
Graphtoy: Fast Software Simulation of
Applications for AMD’s AI Engines

Jonathan Strobl1[0000−0003−0442−7485],
Leonardo Solis-Vasquez1[0000−0001−6896−9879],

Yannick Lavan1[0000−0001−5309−4141], and Andreas Koch1[0000−0002−1164−3082]

Embedded Systems and Applications, Technical University of Darmstadt, Darmstadt,
Germany

Jonathan.Strobl@gmx.de, {solis, lavan, koch}@esa.tu-darmstadt.de

Abstract. This work1 presents Graphtoy, a coroutine-based compute
graph simulator built in C++20, which can be embedded into a tar-
get application for rapid step-by-step prototyping of graphs targeting
AMD’s AI Engines, as used in Versal FPGAs and Ryzen 7040 CPUs.
By using a molecular docking application as a case study, we demon-
strate: 1) how compute graphs developed using Graphtoy can be ported
to the AI Engines with no modifications to the graph structure, and 2)
that C++20 coroutines are well suited for simulating many-core systems
with complex inter-core communication schemes. Furthermore, our set
of molecular docking graphs ported to Graphtoy achieves an order-of-
magnitude increase in simulation speed compared to AMD’s AI Engine
graph simulators. The corresponding code is released as open source un-
der: https://github.com/esa-tu-darmstadt/graphtoy.

Keywords: Versal FPGA · AI-Engines · C++20 coroutines · prototyp-
ing · simulation · compute graphs · molecular docking.

1 Introduction

AI Engines (AIEs) are a new kind of compute element AMD has introduced
in its Versal series of FPGAs [6] and recently added to mobile CPUs, such as
its Ryzen AI 7040 processors. For the discussion here, we will focus on the use
of AIEs on the Versal platform. But the techniques are also applicable to the
processor-integrated units.

The AIEs consist of a parallel set of tiled Very Long Instruction Word (VLIW)
vector processors, providing a truly Multiple Instruction Multiple Data (MIMD)
processing model. These processors are connected through a configurable routing
fabric that enables stream-based communication between them, which makes the
architecture well suited for executing compute graphs or pipelines.

The AIE toolchain provided by AMD imposes a rigid development method-
ology when porting an application to AIE graphs. In particular, graphs must be
1 This is a pre-print version. The final version is available on the publisher

website.

https://github.com/esa-tu-darmstadt/graphtoy
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separated from the application’s host code, running on the conventional proces-
sor(s), while the entire application must be ported to the Versal SoC framework
(i.e., Vitis [4]) for testing the functional correctness across the conventional and
AIE portions of the code. This means that there is a large up-front porting effort
required before it is even possible to execute an AIE graph design in conjunction
with the host code for a particular application. Furthermore, AIE compile and
simulation times are often lengthy when compared to traditional software, and
debugging is again complicated due to the separation of host and AIE graph
code.

To tackle this, we propose an alternative approach to AIE graph prototyping:
instead of porting an application to the compute graph framework, a graph
simulator can be embedded into the application. For development and debugging
purposes, this allows the use of a traditional software-only compile and debug
flow, which will also be much faster and easier to use than the actual AIE tools.
Our solution is called Graphtoy and provides a fast architecture-independent
AIE compute graph simulator that heavily exploits C++20 coroutines in its
internal architecture.

Our contributions are summarized as follows:

– We present Graphtoy, our embeddable coroutine-based compute graph sim-
ulator built in C++20, and discuss its design, usage, and overall porting
methodology.

– We compare the structure of graphs implemented in Graphtoy and the AIE
framework.

– We benchmark Graphtoy’s performance against that of AMD’s AIE simu-
lators. For this purpose, we use a molecular docking application as a case
study.

The remainder of this paper is structured as follows: Section 2 compares our
work to previous studies. Section 3 describes in detail the architecture of the
Graphtoy compute graph simulator, while Section 4 shows how we use Graphtoy
to port a molecular docking application: first, to generic compute graphs; and
thereafter, to the actual AIEs. Finally, Section 5 concludes this paper with a
summary and outlook to future work.

2 Related Work

Other efforts to make AIEs easier to use exist. For instance, PyAIE [13] is a
Python-based programming framework that performs the following: 1) it enables
users to implement algorithms in Python instead of C/C++, and 2) it maps these
user-written functions into host code as well as to Versal compute units (PL,
AIEs) by automatically translating Python into C/C++ code. In contrast to
PyAIE, which is a high-level abstraction, Graphtoy does not perform automatic
code-generation but rather enables users to iterate more quickly on low-level
AIE kernel and graph designs, without having to rely on the vendor-provided
AIE toolchains and simulators. Moreover, Graphtoy is explicitly designed as a
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library to be integrated into pre-existing C++ codebases, and not as a framework
to write applications in from scratch.

Versal SoCs are currently examined with great interest for High Performance
Computing (HPC) applications, e.g., [7] leverages AIEs for accelerating atmo-
spheric advection computations. Our work aims to speed up and simplify the
development of compute graphs for such applications by decoupling graph design
from vendor-provided frameworks and boosting the simulation speed. Similarly
to the above work, we attempt to port an HPC application (namely, molecular
docking) to the AIEs, but with a focus on easy-to-use, rapid turnaround simu-
lation, instead of optimizing the performance of executing on actual hardware
AIEs.

3 The Graphtoy library

3.1 Design

Graphtoy uses C++20 coroutines [8] and a simple task scheduler to implement
cooperative multitasking, which enables the high-throughput simulation of a
multi-core system on a single host CPU thread without the overhead of actual
thread context switches. Listing 1.1 shows an example of a compute kernel im-
plemented in Graphtoy. Each kernel in a compute graph is represented by a
potentially infinitely-running coroutine, which can receive and emit data via an
arbitrary number of typed input and output streams. The rate at which data is
transferred via these streams is also arbitrary: a kernel coroutine can read from
and write to any of its connected streams at any point during its execution.� �

1 struct ExampleKernel: GtKernelBase {
2 ExampleKernel(GtContext *ctx): GtKernelBase(ctx) {}
3

4 GtKernelIoStream<int> *m_input1 = addIoStream<int>();
5 GtKernelIoStream<int> *m_input2 = addIoStream<int>();
6 GtKernelIoStream<int> *m_output = addIoStream<int>();
7

8 GtKernelCoro kernelMain() override {
9 while (true) {

10 int a = co_await m_input1->read();
11 int b = co_await m_input2->read();
12 co_await m_output->write(a + b);
13 }
14 }
15 }� �
Listing 1.1: Complete source code of a compute kernel implemented in Graphtoy.
This kernel reads integers from two input streams and writes their sums to an
output stream.

Internally, these streams are backed by multi-producer multi-consumer FI-
FOs with per-stream configurable sizes. When a stream read or write can not be
fulfilled immediately (because the FIFO is empty or full, respectively), the call-
ing kernel coroutine is suspended by saving its execution state to a pre-allocated
memory arena (the coroutine frame). Graphtoy’s scheduler can then resume
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another coroutine from its ready list. Once the condition that caused a kernel
coroutine to suspend is alleviated, the coroutine is placed on the scheduler’s
ready list for eventual resumption. The order in which pending coroutines are
resumed is unspecified, as Graphtoy does not implement any kind of scheduling
priority system.

Figure 1 indicates that Graphtoy stores the kernels of a graph and their
connections in a context object. This object must be reconstructed for each in-
vocation of a particular graph, as it also contains management information.
Examples of management information includes the kernel coroutine instances,
the scheduler’s ready list, and the input/output connections that push data into
and drain data out of the graph, respectively. As (re)construction of the context
can be performed very quickly, this requirement does not hamper the speed of
Graphtoy-based development flows.

C++ function

Graphtoy context

MemSrc

MemSrc

MemSrc

kernel

kernel

kernel

MemSink

MemSink

preproc
postproc

Fig. 1: Scheme of a simulated compute graph embedded into a plain C++ func-
tion using Graphtoy.

One particularity of Graphtoy is the way that graph execution is terminated:
there is no explicit termination condition, and the graph execution cannot be
terminated early. Instead, the scheduler continuously resumes coroutines until
its ready list is empty, at which point the simulation ends2. As a result, Graphtoy
executes a graph until all of its coroutines are halted and the graph can therefore
no longer make forward progress. This happens when a) all input data has been

2 C++20 coroutines can be destroyed cleanly whenever they are suspended, which
makes this graph termination scheme possible. Any local variables that are alive
within the coroutine at its point of destruction will be destroyed and deallocated as
well.
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1 WARNING: Graphtoy detected data stuck in one or more I/O buffers of kernel 4 (an instance

of 31Kernel_InterE_InterpolateEnergy).
2 => Input stream 2 (of type d) contains unprocessed data: 1 of 1 FIFO entries in use.
3 => Currently active coroutine frames in this kernel (frame trace), deepest last:
4 #1 in virtual graphtoy::GtKernelCoro Kernel_InterE_InterpolateEnergy::kernelMain() (./

processligand_graphtoy.cpp, line 611, col 60)
5 => Note: This kernel is likely the cause of the deadlock because none of its output

streams are blocked.� �
Listing 1.2: Example of Graphtoy’s deadlock detection trace (truncated). We
encountered this deadlock while implementing the Inter_E compute graph of the
molecular docking algorithms (detailed in Section 4 and Figure 4).

fully processed (i.e., all kernels are idle and blocked waiting for data), or b) the
graph encounters a deadlock (i.e., cyclic wait).

We considered but ultimately rejected adding an explicit termination call for
the following reason: if a graph is terminated when it can still make forward
progress, it has not fully processed all input data yet and the graph’s output
will be incorrect3. Conversely, once a graph has processed all input data, it can
no longer make forward progress and will terminate automatically anyway.

To ease graph debugging, Graphtoy detects deadlocks in the simulated graph
using a simple algorithm: if any stream FIFO still contains data after the com-
pletion of a graph’s execution, a deadlock likely occurred as some input data has
not been fully processed in that case. Conversely, if all FIFOs are empty when
the graph terminates, no deadlock occurred (assuming the simulated graph is
a DAG, which is not checked by Graphtoy4). Whenever a deadlock is detected,
Graphtoy prints debug information containing the state of all involved kernel
coroutines and FIFOs.

For this purpose, we implement a tracer that maintains a call stack for each
kernel coroutine as it suspends, resumes, and recurses into sub-coroutines. This is
necessary because the call stack of a C++20 coroutine is lost between suspension
and resumption, as only the coroutine’s immediate execution state is saved. Using
this information, Graphtoy can print the source location at which each involved
kernel is suspended, even if it is in a deeply nested stack of sub-coroutines.
Listing 1.2 shows an example of such a trace.

Other debugging tasks, such as single-stepping and placing breakpoints, can
be performed using a standard C++ debugger such as gdb (the GNU debugger).

Besides connections between kernels, Graphtoy also supports simulated stream-
based DMA, which can read data from a linear memory region (MemSrc) and
stream it into the compute graph, or take a stream of data from the graph and
write it out to memory (MemSink). This functionality is implemented as a pair

3 Due to the unspecified kernel scheduling order, the output might also be unpre-
dictable as some pending kernel iterations may or may not have been run yet at the
time of early graph termination.

4 Simulation of cyclic compute graphs is possible in Graphtoy, but may lead to dead-
locks not being detected when they occur.
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of helper kernels and emulates the AI Engines’ GMIO. Additionally, Graphtoy
supports basic packet routing (stream splitting, merging, and broadcasting), as
well as input overlap windows, which are also implemented using helper kernels
and coroutines.

3.2 Usage

In order to use Graphtoy, there are two prerequisites: 1) a C++ compiler sup-
porting coroutines, and 2) the addition of Graphtoy’s source files into the target
application project (i.e., an HPC program). Once this is done, the user can in-
crementally add compute kernels and graphs to the traditional application, as
depicted in Figure 1, and does not have to perform a “big bang” port to a new
tool flow and execution environment.

Graphtoy represents kernels as heap-allocated objects. As indicated in List-
ing 1.1, to create a new kernel, the user creates a class that derives publicly from
GtKernelBase. This class must provide a constructor taking a GtContext * as its first
argument, which in turn must be forwarded to the constructor of GtKernelBase.
The “contents” of the kernel are specified by overriding the GtKernelBase::kernelMain

() function, which is actual the kernel coroutine. I/O streams are instantiated as
needed within the kernel by using the GtKernelBase::addIoStream function template.
The three main characteristics of Graphtoy’s kernels are the following: 1) kernel
classes can be instantiated and added to graphs as often as desired. 2) Kernels
can be parameterized (analogously to runtime parameters in the AIE framework)
as well as preloaded with look-up tables, both by adding further arguments to
the kernel’s constructor. 3) As kernels are just regular C++ classes, they can be
templated if desired.

Once the kernel(s) have been defined, the actual compute graph can be con-
structed. On each invocation of the graph, a new GtContext object has to be
created, which can then be populated with its constituent kernels as well as
memory sources and sinks (including the definition of memory regions read by
the sources). Once incorporated into the context, all of these components can
be connected to each other via graph edges. Finally, the graph can be executed
and the results can be read from the memory sinks.

Listing 1.3 shows the source code of such a function, which contains and
simulates a simple one-kernel graph that adds two arrays of integers. It is im-
portant to note that the GtContext object cannot be reused once the graph has
been run. Instead, it is necessary to re-create the graph on every invocation, as
implemented in the example.

As graphs formulated using Graphtoy are completely encapsulated within
regular C++ functions, it is possible to easily replace pre-existing functions of
the target application – one at a time – with graph versions, without having to
change the application’s overall software architecture. This means that the user
retains a running application at all times during their graph prototyping effort.
Additionally, since Graphtoy kernels are regular C++ code, which is compiled
and linked together with the rest of the user application, it is possible to call
pre-existing library and helper functions from within those kernels.
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1 auto addIntsWithGraph(
2 std::span<const int> a,
3 std::span<const int> b)
4 {
5 GtContext ctx{};
6

7 auto& srcA = ctx.addKernel<GtMemStreamSource<int>>(a);
8 auto& srcB = ctx.addKernel<GtMemStreamSource<int>>(b);
9 auto& adder = ctx.addKernel<ExampleKernel>();

10 auto& sink = ctx.addKernel<GtMemStreamSink<int>>();
11

12 ctx.connect(srcA.output(), adder.m_input1);
13 ctx.connect(srcB.output(), adder.m_input2);
14 ctx.connect(adder.m_output, sink.input());
15

16 ctx.runToCompletion();
17

18 return sink.data();
19 }� �
Listing 1.3: Complete source code of a compute graph instantiation and
simulation using Graphtoy. This compute graph is based on the compute kernel
from Listing 1.1.

3.3 Porting Graphs from Graphtoy to the AI Engines

Up to this step, compute graphs written in Graphtoy are generic (target-independent).
While this level of description already is very helpful when incrementally mov-
ing over an application into a graph-parallel form, it is necessary to perform an
additional porting step in order to run them on physical hardware.

Therefore, once the user is satisfied with the functionality of the Graphtoy-
simulated compute graph, the user must modify these graphs to address two key
differences between Graphtoy and the actual AIEs. First, in Graphtoy, kernels
do not have to explicitly terminate. Instead, the execution of a graph stops when
all of its kernels are blocked. For the actual AIEs, kernels are terminated explic-
itly. Second, Graphtoy does not distinguish between different types of streams
between kernels, while the AIEs do (e.g., AXI4 streams, cascade accumulator
connections, and direct inter-tile local memory accesses). When targeting actual
AIE hardware, the nature of the streams must be specified.

In general, this refinement process starts with: 1) copying the kernel source
code (kernelMain function) into the AIE project, and naming it appropriately. 2)
The kernel’s I/O streams and runtime parameters must be added to its function
signature, choosing an appropriate I/O mechanism for each one. 3) All I/O
operations in the kernel, which use co_await in Graphtoy, must be replaced with
the corresponding AIE intrinsics, i.e., readincr, writeincr, and asynchronous window
or buffer lock/unlock5. 4) For the explicit kernel termination used by the AIEs,

5 It is important to note that the I/O windows or buffers must be asynchronous to
allow the kernel itself to acquire and release them when desired, which is not possible
with their synchronous versions, as those are managed automatically between kernel
invocations by the AIE framework.
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a termination condition must be added to the kernel’s main loop. E.g., a sentinel
value to be pushed through the entire graph after all data has been processed.
5) The kernels must be connected appropriately in a graph class, with the AIE
window and buffer I/O ports being marked as asynchronous at connection time.
6) The entire graph can be started, generally with an iteration count of one for
a single execution.

The addition of manual looping and termination to the kernels is necessary
because the AIE framework only supports running a graph either indefinitely,
or for a fixed number of iterations that is predetermined (and ideally equal) for
all of its kernels [3]. Graphtoy does not impose such a restriction and allows
kernel repetition counts to be determined dynamically at runtime. In fact, with
Graphtoy, it is possible to write kernels with arbitrary control flow, including
non-repeating kernels, dynamic dispatch, and kernels with multiple main loops.
By manually implementing kernel repetition and termination for the AIEs and
setting an iteration count of one, it is possible to replicate Graphtoy’s more
generic behavior on the actual platform. To some extent, some of these transfor-
mations could be automated, either by suitable C++ abstractions or external
tooling. However, we believe that even in its current form, Graphtoy is an ex-
tremely useful tool due to the significantly improved development productivity
we have observed, compared to using the AIE tools directly.

4 Case Study: Molecular Docking

As a sample use-case of Graphtoy, we discuss some of the steps required when
porting a full-scale HPC scientific computing code to the AIE platform. Note that
this use-case is not intended for benchmarking AIE hardware performance, as
we have observed a number of issues with the AMD AIE toolchain that currently
lead to the binaries being non-functional in AIE native mode. However, all of the
graphs we discuss below do run correctly when executed in the AMD toolchain’s
x86 simulation mode.

Our use-case is AutoDock, a widely used molecular docking application that
can employ, among others, a genetic algorithm to predict a chemical ligand’s
orientation and conformation as it docks to a biological receptor [9]. A real
world application for AutoDock is drug discovery, where the interactions of many
chemical compounds, e.g., with a bacterial or viral surface, is examined.

The core algorithms in AutoDock have been previously ported to run on
GPUs [10], FPGAs [12], and even vector processors [11]. This part of our work
explores the process of porting a mini-version of AutoDock to the AIE architec-
ture, using Graphtoy as a rapid-turnaround prototyping tool.

4.1 Algorithm Overview

The mini-version of AutoDock that we employ for our porting efforts implements
only the genetic algorithm variant. Based on that, genotypes produced by the
genetic algorithm encode the ligand’s bond rotation angles, as well as its absolute
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position and orientation in space. The fitness function is the ligand conforma-
tion’s energy, which must be minimized for a high quality docking (ligand and
receptor molecules “fit” well together in the computed conformation).

Figure 2 shows the phases of the core docking algorithm. First, new genotypes
(solution representations) are created via the genetic algorithm and a local search
heuristic. Then, the genotype is interpreted to derive the conformation of the
ligand in space, which in turn, is used to compute the intramolecular (atom
interactions within the ligand) and intermolecular (between ligand and receptor
atoms) energies. During these computations, the ligand is represented as a list of
atoms (each with type, coordinates, and charge). On the other hand, the receptor
is modeled as a spatial grid with smoothing via trilinear interpolation.

Phase 1
Genetic algorithm
and local search

Phase 2
Conformation

change
change_conform

Phase 3
Intramolecular

energy
Intra_E

Phase 4
Intermolecular

energy
Inter_E

Fig. 2: Pipeline processing in our molecular docking case study.

4.2 Porting Methodology

To port this mini-version of AutoDock to the AIE array, we first include the
Graphtoy library into the AutoDock source code. Then, by using Graphtoy,
we develop compute graphs for three out of the four core docking algorithms:
the conformation change, as well as the two energy calculation functions. In
particular, we do not attempt to port the genetic algorithm nor the local search
portions to the AIE array, as their code is branch intensive, rather than compute
focused, making them more suitable for execution on a CPU core than on a graph
processing array.

The conformation change algorithm (change_conform) needs to rotate each of the
ligand atoms around a varying number of rotational bonds to determine their
final positions. For each ligand atom, the order of rotations must remain the
same, while all of these atoms are also streamed into and out of the AIE array
in order. To keep the design of the compute graph simple, we use a dynamic
pipelining approach.
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Figure 3 illustrates the corresponding graph including its dynamic pipeline,
which is based on a management kernel (Build rotate input) that determines the
number of rotation operations that each one of a chain of downstream com-
pute kernels (Partial rotation) should perform on atoms as they pass through the
pipeline. Atom data is passed from one pipeline kernel to the next using asyn-
chronous window I/O (win).

In order to evenly distribute workload in change_conform, the above number
of rotations performed by each pipeline kernel varies for each processed atom.
The genotype data is uploaded via global memory I/O (GMIO) and broadcast
to all pipeline kernels once the graph is invoked, which requires only a single
DMA channel, as the broadcast operation happens within the AIE array. Each
pipeline kernel stores a copy of the genotype in local SRAM for fast lookup of
the required bond rotation angles as atoms subsequently pass through.

[atoms in]

Build rotate input

Partial rotation 1

Partial rotation n

General rotation / global move

[atoms out]

[rotbonds]

[genotype]

GMIO

win

win

win

GMIO

GMIO

GMIO

GMIO

Fig. 3: change_conform compute graph. The dashed edge represents a chain of n
identical partial rotation kernels.

The intramolecular energy calculation function (Intra_E) computes the distance-
dependent energy contribution of pairs of atoms within the ligand. To speed this
up, the algorithm uses a precomputed table that indicates which atom pairs
must be processed and which can be skipped in the calculations. Transforming
this algorithm into a compute graph was relatively straightforward, as it is suit-
able for static pipelining. The graph takes the precomputed atom pair table as
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input, and returns the final energy values via a runtime parameter (RTP) after
they have been accumulated at the end of the pipeline. Additionally, the ligand-
atoms’ data is uploaded into one of the kernels’ local SRAM using another input
stream.

The main challenge of porting Intra_E was the large number of look-up tables
that must be kept within the graph. To address this, we partition the algorithm
into multiple kernels, so that none of these kernels requires more memory to
hold look-up tables than the maximum available on an AIE tile (i.e., 32KiB,
including stack and management data).

Finally, the intermolecular energy calculation function (Inter_E) computes the
energy contribution of the interactions between the ligand atoms and the recep-
tor. The resulting energy value is again returned to the host system via a runtime
parameter. Since the receptor is represented as a spatial grid, the algorithm has
to perform lookups in the grid (based on the atoms’ positions), leading to a
random memory access pattern.

This pattern is problematic because the AIE array lacks the ability to au-
tonomously perform random accesses on system DRAM [2], which means that
Inter_E cannot be fully implemented on the AIE array alone. To actually per-
form such DRAM accesses, we will use a separate HLS kernel executing on the
Programmable Logic (PL) of the Versal device, which we simulate by using a
host-side helper in the AIE port of the graph. In the hardware implementation,
this kernel will be connected to the rest of the graph using the programmable
logic I/O (PLIO) interfaces of the SoC. Figure 4 illustrates this host-side helper
as the DRAM reader (PL) kernel. In Graphtoy, modelling this HLS kernel does not
need any special handling, as indicated in Listing 1.4.

[atoms] Build atom data Generate DRAM addresses

DRAM reader (PL)

Interpolate energyAccumulate resultsCPU

GMIO win

win

winRTP

PLIO

PLIO

Fig. 4: Inter_E compute graph.

Once these three compute graphs are implemented and tested using Graph-
toy, we are able to port them to the AIEs with no changes to their overall
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1 template<typename T>
2 struct DramReader: GtKernelBase {
3 DramReader(GtContext *ctx, std::span<const T> mem):
4 GtKernelBase(ctx), m_memoryRegion(mem) {}
5

6 std::span<const T> m_memoryRegion;
7

8 GtKernelIoStream<uint32_t> * m_addrIn = addIoStream<uint32_t>();
9 GtKernelIoStream<T> * m_dataOut = addIoStream<T>();

10

11 GtKernelCoro kernelMain() override {
12 while (true) {
13 uint32_t addr = co_await m_addrIn->read();
14 co_await m_dataOut->write(m_memoryRegion[addr]);
15 }
16 }
17 }� �
Listing 1.4: A DRAM reader kernel, as used in the Inter_E compute graph,
modelled for Graphtoy simulation. An HLS implementation of this kernel will
be later used on the actual Versal hardware.

architecture. In addition, no large-scale debugging is required using the more
complex AIE development flows, as the architecture has already been shown to
be functionally correct using Graphtoy. Moreover, a minor change that does need
to be made is switching the algorithms from double-precision floats to a mix of
single-precision and fixed-point arithmetic on the AIEs. The latter is needed
since trigonometric functions are only available as fixed-point variants on the
AIE hardware [1]. A comparison between a Graphtoy kernel and its correspond-
ing AIE version is shown in Listing 1.5.

4.3 Benchmarking Simulation Speed

As Graphtoy is designed to simplify compute graph prototyping as well as to
speed-up simulation, we benchmark the simulation runtimes achieved by Graph-
toy against those by AMD’s AIE graph simulators (x86sim and aiesim) [5]. For
this purpose, we employ the AutoDock molecular docking mini-version already
discussed configured with a precomputed set of 104 ligand genotypes as input
data for all experiments. Moreover, all evaluations are performed on an Intel
Xeon W-3265 CPU, using Vitis 2022.2 for x86sim and aiesim versions, and
GCC 12 with the -O2 optimization setting for the native (the original non-graph
AutoDock code) and Graphtoy versions6.

Table 1 shows the corresponding simulation runtimes. As AMD’s aiesim
needed about 45min to complete a single iteration of Intra_E, we canceled the
simulation run after two iterations and extrapolated from the above baseline
runtime. Hence, the estimated value for aiesim (i.e., 10+ months of simulation
time) is only a lower bound. The actual time required to complete the simulation
6 We also tried -O3, which led to a slight performance degradation for Graphtoy, and

no change for the non-graph version.
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on aiesim is likely higher due to the additional time that would be required for
simulating change_conform and Inter_E.

The overall results can be interpreted as follows: the Graphtoy simulator in-
troduces significant overhead over the native (non-graph) version of AutoDock,
due to the additional simulation of kernel-to-kernel communication. This was
determined via profiling with perf. However, Graphtoy is around an order of
magnitude faster than AMD’s x86sim.

� �
1 // Graphtoy version.
2

3 // Runtime parameters, set in kernel constructor
4 double m_genrot_unitvec[3] = {};
5 double m_genrot_angle;
6 double m_globalmove_xyz[3] = {};
7

8 GtKernelCoro kernelMain() override {
9 while (true) {

10 auto data = co_await m_inputStream->read();
11 double *atom_xyz = &data.m_atomdata.m_atom_idxyzq[1];
12

13 const double genrot_movvec[3] = {0, 0, 0};
14 rotate(atom_xyz, genrot_movvec, m_genrot_unitvec, &m_genrot_angle, 0);
15 vec3_accum(atom_xyz, m_globalmove_xyz);
16

17 co_await m_outputStream->write(data.m_atomdata);
18 }
19 }
20

21

22 // AIE version.
23

24 void changeConform_GeneralRotation_GlobalMove(
25 input_window<uint8> *atomData_in,
26

27 // Runtime parameters, set via graph API
28 const float (&genrotUnitvec)[3],
29 const float genrotAngle,
30 const float (&globalMoveXyz)[3],
31

32 output_stream<float> *idxyzq_out)
33 {
34 while (true) {
35 auto data = readTypedWindowData<ChangeConform_AtomData>(atomData_in);
36 if (data.m_isTerminationSentinel) break;
37

38 float * const atom_xyz = &data.m_atom_idxyzq[1];
39

40 static constexpr float genrotMovvec[3] = {0, 0, 0};
41 rotate(atom_xyz, genrotMovvec, genrotUnitvec, genrotAngle);
42 vec3_accum(atom_xyz, globalMoveXyz);
43

44 for (uint32 i = 0; i < 5; ++i) {
45 writeincr(idxyzq_out, data.m_atom_idxyzq[i]);
46 }
47 }
48 }� �
Listing 1.5: Comparison of the Graphtoy and AIE versions of the General rotation
/ global move kernel, as used in the change_conform compute graph.
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Both of the aforementioned simulators are directly comparable, since they both
compile compute graphs natively for the x86 host architecture and do not em-
ulate microarchitectural details of the AI Engines. AMD’s aiesim is the slowest
among all tested simulators. This is because aiesim does simulate AIEs on a
micro-architectural level, unlike the others.

Table 1: Graph simulation runtime benchmarks.
AMD x86sim AMD aiesim Native (non-graph) Graphtoy

299 s 10+ months 0.311 s 27.5 s

5 Conclusions and Future Work

In this work, we have used C++20 coroutines as a building block for Graphtoy,
which is a new compute graph simulator optimized for ease of development and
low simulation overhead. For our case study consisting of compute graphs for a
mini-AutoDock, Graphtoy achieves simulation times at least an order of magni-
tude faster compared to AMD’s AI Engine simulators (x86sim and aiesim).

Our Graphtoy-based port of molecular docking algorithms into compute
graphs showed that the kernel and graph constructs provided by Graphtoy map
well to the real AIEs. As we have also shown, Graphtoy easily enables a straight-
forward prototyping of algorithms requiring co-processing between the AIEs and
the FPGA PL, e.g., for custom memory accesses. For instance, in cases where
random accesses to large memory blocks were needed, we were able to prototype
such PL interfaces by simply adding a Graphtoy kernel, without the need to
fully develop an HLS or RTL hardware kernel for the PL in advance.

As mentioned above, we will consider to extend Graphtoy to further simpli-
fy/automate the Graphtoy-to-AIE porting process in a future refinement of the
system.
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