaction.
Transactional guarantees are provided in accordance with the selected transaction isolation level
(e.g., SERIALIZABLE). In addition, upon successful transaction completion (i.e., commit work), all
modifications of that transaction become durable, enabling them to survive a range of failures (e.g.,
media crash), and the database is left in a consistent state, with all constraints satisfied.
In general, there exist two distinct workload types: Online Analytical Processing (OLAP) and

Online Transaction Processing (OLTP). OLAP involves long-running analytical transactions (con-
sisting mostly of read queries), while OLTP typically involves frequent, low-latency modifying
transactions (consisting mostly of modification write accesses). In modern database systems, both
OLAP and OLTP workloads may be executed on the same dataset and system, known as Hybrid
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Transactional and Analytical Processing (HTAP) [35]. However, this type of workload may result
in costly transfers of cold data in the traditional DBMS stack [44], as analytics such as aggregations
will need to read large amounts of data (e.g., “ISBN numbers of all books ordered in the last 10
years” for a histogram).

2.2 Concurrency Control
Concurrency control ensures that no concurrency anomalies occur and that transactional guarantees
(i.e., properties) can be achieved. Over the years, different types of concurrency control schemes
have been designed, with pessimistic and optimistic being two general classes. The former seeks to
prevent conflicts and avoid concurrency anomalies by blocking other transactions from accessing
(writing or reading) a data item (e.g., record) through the use of locks. The latter seeks to increase
transactional throughput by minimizing or avoiding locking/blocking at the cost of early conflict
checking, multiple versions of a data item, and/or validation.
Pessimistic concurrency control schemes can significantly reduce overall throughput as either

high-frequency update transactions will set locks, blocking the execution of long-running trans-
actions or vice versa, since both types of transactions operate on some common data items. To
this end, optimistic schemes come to the rescue. In this work, we used Multi-Version Concurrency
Control (MVCC) as a common optimistic scheme to guarantee transactional properties and have
higher throughput.
In terms of the DANSEN systems architecture, this implies that the NDP operations must be

aware of the MVCC protocols, and be able to find the record versions current for the specific NDP
transaction, which are not necessarily just the latest available versions! This is one of the main
tasks of the NDP front-end described in Section 3.3.1.

2.2.1 Multi-Versioning and MVCC. Multi-version DBMS and MVCC schemes [7, 10] are well-suited
for modern HTAP workloads. The fundamental concept of these systems is to maintain multiple
versions of each record in a table. Whenever a transaction modifies a record (via updates, inserts,
or deletes), a new version of that record is created. Thus for every transaction reading a record, the
multi-version DBMS determines the latest committed version of the record prior to the start of
that transaction (so-called visible version) and returns it. This process, known as visibility checking,
effectively computes a virtual snapshot of the entire database. Importantly, this technique allows
reading transactions, such as scan operations, to proceed with the visible versionwithout requesting
a lock and waiting. Consequently, in DBMS using MVCC schemes, read transactions are never
blocked by write transactions, and vice versa, except in cases where multiple writing transactions
modify the same data, resulting in write/write conflict [9, 42]. Nonetheless, this technique offers a
good performance under HTAPworkloads, where the long-running analytical (reading) transactions
are not affected by the numerous short modifying OLTP transactions. Additional details on visibility
checking can be found in Section 3.1.4.

2.2.2 Version Organizations. Each version of a record is physically represented as an independent
and uniquely identifiable database version record, identified by its Record-ID (short: recID). Currently,
there exist various version organizations with distinct properties [48], though they all share common
characteristics. First, all versions of a record form a logical version chain with a predecessor and a
successor version. Second, each version record stores the transaction ID of the transaction that
created it (creation_timestamp), as well as the transaction ID of the transaction that invalidated it by
creating a successor version (invalidation_timestamp), or a value of NULL if no successor version
exists. Third, every version record includes a reference (pointer, recID) to the predecessor or successor
version record.
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Fig. 1. 𝑁 -ary Slotted Model (NSM) page format (b) and record format (c) for relation schema (a). ∗: In DANSEN,
the successor record ID is replaced with the predecessor record ID.

2.3 Database Storage Model
2.3.1 Database Records and Pages. Data in a database is logically organized in tables, which are
defined by a relational schema, as shown in Fig. 1-(a). This schema is the typed definition of a
table and specifies the table’s name, structure, and type of information stored in each column.
Thus it defines the format of all records and how they are stored in memory or on disk. Each
record has a recID, which remains unchanged throughout its lifetime and in its simplest form
comprises <Page#, Slot#>. Records are stored on pages, which are contiguous blocks of memory
with a specified format and configurable size ranging from 2KB to 32KB. Modern DBMSs offer a
variety of page formats/layouts to host records, and the choice of page layout can have a significant
impact on the overall performance of the DBMS. The 𝑁 -ary Slotted Model (NSM) layout, as shown
in Fig. 1-(b), is a widely used page layout in relational DBMS (so-called row-stores) that support
frequent modifications and operate on whole records. As shown in this figure, the NSM format,
contains a dictionary of slot pointers, located after the Page Header, which specify the offset of a
record within the page and some status flags. NSM is particularly advantageous for variable-sized
record modifications, where it can avoid costly record migration by hosting them on the same
page as the original. However, it is sub-optimal for analytical workloads that require high cache
efficiency, as it implies transferring all data.
In this paper, we use the NSM page format and assume a fixed-format/schema, variable-sized

records, with a Record Header (i.e., metadata) consisting of version information followed by a
body holding the field values as shown in Fig. 1-(c). Data types in the record format are either of
fixed length, such as Integer or Float, or variable length, such as text or binary coded decimals.
Variable length types require an additional header that encodes the length, and if the length exceeds
one byte, a flag is used to indicate the header size, which may increase to 4 bytes. The metadata
in the Record Header is used to store information about the transactions involved in creating or
modifying records, including timestamps and predecessor information for record updates in MVCC.
This metadata is crucial for ensuring transactional consistency and performing visibility checks.
Records are always aligned on a 4-byte boundary, and if necessary, additional bytes append to the
end of the record.

© 2024 ACM. This is the author’s version of the work. It is posted here for personal use only. Not for redistribution. The definitive
version was published in ACM Transactions on Reconfigurable Technology and Systems, Volume 2024, Issue April, DOI:
10.1145/3655625.



DANSEN: Database Acceleration on Native Computational Storage by Exploiting NDP 1:7

PostgreSQL

File System

Executor

Shared Buffer Pool

Storage Manager

Block Device

NVM, FLASH, SSD PCIe-based FPGA

neoDBMS

Executor NDP-Scheduler

Shared 
Buffer 
Pool

Storage Manager

NVM

NDP-Engine

HW-acceleratorHW-acceleratorHW-accelerator

Delta
Buffer

read, write 

gather 
results

invoke 
NDP-call

P
C

Ie
-b

as
ed

 
FP

G
A

(A) Traditional Storage (B) Native Computational Storage

PostgreSQL

File system

Executor

Shared buffer pool

Storage manager

Block device

Traditional storage

neoDBMS

Executor

Shared buffer pool

Native storage manager

 Native Computational Storage

NDP-scheduler

Delta buffer

NVM
NDP-engine

HW-acceleratorHW-acceleratorHW-accelerator

gather 
results

invoke 
NDP-call

read, write 

PostgreSQL

File system

Executor

Shared buffer pool

Storage manager

Block device

Traditional storage

neoDBMS

Executor

Shared buffer pool

Native storage manager

 Native computational storage

NDP
executerDelta buffer

NVM NDP-engine

Query executor

 Computational storage

NDP
schedulerDelta buffer

NVM NDP-engine

Host 
executer

Native storage interface

NDP-capable DBMS

Shared buffer pool

Native storage manager

(a) DANSEN architecture

PostgreSQL

File system

Query executor

Shared buffer pool

Storage manager

Block device

Traditional storage

(b) Traditional architecture

 Computational storage

NDP
scheduler

Shared-state buffer

NVM NDP-engine

Query executer

Native storage interface

NDP-capable DBMS

Shared buffer pool

Native storage manager

(a) DANSEN architecture

PostgreSQL

File system

Query executor

Shared buffer pool

Storage manager

Block device

Traditional storage

(b) Traditional architecture

 Computational storage

NDP
scheduler

Shared-state buffer

NVM NDP-engine

Query executer

Native storage interface

NDP-capable DBMS

Shared buffer pool

Native storage manager

(a) DANSEN architecture

PostgreSQL

File system

Query executor

Shared buffer pool

Storage manager

Block device

Traditional storage

(b) Traditional architecture

Fig. 2. A comparison of (a) DANSEN (with NDP-capable DBMS [8, 44]) and (b) traditional architecture.

2.3.2 Storage Management. When a new record is created in the DBMS, the storage manager
requests from the Free-Space Manager a page with adequate space to accommodate the record. The
page can either be an existing one or, if there are no suitable ones available, a new page is allocated.
In a DBMS not using our NSI, blocks are usually stored in flat files in a file system. Interestingly,
only the file system knows the logical block addressing for each Block#/Page# and only the DBMS
knows the Page# for a table. This type of information hiding through all layers of abstraction along
the I/O stack poses a significant challenge to NDP and makes identifying records and navigating
across data on the device challenging. With our native storage approach, many of these abstractions
are eliminated, giving an NSI DBMS detailed knowledge (and control) over actual storage.

3 DANSEN System Design
This section outlines a DANSEN system architecture that enables the offloading of computations
from the query engine to the storage device. Fig. 2-(a) shows the overall layout of DANSEN including
an NDP-capable DBMS (at the top) and computational storage (at the bottom) that interacts through
a NSI (in the middle). In the following, we begin by introducing an NDP-capable DBMS. Next, we
present a NSI that enables the DBMS to handle NDP-operations directly on the device. We then
provide detailed information on the hardware architecture of the proposed storage solution and
discuss the timing model of the proposed approach.

3.1 NDP-Capable DBMS
As shown in Fig. 2-(a), DANSEN is connected to an NDP-capable DBMS [8, 44], namely neoDBMS,
that extends PostgreSQL by eliminating intermediary layers, such as the file system, along the
critical I/O path and operates directly on NVM storage using physical pointers. DANSEN’s NSI
design enables the DBMS to control the physical data placement and address the properties of the
underlying NVM. By leveraging the byte-addressability provided by the NVM storage, DANSEN
significantly reduces read-amplification. As result, the computational storage can resolve physical
records and page addresses in-situ, without frequent and expensive interaction with the host.

3.1.1 Version Organizations. The version organization in the NDP-capable DBMS differs from
non-NDP-capable PostgreSQL, which employs the Old-to-New (O2N) organization in its linked
list of record versions. In contrast, the used DBMS adopts a New-to-Old (N2O) organization for
versions, which are stored as a singly-linked list, and introduces a novel version invalidation model.
The O2N organization is well-suited for analytical (OLAP) operations, while the N2O facilitates fast
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updates and lookups (OLTP operations) under the HTAP workloads considered here. To this end,
the NDP-capable DBMS uses a Virtual ID (VID) that is unique for all versions of the same record
and replaces the successor recID with the predecessor recID in the record header (c.f. Section 1).
Each version includes a timestamp of the creating transaction and is implicitly invalidated by the
existence of a successor version. To manage the entry points of a version chain, a VID-mapping
table is utilized. VIDs point to the logical page and slot number of the record (i.e., <Page#, Slot#>).
Modifying transactions create new VID entries or update existing VIDs to point to the latest version,
which enables the DBMS to function in an append-based manner.

3.1.2 Shared-State Buffer. When a transaction produces a record, a new record is placed in a
shared-state buffer (i.e., of size 10 KB - 100 KB) in memory. The shared-state buffer contains one
logically addressed NSM-format page per DB-Object, as shown in Fig. 3. This approach assumes
that the working dataset can fit in memory, while the complete dataset, including cold historic
data, is much larger and only available in its entirety on persistent storage. The shared-state buffer
contiguously holds all differences between the in-memory data and the dataset on persistent storage.
To propagate the shared-state buffer to the storage interface, the DBMS is required to operate in
two modes:
Flush & append. Once the shared-state buffer is full, committed versions are flushed and appended
to storage and persisted. A new logical page is then allocated in the buffer to hold further modifica-
tions, as shown in Fig. 3-(a). The NDP-capable DBMS employs the concept of NSI for NVM and
NDP-operations (more information on this can be found in Section 3.2). NSI is based on physical
addressing and native storage operations. For instance, when Logical Page Number (short: lpn) 10
gets full, the DBMS generates a physical page at the address 0x80000 and proceeds to evict the
in-memory page to the persistent storage. The physical address is reserved when a new in-memory
page is created. The mapping of logical pages to physical addresses is managed via a Logical to
Physical (L2P-)mapping table, whose changes are also appended to storage during a regular flush
operation. Additionally, VID-mapping changes due to version updates for the current shared-state
buffer are also propagated to the device. Due to the contiguous nature of all shared-state within the
buffer, the payload data is always easily accessible without having to “marshal” it from dispersed
storage locations. In addition, it can efficiently be transferred to the device with a single DMA burst
transaction.
Pass-along & cache. To ensure consistency between the in-memory data and the dataset on
persistent storage before performing an NDP operation on the computational storage, DANSEN
employs a strategy of just-in-time passing-along and caching before invoking an NDP operation.
While the shared-state buffer pages containing committed versions are regularly flushed to the
persistent storage once the buffer becomes full (i.e., Flush & append), even a partially filled buffer has
to be flushed to storage as some in-memory pages may contain new versions that should be visible
to the NDP transaction. To this end, DANSEN allocates a special caching region in the persistent
storage exclusively used by the invoked NDP transaction, which is removed upon completion.
This approach enables DANSEN to bridge the gap between the in-memory data and the dataset on
persistent storage, allowing it to support large-memory scenarios and datasets that do not fit in
memory. As a result, DANSEN provides a viable hybrid DBMS solution for a wide range of use cases.

3.1.3 Table Modifications. To execute transactions that modify data, such as inserts, updates,
or deletes, the host query executor must first verify if there is enough free space in the current
shared-state buffer to store the record. This verification is performed by looking at the page header
that encodes the start and end of the free space and comparing it with the actual record size. After
this check is performed, the modifying transactions will create a new slot pointer and store the
record data along with the record header at the next available offset. This process has been shown
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Fig. 3. Shared-state buffer propagation modes: (a) Flush & append and (b) Pass-along & cache (indicated by
blue box and arrow). TX=Transaction, LPN=Logical Page Number, VID=Virtual ID, L2P=Logical-to-Physical

in Fig. 3 using a green arrow. The creation timestamps in the record header are set to the transaction
ID that executed the modifying statement. If this is the first version of the record, no predecessor
information needs to be stored, and therefore it is set to NULL. In case a previous version of the
record exists, the predecessor information is set to the logical page and slot number of that version.
The slot pointer within a page increases from top to bottom, while records append from bottom to
top.

3.1.4 Version Visibility Checking. In DANSEN, each record version is considered a distinct physical
entity with its own unique identity. These versions contain both a creation timestamp and a
reference to their predecessor version, both of which are observable through the metadata format
shown in Fig. 1. During each NDP invocation a transaction timestamp is provided which indicates
the unique number (transaction IDs are monotonically increasing) of the calling transaction. Using
this timestamp, the NDP-engine is able to calculate version-record timestamps for every record on
the device, enabling it to determine whether a record is visible to the current transaction (belongs to
the NDP transactional snapshot) or not. If a record is found to be invisible to the current transaction
timestamp, the NDP-engine module must traverse back to the record’s predecessor(s) to find the
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computational storage

Fig. 4. Global layout of DANSEN including (a) NDP-capable DBMS, (b) native storage interface, and (c)
computational storage.

version that is visible to the requested timestamp. This process is referred to as version visibility
checking.

3.1.5 NDP-Operations. Deciding which operations to offload onto the NDP-engine is challenging
considering factors such as data volume, computation complexity, and hardware capabilities. The
NDP approach is particularly beneficial for size-reducing operations, such as filters (NDP-filter)
[51] and aggregations (NDP-SUM/MIN/MAX ). These operations involve processing significant data
volumes to extract subsets or summaries. Operations that go beyond the built-in capabilities of
the DBMS are implemented as UserDefined functions (NDP-UserDefined). This mechanism enables
users to define and implement custom operations within the DBMS and incorporate them into
the execution plan. The seamless integration of UserDefined functions and the principles of NDP
enables the NDP-capable DBMS to make intelligent decisions about offloading certain computations
to custom accelerators in the computational storage.
This study focuses on offloading analytical (read-only) queries to the computational storage

device. As discussed later in Section 3.3, the NDP engine is currently capable of performing
aggregation operations (e.g., SUM, MIN, MAX, etc.) having a scalar result, with optional record
pre-filtering, using built-in functionality. Arbitrary operations, including multi-result ones, are
realized as user-defined hardware functions that are easily integrated into the DANSENNDP pipeline
using standard AXI interfaces. For the experiments conducted here, we have manually selected
which functions to execute NDP-style on the device. We perform fine-grained measurements,
including different data transfer and execution phase times, in Section 4.2.2 Experiment 3, to
justify our choice of NDP operations. These results could later be used in DBMS execution planning
to automatically choose between traditional and NDP processing.

3.2 Native Storage and its Interface
Offloading an NDP operation onto the storage device requires processing capabilities on the storage
device, as well as an active interface to the host system enabling their use. Relying on a traditional
read/write storage interface (e.g., a block-device view) interface with many abstraction layers (e.g.,
file system) would complicate the NDP engine significantly, as it would need to be cognizant of
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all the abstraction layers as well. An alternative solution is to employ a native storage interface,
which eliminates these layers and provides direct access to hardware resources [44]. Moreover,
eliminating the intermediate abstraction layers between the storage and the host results in leaner
I/O stacks [18, 19, 37] and spares the NDP engine from implementing the abstractions. To this
end, we relied on an NSI that enables the DBMS to access/store data directly on the storage device
to avoid information hiding, as shown in Fig. 4-(b). In the following sections, we explain what
functionality is required in the DBMS and the NSI.

3.2.1 In-Situ Data Interpretation. To execute transactions in NDP mode, it is necessary for the
NDP-engine to interpret the data layout, including table definitions, record- and page-layout and
to navigate across persistent physical data. To this end, the NDP scheduler translates the table
definition and page format into specific calling parameters, such as type and order of datatypes, for
the NDP-engine. These administrative parameters which carried with each NDP invocation include
NDP-operation (NDP-engine operation), TransactionID (NDP operation’s transaction timestamp),
ResultSetInfo (Result handling behavior), AddressInfo (physical address ranges for VID/L2P-mapping
table and cached pages on device), SchedulerInfo (resource allocation and workload partitioning for
the NDP-operation),Miscellaneous (in-situ data interpretation and optimization details). By utilizing
this approach, the NDP-engine can transparently interpret database pages and record formats to
process record versions and compute the correct snapshots for transactions.

3.2.2 NSI Commands. The NSI provides two categories of commands, namely data-commands and
NDP-commands as shown in the middle part of Fig. 4. The data-commands support page-transfers
(via READ_PAGE andWRITE_PAGE). These two commands completely replace the traditional storage
interface that relies on the file and operating system. Page-transfer commands are best suited for
regular flushes of database pages as well as NDP-related transfers like VID-mapping or L2P-mapping
table.

The NDP-command enables the NDP scheduler to offload an NDP-operation to the NDP-engine
via NDP_CALL. The NDP-engine uses the NDP_STATUS command to notify the NDP scheduler of
the status of the NDP-operations as well as transfer control information. For example, consider a
scenario where the NDP scheduler identifies an operation to execute on the NDP-engine. Prior
to invoking the NDP-operation, the native storage manager propagates (pass-along & cache) the
shared-state buffer to the device (in Fig. 4 1○). Next, the NDP scheduler initiates the invocation of
the NDP-engine by specifying administrative parameters ( 2○). Once the operation is completed on
the NDP-engine, the status of the operation is forwarded to the NDP scheduler ( 3○). Finally, the
native storage manager configures the on-device DMA engine to read the final results ( 4○) back to
the DBMS for further processing. Note that intermediate results can be held on device between
different NDP operations and do not need to be copied back to the host.

3.3 Computational Storage: Interface and Architecture
The underlying infrastructure of DANSEN, as shown in Fig. 4-(c), includes several key components
such as the storage module, NDP-engine, PCIe-controller, DMA-engine, and interrupt handler. The
storage module is where the data actually resides. It is partitioned into persistent storage for storing
cold historical data, and a shared-state buffer that is used for administrative tasks. The interrupt
handler is responsible for collecting interrupt signals from the internal modules and forwarding
them to the host through the PCIe-controller. The DMA-engine is responsible for transferring data
between the host and the device via the PCIe bus, while the PCIe-controller enables communication
between the storage module and the host.

The NDP-engine is responsible for executing NDP operations, as shown in Fig. 5. The NDP-engine
executes the NDP_CALL operation by involving three distinct pipeline stages, namely NDP front-end,
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Fig. 5. The NDP-engine processing pipeline with three stages: (a) NDP front-end, (b) NDP back-end, and (c)
result handler.

NDP back-end, and Result Handler. Only the NDP back-end needs to be customized for different
operations. The front-end and the results handler are reusable parts of the infrastructure. In the
following sections, we provide an in-depth overview of each stage’s functionality, followed by a
discussion of the microarchitecture required to implement this processing pipeline in hardware.

3.3.1 NDP Front-End. After receiving an NDP_CALL, the engine proceeds to the first stage, which is
processing the VID-table to identify the transactionally-consistent record versions that are visibile
to the call, extracting the record data, and forwarding it to the NDP back-end stage. This operation
necessitates the use of several modules, as shown in Fig. 5-(a):
VID processing. This module extracts recID entries from the VID-mapping table ( 1○) and forwards
them to the visibility checking module ( 2○). Given that each recID can be handled independently,
parallel execution of the first stage is possible.
Visibility checking. This module computes the transactionally consistent snapshot of the record
version timestamp to determine whether the record belongs to the NDP_CALL transactional. Algo-
rithm 1 shows the module functionality, which begins by resolving the logical recID ( 3○). Following
that, it requests the Visibility Information field (visInfo) from the record header using the record
format parser module ( 5○). Then, it extracts and compares the creation and invalidation times of
each record against the transactional timestamp (txID). If the record belongs to the called transac-
tional timestamp, it forwards the physical record address to the record format parser ( 7○). If not,
the module extracts predecessor information from the record’s visInfo (i.e., new recID) to consider
whether an older version of the record might be visible in the current NDP transaction, and repeats
the process. In this manner, records are examined from newest-to-oldest to determine the most
recent version current for this NDP_CALL.
Record address resolver. This module resolves recID and calculates the physical record address. As
outlined in Algorithm 1, the module begins by extracting the lpn and slot number of the recID. Then,
it translates the logical page number into a physical page number (ppn) by using the L2P-mapping
table. Afterward, it extracts the line pointer (linePtr) of the corresponding recID by passing the ppn
and slot number to the page layout accessor module ( 4○). The module then calculates the physical
record address based on the obtained linePtr.
Record format parser. This module is responsible for in-situ record data extraction and interpre-
tation. It achieves this by extracting the visInfo from the record header ( 6○) using the getVisInfo()
function. In addition, it extracts the attributes ( 8○) from the record body and forwards them to the
NDP back-end ( 9○) using the getAttribute() function, based on the data format information. The
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Algorithm 1: Pseudo-code for visibility checking and record address resolver.
Function visibilityCheck (recID, txID)

recordAddress = getRecordAddr(recID);
visInfo = getVisInfo(recordAddress);
creation = visInfo → tx_create;
invalidation = visInfo→ tx_inval;
if ( txID ≥ creation && txID ≤ invalidation) then

return TRUE;
else

newRecID = visInfo→ predecessor;
if (newRecID == NULL) then

return FALSE;
else

visibilityCheck(newRecID, txID);
end

end
end
Function getRecordAddr (recID)

ppn = translate_L2P(recID → lpn);
linePtr = getLinePointer(ppn, recID→ slot);
recordAddr = addressCalculator(ppn, linePtr);
return recordAddr;

end
Function addressCalculator (ppn, linePtr)

pageOffset = ppn × PAGE_SIZE;
recordAddr = pageOffset + linePtr→ recordOffset;
return recordAddr;

end

getVisInfo() and getAttribute() functions enable NDP-engine to extract visInfo and attribute(s) from
the record according to record format (c.f. Section 3.2.1).
Page layout accessor. This module enables the NDP-engine to interpret the database page by
reading the record header (getRecordHeader) and data (getRecordData) by using the physical address
of the record. In addition, it extracts line pointer (getLinePointer) from the page header by using ppn
and slot number.
Preloader. This module is designed to improve the performance of the NDP-engine by preloading
(prefetching) data from the storage module to local scratch-pad memories for each NDP PE, thereby
mitigating NVM access latencies. Since the page layout and record format are known to the NDP
engine, the preloader module can accurately locate the relevant information or record that needs
to be accessed next. In addition, the module is capable of preloading database pages, as well as the
L2P-mapping and VID-mapping tables. This allows the loading of larger data sets with a single
request to the storage module as efficient long-burst data transfers (More details on exploiting the
preloader is presented in Section 3.3.4).

3.3.2 NDP Back-End. This stage is responsible for actually executing the offloaded operations on
the record data, after the prior stages ensured transactional consistency and interpreted the actual in-
storage data layouts to extract the parsed attribute data. In DANSEN, the NDP operations can range
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from simple aggregation tasks to more complex data analytic tasks such as ML inference. As shown
in Fig. 5-(b), the back-end stage is structured in two steps. In the first step, the NDP-engine applies
filter criteria provided by the NDP_CALL. Filtering can be applied to single or multiple attributes
and is implemented through conditional “if” statements in the software-programmable front-end.
In the second step, the NDP-operation is either executed directly in the software-programmable
front-end (e.g., simple aggregation operations as described in Section 3.1.5), or passed on to the
NDP-UserDefined module for processing later in the pipeline.

3.3.3 Result Handler. The result handler stage is responsible for processing the output generated
by the NDP back-end so that it can be returned to the software database. If only a single scalar
value has to be returned (such as an aggregation result), a hardware register is used to pass it
back along with the current NDP_STATUS value to the host. Composite results requiring more
space are written to a pre-allocated region of on-device storage. The memory range to be used
for this was set by software-side DBMS, and passed along with the NDP_CALL. The software-side
DBMS efficiently allocates sufficient memory on the storage module to accommodate the maximum
possible generated result. The generated results are stored as a vector, eliminating the necessity for
a page format, and are transferred back to the host where they are interpreted and converted into
the actual record format by the software-side DBMS.

3.3.4 NDP-Engine Microarchitecture. As shown in Fig. 6-(a), the heart of DANSEN is a dynamic
elastic pipeline microarchitecture, which is beneficial both for performance, as well for extensibility
and flexibility reasons. For the latter, the pipeline employs an array of easily reprogrammable
soft-core CPUs in the front-end to keep up with advances on the DBMS software side, while the
latter stages employ hardwired logic for high performance.
In the following section, we provide a detailed explanation of the microarchitecture of the

NDP-engine internal modules, including the soft-core array and the result handler.
NDP-engine communication. The engine is equipped with two communication infrastructures,
namely external and internal communication. External communication refers to the communication
that occurs between the engine and the storage devices, and to the host-side DBMS, and are realized
via memory-mapped I/O interfaces as shown in Fig 6-(a) by the data bus and control bus. The data
bus enables the engine to access and store data on the storage module, while the control bus allows
the DBMS to manage the soft-cores and result handlers using the PCIe interface. Internal module
communication, on the other hand, refers to the communication between pipeline stages and is
provided via streaming interfaces.
Soft-core integration. The first stage of the DANSEN NDP pipeline involves the processing of
recIDs and the extraction of record data (attributes). Since the software-side of DANSEN, namely a
modified PostgreSQL DBMS was also under heavy development simultaneously with the hardware
side, the required hardware-software interface flexibility would have been difficult to achieve using
hardwired functions on the FPGA. As a solution, software-programmable processing elements
(PE) were used for the first stages of the hardware NDP pipeline in the form of customized soft
processor cores.
The selection of a suitable soft-core faced the somewhat unusual challenge in that the main

design goals were small size (as multiple cores are required), high performance on FPGAs (which
ruled out many ASIC-optimized cores), and support for 64b addressing (to keep up with data
working sets larger than 4 GiB). The design choices for addressing these requirements are discussed
in Section 4.1.1.

For integration into the processing pipeline, we have wrapped the core with a control unit, local
memories, control and data interfaces, and a preloader module, as shown in Fig. 6-(b). The control
unit is responsible for managing the soft-core by initiating its activation upon receipt of a start
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Fig. 6. System-on-Chip architecture of NDP-engine pipeline (a) including soft-core arrays (b), NDP-
UserDefined, and result handler (c).

signal from the host. In addition, it provides memory-mapped registers that enable the core to
indicate the completion of the program by writing a status value to them. When the operation
executing on a soft-core PE is completed, the control unit generates an interrupt to signal the
host. The control interface gives control over the core by allowing the software-side DBMS to set
controlling registers and load new PE firmware through the PCIe bus. The data interfaces realize
memory-mapped I/O and streaming accesses. The former enables the core to access data (such as
database pages and records) from the entire device-side storage module.

The latter allows the core to forward data (such as extracted attributes from transaction-visible
records) to the NDP-UserDefined module for hardware-accelerated processing. Local memories
provide instructions and scratchpad data for the core and are mapped into the memory space of
the soft-core. The instruction memory is connected to the control interface, which enables the
loading of binary firmware into the PE under host control. The preloader is a custom DMA engine
that moves data from the storage module to the scratchpad memory and back. It has a control
interface, a source interface for reading from the storage module, and a sink interface for writing to
the scratchpad memory, which is also mapped into the core address space. For each DMA transfer,
the core is required to provide the source and sink addresses, as well as the data length. Using
the hardwired preloader is considerably more efficient than using soft-core instructions for data
transfers, as discussed in Section 4.2.2.
Result handler module. The module, as shown in Fig. 6-(c), consists of three sub-modules, namely
organizer, packer, and control unit. The organizer re-organizes and changes the endianness of the
generated results. The packer packs received data packets via the streaming interface (AXI-stream)
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into memory-mapped packets (AXI-MM) and stores them on the storage module in an address range
pre-allocated by the DBMS. The control unit manages controlling registers, such as the address of
the pre-allocated memory, and triggers an interrupt signal upon completion of the assigned task.

3.3.5 Execution Pipeline. Following the NDP invocation, the initial step involves loading binary
firmware into the instruction memory of the soft-core and setting the controlling registers on the
soft-core(s) and result handler module via the NDP_CALL. This step triggers the execution of the
NDP-operation based on their designated tasks (i.e., NDP-operation as described in Section 3.2.1).
DANSEN exploits not just pipeline parallelism in its NDP architecture. The front-end stage actually
consists of an array of soft-core PEs that operate in parallel. To this end, the VID-mapping table is
divided into equal-sized partitions and distributed among the soft-cores by the DBMS-side storage
manager. This task distribution enables the DBMS to control the level of parallelization. Upon
completely processing an assigned VID-mapping table partition, a soft-core PE raises interrupt
signals to notify the host. Finally, the result handler generates an interrupt signal after storing all
the generated results from the NDP back-end stage. Note that the resulting architecture truly is a
dynamic elastic pipeline, as the front- and back-ends may progress at different throughput rates.

3.4 Timing Model
For the later discussion of the timing behavior of the DANSEN system, we now introduce a model
that covers all of the relevant parameters. The execution time for an NDP_CALL is measured from
the moment the DBMS invokes the call, to the point when it receives the “completed” response. This
elapsed time, as shown in Eq. (1), includes the time required for DBMS to launch the call (tNDP-setup),
perform the NDP-operation on the NDP-engine (tNDP-engine), and to actually transform the raw
data result written by the result handler stage to the pre-allocated NVM storage memory range
into actual database records (tNDP-teardown). Note that the latter is a software-side operation, as
the DANSEN NDP engine cannot alter the DBMS state directly.

Prior to invoking the NDP operation, as shown in Eq. (2), the software-side DBMS prepares the
VID-mapping table (tVID) and propagates the shared-state buffer onto the device (tpropagation)
using data-commands (c.f. Section 3.2.2). After executing the operation, as shown in Eq. (3), the
DBMS proceeds to retrieve the result from pre-allocated memory on the storage module (c.f.
Section 3.3.3) and transfers it to a database buffer using data-commands (ttransfer). Subsequently,
the software-side DBMS then interprets the raw result data blobs and creates the corresponding
actual DBMS records (tformat). These different steps contribute to the following timing, which will
be further broken down in the next paragraphs:

tNDP = tNDP-setup + tNDP-engine + tNDP-teardown (1)

tNDP-setup = tVID + tpropagation (2)

tNDP-teardown = ttransfer + tformat (3)
tNDP-engine. The total execution time for processing an NDP_CALL, as shown in Eq. (4), includes
the time required to start the NDP-engine (tinvoc), in addition to the longest processing time
required by any front-end soft-core PE 𝑛 for completing its assigned VID-mapping table partition
VIDpart(𝑛), as well as the latency of the second (S2) and third (S3) stages.

tNDP-engine = tinvoc + max
𝑛∈𝑐𝑜𝑟𝑒𝑠

{tcore(n)} + tS2 + tS3 (4)

The execution time of each soft-core Eq. (5) is the sum of the latencies to process a recID (tproc)
and visibility checking (tvis), and the latency to extract record data (text) if the record belongs to
the current NDP_CALL transaction. The probability that a record belongs to the current transaction
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(Pvis) is determined by the likelihood of it being found in the current version (P1) and its predecessor
versions (P2, P3, ..., Pn).

tcore(n) =
∑︁

𝑟 ∈VIDpart(n)

(
tproc(r) + tvis(r) + Pvis × text(r)

)
(5)

Pvis = P1 +
M∑︁
m=2

(
Pm ×

m-1∏
n=1

(
1 − Pn

) )
The average latency for the visibility checking of a record is shown in Eq. (6). The duration of each
visibility checking operation is determined by the likelihood P1 of finding a visible record in the
current version vs. the probability 1 − P1 of having to recursively check its predecessor (𝑟 → pred)
creation and invalidation times. Every visibility check requires the address resolution (tar) of a
physical record address and processing of the actual visibility information (tvisInfo).

tvis(r) = P1 × (tar + tvisInfo) + (1 − P1) × tvis(r→pred) (6)

The latency between the NDP-engine and storage module is part of the timing model (i.e., tproc, tar,
tvisInfo, and text) as detailed above and in Section 3.3.1. An increase in this latency directly impacts
the overall execution time, thereby reducing the utilized bandwidth. However, quantifying this
impact precisely is challenging due to the differing interpretations of bandwidth from the database
and hardware perspectives. This is especially true, considering the impact of read-amplification
phenomena in multi-versioning systems, when the NDP engine must retrieve small, randomly
distributed data segments in addition to the actual record data. For example, if a record version
does not belong to the NDP transactional snapshot, the engine must check its predecessor records
in storage to determine the correct version. This requires additional accesses to the storage module
for address resolution (tar) and visibility information extraction of the predecessor record (tvisInfo).
As discussed later in Section 4.2 Experiment 4, the preloader mitigates the latency between the
NDP engine and storage, and makes NDP execution times robust against longer NVM latencies.

4 Evaluation
This section evaluates the DANSEN system. In addition to benchmarking specific components of the
system, we also perform end-to-end measurements for two NDP data analytics use-cases, namely
scalar aggregation and multi-result ML inference.

4.1 Experimental Setup
Our experimental NDP-capable smart/computational storage system consists of two key compo-
nents: The FPGA providing the compute capabilities, as well as the host and memory interfaces, and
the actual storage. Our system is aiming at using modern byte-addressable storage-class non-volatile
memory (NVM). With the demise of Intel Optane [24], such devices are no longer commercially
available. We thus rely on emulating the characteristics of NVM that are relevant for DANSEN
on the entire conventional DDR4-SDRAM, using NVMulator [40], on the FPGA. NVMulator is
an open-source hardware module for FPGAs, which emulates NVM access characteristics by a
controlled slow-down of the underlying DRAM used as actual storage.

We have realized this prototype storage on the AMD / Xilinx Alveo U280 FPGA (AU280) board,
which features an UltraScale+-cass FPGA with in-package HBM that uses a 16-lane PCIe Gen3 host
interface, along with two independently accessible banks of 16GiB DDR4-SDRAM each, realized as
DIMMs. The system-on-chip on the FPGA is created and managed using the high-performance
TaPaSCo [29] framework.
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Table 1. Soft-core configurations examined for the NDP front-end PEs and Stage 1 execution times (single
core and 16-core array)

Configuration
(MicroBlaze)

Pipeline
structure

Cache
specification

Functional units
Fmax
(MHz)

Exec. time (s)
1 core

Exec. time (s)
16 cores

Microcontroller
preset

3-stage, 64bit D$: none
I$: none

IntMult32 390 8.80 0.91

Minimum area 5-stage, 64bit D$: none
I$: none

none 380 14.67 1.02

Real-time
preset

5-stage, 64bit D$: 8KB, 32B
I$: none

IntMult32, IntDiv 283.3 5.59 0.51

Application
preset

5-stage, 64bit D$: 8KB, 32B
I$: none

IntMult64, IntDiv,
FPU-basic

200 6.24 0.54

Maximum
performance

5-stage, 64bit D$: 16KB, 64B
I$: none

IntMult64, IntDiv,
FPU-extended

205 4.90 0.42

Orca (RISC-V) 5-stage, 32bit D$: 32KB, 32B
I$: 32KB, 32B

none 300 3.94 0.33

To reflect the trend to use ARM-based processors in modern data centers, e.g., Amazon’s use
of their own Graviton CPUs, or Ampere Altra CPUs used in Microsoft’s Azure cloud, we use the
same ARM Neoverse N1 cores that are also used in Google’s TAU T2a cloud platforms for our host
machine.

Our host consists of a four-core ARM Neoverse N1 System Development Platform (N1-SDP) [3]
with 16 GiB of RAM that uses Linux to run the software-side DBMS, namely PostgreSQL 12 that
has been modified for NDP operation as described above.
For our NVM emulation, we disregard low-level device characteristics such as reliability, error

rates, and thermal buildup, and focus exclusively on timing behavior. To reflect a wider spectrum
of future device timings and study their impact on the DANSEN architecture, we have configured
NVMulator with three timing sets based on the published numbers in [15, 24, 36, 43]. From these
prior studies, we selected fast-case (r/w: 305ns/100ns),medium-case (r/w: 350ns/170ns), and worst-case
(r/w: 350ns/800ns) timings that have been observed in NVM systems such as Optane DC.

Unlike traditional smart SSDs that use page-addressed NAND Flash, the emulator mimics byte-
addressable NVM types like Intel Optane DC. However, it only imitates the timing of NVM technolo-
gies and does not explore how NVM’s basic device features, like error management or durability,
affect overall system performance. The emulation allows for easily testing different NVM types to
observe their effect on performance and leveraging FPGA as a robust computing element.

Before presenting the results, two key system components, namely the CPU cores for the software-
programmable front-end PEs, as well as the microarchitectures of the hardwired PEs used in the
NDP back-end for the two data analytics use-cases, will be discussed. Furthermore, we will also
examine the workload and the system configuration in greater detail.

4.1.1 Soft-Core Selection and Configuration. As described above, our architecture relies on having
flexible software-programmable processing in the DBMS-facing NDP front-end. Here, we discuss
the various core options we evaluated. As already discussed in [41] and highlighted by our own
experiments below, the choice of core and configuration parameters can have a major impact on
performance.

Initially, we focused on cores using the open RISC-V architecture as our front-end PEs. However,
it quickly turned out that the 64b cores available in open-source were all targeted at ASICs, and
did not achieve high performance on FPGAs. Thus, we switched to the proprietary AMD / Xilinx
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64b MicroBlaze core, which is optimized for FPGAs and has a plethora of parameters to tune it for
specific applications. We still believe that there is much potential for FPGA-optimized RISC-V cores,
though, and have evaluated the 32b version of such a processor, namely the Orca RISC-V core.
MicroBlaze. MicroBlaze is an IP core developed by AMD / Xilinx that offers a wide range of
parameters for synthesis. To determine the optimal configurations for our specific application,
we conducted an evaluation of various possibilities based on the Xilinx reference guide [23].
We carefully selected five different configurations for our application, as shown in Table 1, and
integrated each of these cores into our proposed NDP-engine, allowing end-to-end benchmarking.
For this broad experiment, we limited the front-end PE array to 16 cores. Note that it is possible
using very careful manual tuning to exceed that number, we went to that effort for our final system
configuration (Section 4.1.3).

To have a fair comparison between different MicroBlaze configurations, we execute a typical NDP
use-case on each core, looking at the complete processing required for a single record, identified by
its recID. The use-case consists of a query on a five-column table with small attribute sizes, four
integers and a variable-length field per record, on a data set of three million records. The storage
access pattern occurring during the visibility checking process and interpretation of the NSM page
format containing this single record is mostly random (pointer-chasing), and of low processing
intensity, as only a small volume of data is actually evaluated per record.
The query should return the sum of all entries in the first table column. The firmware for the

MicroBlaze cores was compiled with the -O3 compiler optimization. The reported time in the last
two columns of Table 1 corresponds to the tNDP-engine of Eq. 4, since the tinvoc was negligible (a
few milliseconds) compared to the core execution time.

Our evaluation shows that configurations achieving a high clock frequency do not necessarily lead
to a significant end-to-end speedups. For DANSEN, configuring the 64b MicroBlaze (MicroBlaze64)
for Maximum Performance resulted in the fastest application-level execution time.
RISC-V. As discussed above, we did make an effort to include an open-source core that would
enable easier experimentation with possible custom instructions for NDP acceleration, and thus
considered a RISC-V-based processor. Among various RISC-V cores, the Orca RISC-V core stands
out due to its high performance [20]. Orca is a five-stage 32-bit in-order RISC-V core designed to
operate on FPGA [22]. In our evaluation, we replicated the same scenario as the one for MicroBlaze,
and found that the Orca core actually achieved the fastest execution time. However, the main
drawback of the Orca core is its limited address space of 32b, which makes it unsuitable for a
potential “big data” DBMS workload.

4.1.2 NDP Accelerators for Data Analytics Use-Cases. The DANSEN on-device architecture is highly
flexible and allows the easy insertion of NDP accelerators for application-specific data analytics
operations between the front-end and the result handler stages, which are always reusable.

An example of such an accelerator is the inference in Sum-Product Networks (SPNs), a probabilis-
tic graphical ML model that can express uncertainty over its output. SPNs have been successfully
applied in various applications, including robotics [50], medical imaging [38], as well as in databases,
where an SPN is used for paper authorship prediction or social network link prediction [33]. SPNs
can also be used to accelerate the DBMS itself, namely by performing fast and accurate cardinality
estimation for query results [21].
SPNs are structured as a Directed Acyclic Graph (DAG) consisting of weighted sum-nodes,

product nodes, and nodes representing univariate distributions. In this work, we focus on a specific
flavor of SPNs so-called Mixed SPNs [31] where the SPN DAG evaluation begins with the leaf
node distribution, followed by propagation of values upward through the graph, performing
multiplication or weighted addition, until a final probability value is obtained at the root node.
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SPN software implementation. For the software baseline, we implemented the trained SPN in C
as a User Defined Function (UDF) in PostgreSQL, to be executed on the host. A UDF can be written
in C or C++ and loaded at run-time via the CREATE_FUNCTION command, taking combinations
of base (i.e., Integer and Float) or composite types as parameters, and returning individual result
records or result-record sets when used with an SQL query (SELECT ...).
SPN hardware implementation. The hardware accelerator for SPN inference in NDP was created
using the toolflow described in [39], which generates a fully pipelined accelerator from a description
of the SPN DAG structure in a simple, text-based format [32]. The generated hardwired accelerator
is connected to the rest of the NDP pipeline using AXI4 streams.

4.1.3 Benchmarking Setup. All experiments described later employ the following configuration for
both the workload and NDP smart storage.
Databaseworkload. In this paper, we evaluated the efficiency of theDANSEN system by performing
NDP-operations on theOrderline table fromCH-benCHmark benchmark [13]. Our evaluation utilizes
two types of queries, each with unique characteristics, to highlight different aspects of system
efficiency. The first query, referred to asQuery-SUM, aims at reducing the result set to a single scalar
result using aggregation functions such as SUM,MIN,MAX, and COUNT, which are commonly found
in analytical queries, especially in OLAP and HTAP benchmarks such as the CH-benCHmark and
TPC-H. The second query, referred to as Query-SPN, shows multi-valued results having additionally
computed attributes, and performs ML inference using a hardwired SPN accelerator integrated as
user-defined function in our NDP pipeline. These two queries leverage FPGA capabilities and the
system’s ability to support a diverse range of workloads.

As CH-benCHmark is not directly suitable for this ML operation, we have to extend it appropri-
ately. To this end, we repurpose and extend the variable length dist_info DBMS column to 80 bytes
(plus one byte for length) to feed the SPN, which expect an input of 80 8-bit feature values. The
modified column is randomly initialized by picking from a set of 10,000 precomputed input vectors,
each consisting of 80 byte-sized features to be analyzed by the SPN. In this manner, the SPN UDF
may be included in a SQL query (referred to later as Query-SPN) to retrieve inference results:

SELECT w_id , d_id , o_id , number , SPN(dist_info)
FROM OrderLine WHERE d_id <= 2;

For this query, both DBMS on the host and NDP-engine on the device iterate over the entire table to
determine visible records, and pass the byte array of each visible record containing the SPN-Sample
having “an identifier less than or equal to 2” into the SPN hardware and software implementations,
respectively. Then software implementation of the SPN computes the probability value based on
the inputs and passes it into the regular query processing flow. The hardware implementation, after
computing the probability value, passes the result to the result handler to be transferred back to
the regular query processing flow on host. This process is repeated for all visible records. This is an
example of an operation having a multi-row result.
For the second use-case, namely a query that returns just a single scalar result, we use the Q6

aggregation operation:

SELECT SUM(amount) AS revenue FROM OrderLine
WHERE '2000 -01 -01' <= delivery_d AND delivery_d < '2022 -01 -01'
AND 1 < quantity AND quantity <= 100000;

In this query, which wewill refer to asQuery-SUM, we aggregate the amount column of theOrderLine
table and compute the revenue generated from orders with delivery dates between ’2000-01-01’
and ’2022-01-01’, and quantities between 1 and 100,000.
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Fig. 7. Layout of the DANSEN accelerator on the AU280 FPGA, showing the infrastructure components in (a)
and the individual PEs in (b). Note that the numbers indicate the individual soft-core CPUs.

Table 2. FPGA-resource available and utilization.

Module name LUTs Registers BRAM DSPs Fmax
(MHz)Available resources 1303680 2607360 2016 9024

DANSEN SoC 66.18% 32.39% 53.27% 8.82%
PCIe-controller 4.62% 2.94% 3.13% - 250

DMA-engine 0.88% 0.69% 0.74% - 250
300

Storage module
NVMulator

7.09% 4.59% 3.38% 0.07% 3000.55% 0.19% 0.42% -
NDP-engine

Single MicroBlaze64
SPN
Result-handler

53.09% 23.85% 45.78% 8.75%

1802.09% 0.69% 2.18% 0.14%
4.18% 2.52% - 5.87%
2.07% 0.22% - -

NDP hardware architecture configuration. The DANSEN hardware architecture can be flexibly
configured, with the number of soft-core PEs in the NDP front-end being a key parameter. We
conducted a thorough design space exploration, trading-off FPGA area (number of PE cores) with
maximal clock frequency to achieve the best wall-clock end-to-end performance.
With careful optimization, we were able to realize 20 MicroBlaze cores in the front-end array,

and fully use both of the two separate DRAM memory banks of the AU280 board, each with its
own NVM emulation logic. As can be seen in Fig. 7, this led to a very complex FPGA design that
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Table 3. A bandwidth comparison between NVMe SSD and NVMulator as pure storage using the FIO tool.

Storage Device Read (random) Write (random) Read (sequential) Write (sequential)
NVMe SSD 498 MiB/s 299 MiB/s 3181 MiB/s 1748 MiB/s

NVMulator (fast-case) 429 MiB/s 343 MiB/s 1162 MiB/s 1130 MiB/s
NVMulator (medium-case) 423 MiB/s 340 MiB/s 1112 MiB/s 1132 MiB/s
NVMulator (worst-case) 425 MiB/s 298 MiB/s 1103 MiB/s 1097 MiB/s

timing closure was difficult to achieve for. Subfigure (a) highlights the system-level interfaces
(MIG memory controller, NVM emulators, PCIe, DMA), subfigure (b) the NDP pipeline with its 20
front-end PEs, the SPN, and the result handler stages.

Detailed resource utilization data for each module in the design, which was created with AMD /
Xilinx Vitis 2022.2, is reported in Table 2.
Non-NDP Software Baseline. To evaluate the effectiveness of the DANSEN system, we compared
it against a traditional stack running PostgreSQL 12 (short: pgSQL) on a traditional storage device,
namely a 500 GiB Samsung 970 Pro SSD, which is a PCIe 3.0 NVMe SSD and commonly used as the
storage system in a commodity DBMS.
For comparability, we wanted to make sure that using our emulated NVM storage in “dumb”

(non-computational) mode has a similar performance to this traditional baseline, so that we only
show speedups achieved due to our NDP architecture, and not due to the use of potentially faster
storage memories (NVM vs. Flash), which would not be the point of this work.

To this end, we developed a simple Linux block device driver to access the emulated NVM on the
FPGA board from the host system as “dumb” storage, without any NDP capabilities. Then, we used
the Flexible I/O (FIO) [5] benchmarking tool to generate I/O traffic and measure the bandwidth of
our emulated storage and the commercial NVMe SSD. The FIO tool was configured to operate with
8 KiB pages, matching the NSM page size, and to generate a workload of 32 GiB, the maximum
capacity of the emulated hardware, across four threads, as the host has four CPU cores. For the
underlying filesystem, we used ext4.
As shown in Table 3 for different emulated NVM latencies, the performance of the DANSEN

storage when used in “dumb” mode closely tracks that of the commercial SSD for random accesses,
with the SSD being faster for sequential accesses. This is most likely due to it using internal full-
speed DRAM read-ahead/buffering for these cases, which is faster than our always slowed-down
DRAM mimicking NVM. Given these numbers, all of the performance benefits we show will be
due to our NDP, and not artificially fast storage.

To ensure realism, we limited the memory available to the host-side database to 4 GiB. Without
this limitation, the host-side DBMS would see an unrealistically large memory compared to the
storage capacity, which in our setup is limited by the 32 GiB DRAM-emulated NVM on the AU280
card. A production smart storage system using actual NVM would provide much larger storage
capacity, and thus would not need this workaround.

4.2 Results
In this section, we present a series of experiments conducted to evaluate the system performance
in a real-world application. The experiments are categorized into two kinds: system-level and
device-level experiments.

4.2.1 System-Level Experiments. We begin with system-level experiments that measure the I/O
throughput of the DBMS. Next, we proceed to analyze the impact of selectivity on the overall system
performance.
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Experiment 1: DBMS I/O throughput. The objective of this experiment is to examine the impact
ofDANSEN on the I/O throughput of the DBMS. For this purpose, we compared the I/O throughput of
the DBMS in normal and NDP modes while executing Query-SUM and Query-SPN of our benchmark
workload with a dataset of 150 million records. In this experiment, the NDP-engine is configured
to use 20 front-end PEs, with the preloader enabled. More detailed experiments regarding the
NDP-engine performance are presented in Section 4.2.2, including on-device storage throughput in
Experiment 5.

We begin by looking at the data transfer throughputs occurring between the PostgreSQL DBMS
on the host and the traditional (“dumb”) storage, and the DANSEN NDP-capable smart storage.
Fig. 8-(a) shows this comparison for the DANSEN and baseline systems while executing Query-SUM
over time. The execution of Query-SUM on DANSEN takes 7.6 seconds. However, the execution of
Query-SUM on the host takes 80.2 seconds as it involves loading database pages from the storage
device and processing them. During the execution of this query, the host CPU is under-utilized, as
it has to wait for I/O operations to the storage device. As shown in this figure, after ≈6 seconds, the
pgSQL begins to flush old pages to the storage, resulting in cache page contentions. In contrast, the
proposed approach processes data in close proximity to the storage, and does not require waiting
for I/O operations. Fig. 8-(c) shows the I/O throughput of the DANSEN system in detail for four
different NV-emulator access latencies. As shown in this figure, there is only a single write request
to pass-along & cache (at second 0 as explained in Section 3.1.2) modified data from the DBMS to
the NDP device before invoking the NDP operation, and one read request that carries the final result
back to the DBMS. Note that, due to preloading, our NDP processing performance is insensitive to
the selected NVM latencies.

Fig. 8-(b) shows a similar experiment forQuery-SPN. As shown in this figure, executingQuery-SPN
on PostgreSQL takes a longer time, as it requires loading more database pages from the storage
device (at second 16). In contrast, DANSEN again requires just the single write request to pass-along
& cache pages (at second 0) and one read request (at second ≈50) for reading the raw data result,
which now encompasses the separate ML inference results for all records processed, taking a total
of 3.2 GiB. This is transferred back to the host at a rate of 3.2 GiB/s. The I/O throughput of the
DANSEN system is shown in detail in Fig. 8-(d).

This experiment demonstrates that moving computation closer to the storage device significantly
reduces the volume of data that has to be transferred within the system, and that the transfers that
still need to occur can be performed at greater efficiency (higher throughputs). This behavior is
one of the key benefits of DANSEN, achieved by reducing the number of intermediate (abstraction)
layers between processing and storage.
Experiment 2: Impact of selectivity. In DBMS terminology, selectivity refers to the percentage of
records passing through filtering (e.g., the condition in a SELECT ... WHERE condition) forward to
further processing. In this experiment we consider the impact of different selectivities on traditional
DBMS and DANSEN. To this end, we vary the selectivity over the d_id attribute of the dataset. Fig. 9
shows end-to-end execution times for Query-SPN on a dataset of 150 million records, with different
selectivities ranging from 0% to 100%. We also show the impact of page buffer sizes by increasing
the host memory from 4 GiB to 16 GiB.

As expected, the dataset generally exceeds the capacity of the DBMS memory, which results in
longer execution times due to page accesses from slow storage in the baseline. The 0% selectivity
represents the raw scan and filter performance of both pgSQL and DANSEN. Thus, when increasing
the selectivity rate, more records meet the filter condition and undergo SPN processing, leading to
longer execution times due to the increased processing demands and the generation of more result
records, which affect both DANSEN and pgSQL. Host-only processing under pgSQL mandates
the transfer of all cold database pages from storage to main memory to determine which records
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Fig. 8. A comparison of DBMS I/O throughput for (a, c) Query-SUM and (b, d) Query-SPN between DANSEN
and PostgreSQL. Note that the smaller figures (c),(d) are zoomed-in views of the overall graphs (a),(b), showing
the negligible impact of increasing NVM delay on DANSEN performance.

to filter. This leads to increasing execution times of 92s in a 4 GiB scenario and 82s in a 16 GiB
scenario solely for the scan, filtering, and visibility checking.

At 100% selectivity (=all records actually processed), DANSEN still provides a noticeable reduction
in data transfers via the slow I/O bus, as it only returns the result-set of the SPN query, which is
smaller compared to transferring entire DB pages, including all attributes of the records, back to the
DBMS. In addition, the DANSEN system leverages its SPN hardware accelerator and the interleaved
transfers/processing enabled by the preloader module, both of which further improves the overall
execution times.
Note that when increasing the host memory from 4 GiB to 16 GiB, more pages can be buffered

in host memory, resulting in better execution times for pgSQL. However, as we target “Big Data”
settings, provisioning main memory to completely hold huge datasets including cold data is
generally uneconomical. Even when the main memory capacity is assumed to be at an unrealistically
high 1:2 ratio compared to the storage capacity, which is usually in the range of many terabytes
for commercial storage systems, DANSEN consistently outperforms pgSQL. This performance
improvement ranges from 12× in the 4 GiB setting and 10.7× in the 16 GiB setting at 0% selectivity
to 1.5× at 100% selectivity in both settings.
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Fig. 9. Impact of selectivity on the overall execution time.

4.2.2 NDP-device Experiments. The prior experiments focused on end-to-end performance and
host-device (storage or NDP) interactions. In the next paragraphs, we shift the discussion to a more
detailed view examining the impact of microarchitectural choices in the DANSEN NDP hardware,
such as the number of cores and our preloading scheme for data.
Experiment 3: Overall execution time. In this experiment, we compare the overall execution
time of Query-SUM and Query-SPN with the baseline. Note that this baseline execution time for
processing these queries includes the time to fetch the record data from the NVMe device and
process them in pgSQL. The execution time for DANSEN (more details in Section 3.4) consists of
tNDP-setup, tNDP-engine, and tNDP-teardown. Our evaluation shows that tNDP-setup (≈ 200 𝜇𝑠) and
tinvoc (≈ 30𝑚𝑠 for NDP engine using 20 cores) are negligible relative to the overall execution time.

DANSEN uses the term preloader to collectively refer to explicitly managed scratchpad memories
and the data transfer strategies for their use.
We examined the execution time of NDP-operations in two modes: with a preloader (With-

preloader) and without preloader (No-preloader). Fig. 10 shows the overall execution time for Query-
SUM (Fig. 10-a) and Query-SPN (Fig. 10-b) on the dataset sizes ranging from 30 million records
(≈5GiB) to 150 million records (≈25GiB), executing on 20 MicroBlaze64 cores. The greenish color
bars show the execution time without the preloader, while the pinkish ones show that with
the preloader. The diagonally hatched section of each bar on this figure indicates the database
overhead (TimeNDP-teardown). As shown in this figure, using the preloader in the proposed
approach improves execution time compared to the conventional NVMe-drive by 1.5× for Query-
SPN benchmark and 10.6× for Query-SUM with preloader enabled. As expected, the preloader
improves system performance by accessing NVM storage in longer, more efficient bursts, and
enables the NDP-engine to hide the NVM access latencies by moving data from/to storage to/from
scratch pad memories in a double-buffered manner, in parallel to processing.
Note that Fig. 10 shows each of the execution times for different emulated NVM latencies (of-

f/best/middle/worst), as explained in Section 4.1. Without the preloader, using slower NVM carries
a significant execution time penalty. With the preloader, execution times stay mostly independent
of increasing NVM latencies.
Experiment 4: Scalability. We build on the previous experiment to evaluate the NDP-engine
performance, now varying the number of active MicroBlaze64 cores in the first stage of the NDP
pipeline. Fig. 11 shows the NDP-engine execution time for different numbers of active cores, ranging
from 1 to 20, while processing the largest dataset (≈25 GiB). As expected in No-preloadermode, using
slower emulated NVM causes a longer execution time. However, enabling the preloader improves
NDP-engine execution time and mostly hides NVM access latency, resulting in a roughly similar
execution time for the four NVM latencies examined. Our evaluation indicates that other dataset
sizes have a similar behavior (omitted in figures for clarity). As shown in Fig. 11-(c), the speedup of
both queries is linear. This proves that increasing number of cores in the the NDP front-end results
in even higher execution time.
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Experiment 5: On-device throughput. To further investigate the NDP-engine performance,
we measure the on-device throughput of the NDP-engine while running Query-SUM and Query-SPN
on 20 MicroBlaze64 cores. Fig. 12 shows on-device read/write throughputs for the NDP-engine
executing these queries. We found that the on-device read throughput forQuery-SUM andQuery-SPN
are 4 GiB/s and 0.6 GiB/s, respectively. In addition, the on-device write throughput for Query-SPN is
≈0.07 GiB/s for storing the per-row SPN inference result vector, and for the Query-SUM is zero as it
does not write to the storage module at all and just computes a single scalar result.

An interesting question arises as to why the read throughput for Query-SPN is lower than that of
Query-SUM, given that they both process the same dataset. The reason for this difference lies in the
fact that the Query-SPN requires the extraction of more data from the record body, including the
primary key and SPN fields (16B keys, 80B SPN data). In contrast, the Query-SUM operation only
requires the filtering of 16B and forwarding of a single 8B value. In addition, during the execution
of the Query-SPN operation, the result for each row is continuously written to the storage module.
The Query-SPN example is thus representative of operations which are more computation intensive,
while Query-SUM with its very simple aggregation function is more I/O intensive.

The on-device throughput could be further increased by enhancing the level of parallelism in the
NDP front-end (c.f. Experiment 4). However, the current NDP engine configuration does not fully
utilize the internal bandwidth for two main reasons. First, the nature of the application, especially
the visibility-checking process, performs random memory accesses in a pointer-chasing-based
manner. This process, explained in Section 3.3.1 and considered in the timing model in Section 3.4,
involves multiple steps to find the visible record version, requiring at least four cache-line size (64B)
accesses to the emulated NVM per recID. These stages include retrieving recID, resolving the address,
extracting the linePtr, and reading visInfo from the record header. In addition, attribute extraction for
Query-SUM andQuery-SPN from the record body requires an additional 1 and 1-3 cache-line accesses,
respectively. Second, the irregular data access pattern to the emulated NVM lowers utilization, as
addresses are dynamically calculated at each stage during run time and cannot be well predicted.
In addition, each access currently passes through the Microblaze64’s local L1 system cache (c.f.
Section 4.1.1), followed by either direct access or via the preloader and scratchpad memory to the
emulated NVM. The preloader optimizes the efficiency of data handling by interleaving transfers

© 2024 ACM. This is the author’s version of the work. It is posted here for personal use only. Not for redistribution. The definitive
version was published in ACM Transactions on Reconfigurable Technology and Systems, Volume 2024, Issue April, DOI:
10.1145/3655625.



1:28 Tamimi, et al.

Final  version for the TC with 19 pages (decided to remove to have only two version in here in JF 08.08.2023 )

O
n-

de
vi

ce
 T

hr
ou

gh
pu

t [
M

iB
/s

]
O

n-
de

vi
ce

 T
hr

ou
gh

pu
t [

M
iB

/s
]

O
n-

de
vi

ce
 th

ro
ug

hp
ut

 [M
iB

/s
]

O
n-

de
vi

ce
 th

ro
ug

hp
ut

 [M
iB

/s
]

O
n-

de
vi

ce
 th

ro
ug

hp
ut

 [G
iB

/s
]

TRETS Version

TC Version

TC Version

O
n-

de
vi

ce
 th

ro
ug

hp
ut

 [M
iB

/s
]

O
n-

de
vi

ce
 th

ro
ug

hp
ut

 [M
iB

/s
]

Fig. 12. The on-device throughput of the NDP-engine for (a)Query-SUM and (b)Query-SPN, while processing
150 million records on 20 MicroBlaze64 cores in the NDP front-end across four emulated NVM latencies.

with computation and requesting larger data sizes (64 B - 4 KiB) for more efficient long burst
accesses.

4.3 Discussion
Based on the end-to-end and low-level evaluations presented in the prior sections, we can now
enter into some overarching discussion.
Potential for write transactions as NDP operations. DANSEN currently supports performing
read (analytical) operations as NDP in a transactionally consistent manner, namely by using
the latest visible record version on the device, in the presence of concurrent writing (update)
transactions on the host, without having to wait for a lock request to succeed. Extending DANSEN to
also allow NDP write (update) operations is possible, but becomes considerably more challenging,
as multiple writes to the same data may now occur concurrently on the host and NDP device,
leading to write/write conflicts. As a solution, handling write operations could be addressed by a
fast synchronization mechanism between the host and NDP device [9, 42]. We are looking forward
to the availability of CXL-capable hosts and FPGA boards to investigate the implementation of
these mechanisms.
Soft-core limitation. In Experiment 4, we observed that an increase in the number of parallel
active soft-cores in the NDP front-end results in a shorter execution time for the first stage.
However, Experiment 5 showed that the proposed NDP-engine only utilizes ≈4 GiB/s on-device
throughput in Query-SUM, which is somewhat disappointing considering that the current design
employs two memory controllers with a theoretical bandwidth of ≈38 GiB/s to the emulated
NVM. This inefficiency is most likely due to the random memory accesses and on-the-fly address
calculation performed in the pointer-chasing-based visibility checking algorithm (c.f. Section 4.2.2
last paragraph). While more cores could be used in the front-end to better hide the memory latencies,
the DANSEN design is already quite large (see Table 2) and barely meets timing even with three clock
domains. Thus, instantiating more MicroBlaze64 cores is infeasible. We are considering two options
to address this: First, replacing the MicroBlaze64 core with a more modern FPGA-optimized 64-bit
core based on Taiga/CVA5 [30], which can be configured to be smaller/faster than the MicroBlaze64.
Second, now that the DBMS-facing data structures and algorithms in the front-end have stabilized,
employing an optimized multi-threaded hardwired accelerator for the front-end functionality.
Applicability to different host DBMS / storage engines. The NSM layout we use for storage
pages in DANSEN is widely used in row-oriented relational DBMS, e.g., from Oracle and Microsoft.
Thus, our fundamental NDP architecture will be portable from the PostgreSQL we employed to
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these DBMS as well. However, NSM has a relatively poor cache locality and is thus suboptimal
high-performance analytical workloads. These are better handled by column-oriented storage
engines, using formats such as PAX [2]. To enable the use of DANSEN for DBMS using this approach,
changes in the DANSEN NDP front-end would be required, as it is the only part of the hardware that
directly interacts with database data structures and algorithms. However, the rest of the DANSEN
NDP pipeline could be used as-is.

In addition, existing database data layouts are designed to maximize cache efficiency for conven-
tional x86 and ARM CPUs and storage mediums such as Flash. Emerging computational storage
devices that utilize NVM raise a very relevant research topic regarding the development of spe-
cialized data layouts tailored for computational storage and NDP. Furthermore, in-storage data
transformations have the potential to decouple the data layouts employed in computational storage
from the applications running above, paving the way for multi-engine operations.
Future works. Our evaluations show that the DANSEN system is a promising computational
storage solution for database applications, with several research questions already planned for
future investigation:
. To what extent can computational storage support the processing of database updates au-
tonomously in update environments and hybrid workloads?

. What degree of parallelism, using either hardwired modules or smaller soft cores, in the NDP-
engine’s front-end would allow full internal bandwidth utilization in DANSEN?

. How can specialized data layouts for NVM-based computational storage improve NDP and enable
decoupled, multi-engine operations? And what level of hardware support is required?

5 Related Work
In this section, we will start by examining the concept of native storage. Then, we will focus on
prior work proposing the use of NDP to improve system performance, specifically within the
domain of database systems.

5.1 Native Storage
The traditional interfaces used for storage devices present a significant obstacle to the effective
implementation of Non-Volatile Memory (NVM) based Data Processing (NDP) approaches. This is
primarily because these interfaces lack transparency in exposing the underlying storage properties.
Both block device interfaces and file systems are designed with a focus on data transfers, specifically
block-based access, which hampers the seamless utilization of NVM features like byte-addressability
[11, 34]. The lightweight file systems proposed by [4, 28] offer improved storage management but
provide little advantage for NDP since they mimic a contiguous address space and depend on logical
addresses, which do not align well with the core principles of NDP.
On the other hand, the native storage solution allows the host application, such as database

systems, to directly interact with the physical storage, eliminating the complexity of intermediate
abstraction layers. This enables a more efficient exploitation of NVM features and enhances the
overall performance of NDP.

Previous studies on persistent storage have proposed various approaches to data processing on
raw Flash, including BlueDBM [25], NoFTL [19, 45], and CORFU [6]. Among these studies, both
BlueDBM and NoFTL have presented end-to-end systems.
BlueDBM adopts a cluster-based architecture within a distributed system, which facilitates

storage management and hardware acceleration for data processing on raw Flash, making it
suitable for a wide range of applications. An example of such an application is BlueCache [49],
which builds on BlueDBM and serves as a key-value storage engine.
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In contrast, NoFTL introduced a general native storage interface for host-based storage configu-
rations. This integration embeds deep physical storage management into the DBMS architecture.
The utilization of a native storage interface has shown performance improvements not only in
relational database systems [19] but also in key/value database systems [25]. Moreover, such an
approach is crucial for efficient data processing on storage and enables the exploitation of the
byte-addressability characteristic of NVM.

5.2 Near-Data Processing
Previous studies have proposed using NDP techniques to improve system performance. For instance,
[14, 26, 27] suggested offloading certain data processing tasks, such as scans and joins, to embed-
ded processors on a SmartSSD to enhance system performance. However, their methodology’s
applicability is constrained by its dependence on the current ARM processor architecture.
Another approach, called IBEX [47], explored the utilization of FPGAs as co-processors for

executing specific database operations within the storage system. Nevertheless, this approach faced
limitations due to the challenge of efficiently moving data and results to and from the FPGA.
Furthermore, these works have not fully capitalized on the unique features of NVM, such as

device-internal bandwidth, parallelism, and access latencies. To more fully exploit these aspects,
[45, 46] evaluated different NDP result set handling strategies, including result materialization and
re-use. In their study, the task distribution was partitioned between an ARM processor and an
FPGA operating in parallel. However, that work is closely tied to page-granularity NAND flash and
not fully applicable to the byte-addressable NVMs we examine here.

Lastly, it is essential to highlight that these studies primarily concentrated on read-only scenarios
with static datasets. However, modern DBMS are dealing with hybrid workloads that also include
data updates and writes. In this regard, FOEDUS [28] made an attempt to leverage NVM/DRAM
for managing cold/hot data and addressing modifying transactions on new hardware, resulting in
excellent scalability. Nevertheless, FOEDUS fell short of fully exploiting NVM characteristics, such
as byte-addressability, as it only utilized NVM technologies for page layout purposes.

In this work, we have addressed these challenges and combine the exploitation of NVM with het-
erogeneous NDP, using both flexible software running on a multi-core array with high-performance
fixed-function accelerators.

6 Conclusion
We introduce DANSEN, a comprehensive end-to-end system architecture that enables query pro-
cessing near storage. Within this system, we have developed a prototype storage, NDP-engine,
storage interface, and NDP-capable DBMS. Our experimental results demonstrate the significant
advantages of DANSEN over non-NDP PostgreSQL 12. With reduced data movement costs and
improved computational parallelism, DANSEN achieves up to an impressive 10.6× improvement
in end-to-end execution time while maintaining the transactional integrity of the database, even
when processing 150 million records that traditionally would carry a high data transfer effort.

Furthermore, our results highlight the effectiveness of the NDP-engine, which efficiently utilizes
the preloader to process queries near storage without the need for intervention, effectively hiding
the NVM access latency.
Beyond the immediate performance gains, our evaluation also underscores the potential of

DANSEN as a new computational storage solution for enhancing the performance of database
management systems across various applications. This work opens up new possibilities for designing
computational storage, capable not just of the analytical operations described here, but also able to
autonomously perform database updates in NDP.
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