
Enabling FPGA and AI Engine Tasks in the HPX
Programming Framework for Heterogeneous

High-Performance Computing

Torben Kalkhof[0000−0002−4159−244X], Carsten Heinz[0000−0001−5927−4426], and
Andreas Koch[0000−0002−1164−3082]

Embedded Systems and Applications Group, TU Darmstadt, Darmstadt, Germany
{kalkhof,heinz,koch}@esa.tu-darmstadt.de

Abstract. The increasing complexity of modern exascale computers,
with a growing number of cores per node, poses a challenge to tradi-
tional programming models. To address this challenge, Asynchronous
Many-Task (AMT) runtimes such as the C++-based HPX, divide com-
putational problems into smaller tasks that are executed asynchronously
by the runtime. By unifying the syntax and semantics of local and remote
task execution, the scalability for distributed execution is enhanced. The
asynchronous execution model conceals communication latency in dis-
tributed systems and eliminates global synchronization barriers, which
improves the overall utilization of computation resources.
While HPX and other AMT runtimes often support GPUs, there is still
a lack of support for other accelerators, such as FPGAs, or more coarse-
grained AI processing elements such as AMD’s AI Engines (AIE).
In this work, we extend the TaPaSCo framework so that TaPaSCo FPGA
and AIE tasks can be transparently integrated into HPX applications.
We show results for both microbenchmarks as well as the complete
LULESH proxy HPC application to demonstrate this concept and eval-
uate the overheads. Both applications show that the combination of
TaPaSCo and HPX can be efficiently used for cooperative computing
between CPU software and FPGA / AIE hardware. Compared to CPU-
only execution, we achieve a speedup of up to 2.4x in our stencil mi-
crobenchmark and a wall-clock speedup of 1.37x for the entire LULESH
application, with 2.12x in the accelerated kernels itself. Our TaPaSCo /
HPX integration is released as open-source.

Keywords: FPGA · task-based programming · HPC · AI engines

1 Introduction

The demand for computation power of modern applications is higher than ever,
and we have arrived in the era of exascale computing [15]. On the one hand,
such huge computation power is achieved by a steadily growing number of com-
pute nodes. On the other hand, there is also a trend to increase the number
of CPU cores per node. This results in a significant challenge for traditional

2 T. Kalkhof et al.

parallel programming models in High-Performance Computing (HPC), such as
OpenMP and MPI, due to the increase in inter- and intra-node parallelism and
concurrency.

In these models, computational problems are divided and statically scheduled
to different cores and nodes, respectively. Synchronization barriers are primarily
used to synchronize threads within a single node, e.g., at the end of parallel loops.
Communication and data exchange between nodes is usually done by message
passing, which may introduce implicit global synchronization barriers as well.

Load imbalance between threads and processes as well as communication la-
tency may cause node starvation, as threads or processes block while waiting
for messages or other threads to reach a barrier. This degrades the overall re-
source utilization. Hence, new programming models are desirable to use exascale
supercomputers efficiently [14].

A promising approach are Asynchronous Many-Task (AMT) runtimes. In
this programming model, the programmer divides the computational problem
into small tasks and defines dependencies between these tasks, resulting in a
dataflow graph.

The AMT runtime then asynchronously executes these tasks. By expressing
data dependencies on a per task level, local as well as global synchronization
barriers are reduced. Although AMT systems cannot eliminate communication
latency, they can hide some or all of the latency. If a task is blocked due to
waiting for a message, the runtime will suspend the current task and execute
other tasks that are ready to compute.

Many AMT frameworks will have abstraction layers which unify local and
remote execution of tasks to provide good scalability, improve load-balancing
and, in turn, resource utilization on the intra- and inter-node level of distributed
systems.

Besides the increase of cores and nodes, heterogeneity is another important
trend in HPC. Due to their versatility, GPUs are most commonly applied in su-
percomputers and used for hardware acceleration in many applications. Hence,
AMT runtimes often provide support for GPU kernels. However, other domain-
specific accelerators continue gain in popularity, including more energy-efficient
FPGAs or specialized AI hardware such as AMD Versal AI Engines (AIE).
Unfortunately, AMT runtimes often lack support for these more specialized ar-
chitectures.

In this work, we combine HPX [11], a C++-based AMT runtime targeting
HPC and scientific applications, with TaPaSCo [9], a framework enabling the
easy use of FPGA and AIE for task processing. By extending TaPaSCo, we en-
able a seamless integration of tasks running on FPGA- or AIE-based accelerators
into HPX applications.

In our evaluation, we do not aim to show the highest possible accelerations
by using FPGAs or AIEs. Instead, we examine whether HPX makes a suitable
framework for the low-overhead integration of these computing elements in het-
erogeneous HPC applications.

FPGA and AIE Tasks in HPX 3

To this end, we first use a stencil-based microbenchmark which allows us to
easily measure the impact of different numbers of tasks and task sizes offloaded
to an FPGA, including a comparison to an implementation solely based on the
C++ standard library.

Then, we move on to a full application, namely the LULESH proxy HPC
application [1], which we port to HPX and offload parts of the computation to
an AIE-based accelerator. The performance results show that our TaPaSCo /
HPX integration can achieve speedups in real-world applications, and that HPX
enables this at lower overheads than the traditional approaches of the C++
library.

The paper is structured as follows. In Section 2, we provide an overview
of HPX and TaPaSCo before discussing related work in Section 3. Afterward,
we describe our implementation of the TaPaSCo integration with HPX in Sec-
tion 4. Our benchmarks are introduced in Section 5 followed by presenting the
evaluation results in Section 6. Section 7 then concludes the paper.

2 Background

In the following sections, we introduce both of the frameworks this work is based
on, namely HPX and TaPaSCo.

2.1 HPX

HPX [11] is an AMT C++ library, and provides an API conforming to the C++
standard API for asynchronous execution.

HPX utilizes the concept of futures to execute asynchronous tasks. When we
create an asynchronous task, e.g. using hpx::async(), the task is not executed
immediately, and hence we cannot obtain the task’s return value instantly. In-
stead, a future object is generated as a wrapper around the actual return value,
and the current thread continues to execute. We can create an entire task graph
using so-called continuations on these futures. Continuations define tasks that
are executed after the preceding future becomes ready.

Finally, when we need to access the value of a future, the current thread is
suspended until the corresponding task is executed and the value is computed.

HPX launches tasks as lightweight threads that are executed on a fixed num-
ber of operating system (OS) threads. Generally, one worker is assigned per
CPU core. The HPX runtime completely manages the lightweight threads, lead-
ing to faster context switches when compared to multi-threading on the OS level.
The task scheduler ensures good load balancing between the worker threads by
applying techniques such as work stealing and sharing.

Further features of HPX include templates for parallel algorithms, remote
task execution with a uniform API, and already support for GPUs using CUDA
or HIP.

4 T. Kalkhof et al.

2.2 TaPaSCo

TaPaSCo [9] is a task-based framework providing simple and platform-independent
integration of FPGAs into heterogeneous systems. It is made up of two parts: a
toolflow that generates bitstreams for the FPGA and a runtime that interfaces
with the accelerators. The framework supports various platforms ranging from
Zynq SoCs (e.g. Ultra96) to PCIe-based data center cards (e.g. Alveo U280).

Hardware designs in TaPaSCo are built using Processing Elements (PEs),
which are supplied by the user as HLS kernel or HDL-written IP with standard
AXI4 interfaces. The infrastructure components, such as interrupt controllers
and DMA engines, are automatically generated. Additionally, the TaPaSCo
toolflow offers a design space exploration to optimize a hardware design for
frequency or utilized area.

The TaPaSCo runtime consists of a device driver and a Rust user-space run-
time. Also, a clear and platform-independent C++ API is provided for easy
integration of the hardware accelerator into a host application. Users can pass
their PE arguments to the launch call, and TaPaSCo handles requested data
transfers to device-local memories automatically, as well as forwarding the ar-
guments and launching the PE. By calling the returned job_future, the PE is
released after it has finished and TaPaSCo performs data transfers back to host
memory if necessary. Users can also manage device memory explicitly by using
manual allocations and data transfers.

Furthermore, TaPaSCo provides a plugin system offering additional exten-
sions such as 100G networking or shared virtual memory. Recently, the support
for AMD Versal boards has been added, providing access to the AI engines.
Moreover, a DMA streaming mode has been introduced, which avoids copies to
device-local memory by streaming data directly into PEs.

3 Related Work

There are several other frameworks for AMT computation apart from HPX.
The most common approach is to provide a library. While HPX uses the syntax
of asynchronous function calls from the C++ standard API, other frameworks
use different methods to define tasks. For instance, Charm++ [12] has special
objects and interfaces, or StarPU [2] uses custom data structures called codelets.

In contrast, Chapel [4] and X10 [5] are domain specific task-based program-
ming languages. Legion [3] provides both, a C++ API as well as the custom
language Regent [16], following a more data-centric approach than HPX. In Re-
gent, tasks operate on defined data regions, resulting in a well-defined data flow
and execution graph.

OmpSs uses OpenMP-like pragmas and also supports FPGA tasks [6]. In
contrast to this work, FPGA task compilation using HLS is completely integrated
into the custom compiler, so non-HLS accelerators are not supported.

The stencil microbenchmark we employ below is also used by Grubel et al. [8]
to evaluate the impact of different task sizes on the performance of HPX. Karlin

FPGA and AIE Tasks in HPX 5

et al. [13] use LULESH to explore and compare different programming models
excluding HPX, while Jin et al. [10] implement LULESH kernels using OpenCL
HLS on an FPGA. However, Jin et al. only present the execution times of single
kernels, without taking into account data movements between host and device.
Additionally, it is unclear to us which program arguments they used in particular,
preventing a direct comparison.

4 Implementation

In this section, we describe the required changes in TaPaSCo to enable an efficient
integration into HPX.

TaPaSCo uses blocking calls to implement launching and releasing of PEs.
This means that if currently no PE of the requested type is available to service
a task, the calling thread is halted until a PE has finished the previous task
and can be re-launched. The executing OS thread is suspended, and in a multi-
threaded application, other threads can take over and be executed. The same
happens when a PE should be released but has not finished executing yet.

In HPX, this would mean that the current worker thread is suspended and
cannot execute other tasks, which goes against the underlying concept of HPX.
Thus, non-blocking calls need to be added to TaPaSCo for launching and releas-
ing PEs, that always return immediately, whether the PE could be launched or
released or not.

These non-blocking calls are then used inside a wrapper that just suspends
the current HPX lightweight thread, instead of the underlying OS thread, allow-
ing the HPX scheduler to assign other tasks to this worker thread. The TaPaSCo
task will be rescheduled until the PE is ready.

All the user has to do is call this wrapper function inside the HPX task, and
pass the PE and required arguments to the wrapper function call.

In the launch call, TaPaSCo first allocates space in off-chip memory for input
and output data, and then tries to acquire a PE for this job. During testing, we
realized that this can lead to oversubscription of memory, since many tasks are
created long in advance of their actual launches when using HPX. Hence, we
change the order and first acquire a PE, before moving data to off-chip memory.
In certain applications, it can be beneficial to coordinate the transfer of data in
separate tasks. This allows for increased parallelism by overlapping data transfers
and PE jobs. Additionally, HPX offers an io_pool_executor specially designed
for I/O intensive tasks that may be utilized for these transfers.

5 Benchmarks

In this section, we introduce our stencil microbenchmark and LULESH case
study which we use to evaluate our work. We describe the design of our acceler-
ators, and discuss challenges we encountered while using FPGA and AIE tasks
in HPX.

6 T. Kalkhof et al.

tixj−2 xj+2xj−1 xj xj+1

ti+1xj

ti+2 . . .

Fig. 1. Computation flow of the 1D-stencil microbenchmark.

5.1 Microbenchmark: 1D-Stencil

The stencil microbenchmark iteratively simulates heat diffusion in a ring over
time given by the following formula

xi(tj+1) = xi(tj) + k
dt

dx2
(xi−1(tj)− 2xi(tj) + xi+1(tj)) (1)

where xi denotes the i-th element in the array representing the ring, and tj the
current iteration. k, dt and dx are constants denoting the heat transfer coefficient,
time step, and grid spacing. Figure 1 visualizes the computation flow. The array
is then divided into equally sized partitions and one task is created to calculate
one timestep for one partition each.

We implement an HLS kernel using Vitis HLS to offload tasks to the FPGA.
It is fully pipelined and computes eight values in parallel. In total, we put 16
of these PEs onto the Alveo U280 and connect them to the 16 ports of the left
HBM stack available on this UltraScale+ device. The PEs run at 450MHz so
that frequency and datawidth match with the HBM ports. At the beginning of
the benchmark, we offload a given number of partitions to the on-device HBM
where they stay for the entire benchmark. All tasks working on the offloaded
partitions are then executed by the PEs, avoiding costly data transfers in between
iterations. Only values on the partition boundaries must be exchanged as the
neighboring partitions require them in the next iteration.

N-to-N Interconnect 0

PE 0 PE 1 PE 2 PE 3

MC 0 MC 1

N-to-N Interconnect 1

PE 4 PE 5 PE 6 PE 7

MC 2 MC 3

. . .

. . .

. . .

Fig. 2. Structure of the built-in crossbar between user PEs and HBM memory con-
trollers (MC).

To exploit the high bandwidth of HBM, it is crucial to allow as many paral-
lel memory accesses as possible. The left stack of the HBM on the Alveo U280

FPGA and AIE Tasks in HPX 7

has eight memory controllers with 2 pseudo-channels each, with one AXI port
per pseudo-channel. Although we do not use the entire 4GB of the HBM stack,
we distribute the partitions equally over the stack to improve parallelism. Lo-
cated between the AXI ports and pseudo-channels of the memory controller,
there is a built-in crossbar to allow access from each AXI port to the entire
stack, as depicted in Figure 2. However, the crossbar only provides direct n-to-
n-interconnects for four ports and pseudo-channels each, which we call a group.
Inter-group accesses become expensive, since they may congest the single con-
nection crossing group boundaries. Thus, we schedule tasks on the PEs in a way
that avoids interference on the inter-group interconnects.

Since launching a PE has potentially much higher overhead, due to the PCIe
latency, than scheduling a lightweight thread on the CPU, we implement two
strategies for partitioning tasks on the FPGA. In the first variant, we have
equally sized partitions on CPU and FPGA and vary the number of partitions
that are offloaded to the PEs. Secondly, we also vary the total amount of data
offloaded to the FPGA, but always split it into 16 partitions independent of the
partition size on the host. In this approach, there is always exactly one task per
PE in every iteration.

To evaluate the benefits of using TaPaSCo with light-weight threads in HPX
compared to OS multi-threading, we implement a non-HPX baseline, only using
the asynchronous functions provided by the C++ standard library and original
blocking TaPaSCo calls. Here, an OS thread is created for each task.

5.2 Case Study: LULESH

The Livermore Unstructured Lagrangian Explicit Shock Hydrodynamics (LU-
LESH) proxy application models hydrodynamics codes by solving the Sedov
blast wave problem. As a proxy application, LULESH is highly simplified while
maintaining the typical structure of similar scientific applications allowing bench-
marking of a real-world problem without physical background.

In LULESH, the physical problem space is divided into a hexahedral mesh
on which the computation is performed. The underlying algorithm is a Lagrange
leapfrog algorithm, consisting of three phases. During the first phase, the force
on each node of the mesh at the current timestep is calculated. Based on this,
acceleration, velocity, and position of the nodes are updated.

In contrast to the nodal-based first phase, the second part of the algorithm
updates the properties of each mesh element, i.e. each hexahedron in the mesh.
Mainly, pressure, internal energy, and relative volume of the elements are calcu-
lated as well as the sound speed in each element. To simulate different materials,
the mesh is split into multiple regions. Although the material properties are the
same in LULESH, each region must be handled in a separate loop. Additionally,
the computational intensity of the regions is varied, which is simulated by simply
repeating the computation of the element quantities for some of the regions.

The last phase calculates the timestep of the next iteration. However, its
runtime is negligible compared to the other two phases.

8 T. Kalkhof et al.

Loop #1

Loop #2

Loop #3

Task #1.1

Task #2.1

Task #3.1

Task #1.2

Task #2.2

Task #3.2

Fig. 3. Comparison of loop structure (left) to our task structure (right). Loops impose
a synchronization barrier, while tasks only depend on their respective predecessors and
require a single synchronization barrier at the end.

The OpenMP reference implementation consists of 45 parallel-for loops per-
forming the different computation steps after each other. An existing HPX im-
plementation of LULESH takes the approach of simply converting all OpenMP
loops to HPX-provided parallel for-loops [17].

However, the performance of that implementation is shown to be worse than
the OpenMP reference implementation in our measurements. This non-optimal
HPX implementation does not remove any synchronization barriers, and due to
its “too static” scheduling, there is no load imbalance to be expected between
OpenMP threads, which in turn could be exploited using the AMT mechanisms
of code better matching the HPX paradigm.

To obtain a higher-quality baseline, we thus carefully created our own, better
optimized software-only LULESH implementation using HPX. To this end, we
decided to manually decompose the computation into tasks and try to remove
barriers as far as possible.

We maintain the partitioning in kernels from the reference implementation
in large parts, but heavily use continuations to chain the tasks performing com-
putations on the same subset of data in consecutive kernels, as illustrated in
Figure 3.

Furthermore, we launch tasks of completely independent kernels in parallel.
This way we can reduce the number of synchronization barriers to six per iter-
ation. After all optimizations, our CPU-based application is even slightly faster
than the original OpenMP reference implementation of LULESH.

Due to expensive data movements to and from FPGA off-chip memory in
every iteration of the leapfrog algorithm, we need to offload kernels in which we
do multiple calculations on the same input data. At the same time, the offloaded
part should be independent of other tasks, so that we can still run calculations
on the CPU in parallel.

Based on this, we choose the update of the element properties in the most
expensive region during phase two. Since this computation is floating point in-
tensive, we use the AMD Versal AI Engines (AIE) on the VCK5000.

FPGA and AIE Tasks in HPX 9

The AIE consists of 400 tiles with VLIW architecture and SIMD vector pro-
cessors including single-precision floating point pipelines. All tiles are connected
via a streaming interconnect, and neighboring tiles can also use buffers in local
memory to exchange data.

We design specialized hardware on the Programmable Logic (PL) part of the
Versal device to efficiently feed the AIE with data. To this end, we implement a
custom PE streaming input data from off-chip memory into the AIE and output
data vice versa. The entire computation is repeated as many times as it would
been executed on the host.

One challenge in implementing the computation graph for the AIE is that the
structure of the LULESH computation does not perfectly match the streaming-
based architecture of the AIE, e.g., many input and intermediate variables are
reused in multiple steps of the calculation. This means they have to be buffered
in between.

Input variables are buffered in FIFOs in the PL and streamed into the AIE
again at a later stage using an additional port. However, intermediate variables
are buffered in the AIE by dummy kernels, which just forward the data from
one buffer to another.

6 Evaluation

As described in the Introduction, we begin our evaluation with the more focused
1D-stencil microbenchmark, before moving on to a full HPC code, namely the
LULESH hydrodynamics proxy application.

All tests were run on an AMD Epyc 7443 24-core processor equipped with
256GB RAM. The stencil benchmark is run on an Alveo U280 clocked at
450MHz and connected with PCIe 3.0 x16 to the host. Our LULESH accel-
erator runs on a VCK5000 connected via PCIe 4.0 x8. While the AIE run at
1.25GHz, the custom data streaming engine we implemented in the Versal PL
part is clocked with 200MHz, which is sufficient to completely saturate the AIE
bandwidth by using multiple streaming ports in parallel.

We use HPX v1.9.0 with jemalloc. All benchmarks are compiled with GCC
11.2.1 and -DCMAKE_BUILD_TYPE=Release.

6.1 Microbenchmark: 1D-Stencil

The presented numbers of our stencil microbenchmark are averaged over 100
runs. For the two smallest partition sizes of the non-HPX version, we reduced
the number of runs to 50 due to long execution times. Each run calculates 300
timesteps of the heat distribution on an array with 256·220 single-precision float-
ing point numbers (1GB). The absolute execution times are shown in Figure 4,
depending on the partition size and ratio of offloaded partitions to the FPGA.

We achieve faster computation times through collaborative computing using
CPU and FPGA in all our measurement series. The shortest execution time of 3 s
is achieved using HPX with a partition size of 4MB on the host and 16 hardware

10 T. Kalkhof et al.

0 0.5 1
0

10

20

30

Variable # HW tasks (TaPaSCo)

0 0.5 1
0

10

20

30

16 HW tasks (TaPaSCo)

0 0.5 1
0

5

10

Variable # HW tasks (HPX+TaPaSCo)

0 0.5 1
0

5

10

16 HW tasks (HPX+TaPaSCo)

E
xe

cu
ti

on
ti

m
e

(s
)

FPGA offload ratio

64MB 32MB 16MB 8MB 4MB

2MB 1MB 512 kB 256 kB

Fig. 4. Absolute execution times of the stencil microbenchmark dependent on partition
size and offload ratio of partitions to the FPGA. The upper two graphs show results
for the non-HPX variant using the standard C++ library, the lower graphs contain the
results of the TaPaSCo / HPX integration. In the left two graphs, partition sizes on
FPGA and host are equal, thus the number of offloaded tasks is variable. On the right,
the offloaded calculations are always split into 16 partitions.

FPGA and AIE Tasks in HPX 11

tasks that account for 87.5% of the calculations. This results in a speedup of
2.4x compared to the fastest software-only computation using HPX with 1024
partitions of 1MB each, which takes 7.22 s.

When comparing the upper and lower plots in Figure 4 to each other, you
can see that the implementation using HPX, shown in the lower plots, is faster
for all run configurations. Scheduling, suspending, and switching threads is much
more efficient in HPX’s lightweight threading model compared to OS threads.
This is especially true when dealing with hundreds or thousands of concurrent
threads, as in this benchmark. Due to this increased management overhead,
the implementation without HPX cannot benefit from more offloaded tasks and
reaches minimal runtimes around an offload ratio of 0.5. In contrast, the HPX
implementation performs best if between 75% to 87.5% of the calculation is
offloaded to the FPGA.

The performance of parallel computing on CPUs benefits from fine-grained
parallelism due to smaller partitions to a certain degree. However, for FPGA
tasks, it is better to keep the number of tasks low to improve execution times.
The right plots in Figure 4 show that the overall execution time is shortened by
setting the number of tasks running on hardware to 16 for each iteration and
resizing the partition size accordingly to the offload ratio. This is particularly
true for the measurement series with partition sizes smaller than 16MB.

Each PE launch involves PCIe latency during writing control registers and
handling the PE interrupt. Additionally, the threads managing the TaPaSCo
tasks on the host side must be scheduled, which introduces overhead, although
no actual computation is performed on the CPU.

6.2 Case Study: LULESH

We evaluate our LULESH implementation with three different problem sizes and
three different numbers of regions each. The problem size specifies the number
of elements in each mesh dimension. In addition to the default size of 45, we
evaluate with 60 and 75 elements. We use the standard configuration for the
region costs: half of the regions are computed once or twice respectively, but on
one region the calculation is repeated 20 times. The presented numbers are the
mean over 100 runs with 200 iterations of the Lagrange leapfrog algorithm each.

Note that we have very carefully optimized our HPX software-only base-
line, making it even faster than the OpenMP reference code. The respective
speedup factors are shown in Figure 5 while Table 1 lists the corresponding ab-
solute numbers. Compared to that reference code, the wall-clock speedups of our
AIE-accelerated version would be even higher than reported below. However, as
our focus was on examining the overheads of the HPX / TaPaSCo integration,
instead of examining absolute performance gains, we use our optimized HPX
software code as baseline for our measurements.

Figure 6 illustrates how the cooperative execution of TaPaSCo and HPX has
improved the total execution time and the execution time of the AIE-accelerated
part compared to our software-only implementation. The corresponding absolute
numbers can be found in Table 2.

12 T. Kalkhof et al.

45 60 75
0

0.5

1

1.5

2

1.21
1.06 1.01

1.33 1.21
1

1.53
1.29

1.05

Problem size

Sp
ee

du
p

Speedup on total execution time

11 regions
16 regions
21 regions

Fig. 5. Speedup of our software-only LULESH implementation using HPX compared
to the OpenMP reference implementation.

Table 1. Absolute runtimes of our software-only LULESH implementation using HPX
and the reference OpenMP implementation.

Problem size 45 60 75
Runtime HPX OpenMP HPX OpenMP HPX OpenMP

11 regions 1.663 s 2.018 s 3.074 s 3.246 s 4.748 s 4.785 s
16 regions 1.574 s 2.092 s 2.765 s 3.341 s 4.882 s 4.904 s
21 regions 1.422 s 2.180 s 2.697 s 3.476 s 4.816 s 5.062 s

For some instances, we use different task sizes for the software-only and AIE-
accelerated versions and report the optimal runtimes for each. The chosen task
size can affect other parts of the application, not just the part accelerated by
AIE, as evidenced by the numbers for software-only execution and a problem
size of 75. Despite the differences in the lower table, the total runtimes are
very similar. To indicate the limited comparability in the lower table, we have
underlined the respective numbers.

The smallest problem size of 45 provides the best speedups for all three num-
bers of regions in our AIE-accelerated HPX implementation when compared to
the HPX baseline. The highest speedup achieved is 1.37x on the total execution
time and 2.12x on the accelerated part with 16 regions. As the problem size in-
creases, the speedups decrease for 11 and 16 regions. For 21 regions, the speedup
for a problem size of 60 is lower than for 45, but rises to 1.25x on the total
execution time and 1.9x on the accelerated part for the largest problem size.

To understand the speedup, it is important to examine the absolute numbers
of the accelerated part of the application. These numbers are listed in the lower
table in Table 2. In the AIE-accelerated implementation, the runtime of this part
is mainly influenced by the calculation of the most expensive region, which is
repeated 20 times. The computation of this region on the AIE takes longer than
processing all other regions on the CPU in parallel. However, as the number of
regions increases, the most time-consuming region becomes smaller, resulting in
reduced computation time for both the specific region and the total runtime.

FPGA and AIE Tasks in HPX 13

45 60 75
0

0.5

1

1.5 1.3 1.19 1.08
1.37

1.22 1.16
1.31 1.21 1.25

Problem size

Sp
ee

du
p

Speedup on total execution time

11 regions
16 regions
21 regions

45 60 75
0

1

2 1.79
1.35 1.16

2.12
1.71 1.54

2.07

1.5
1.9

Problem size

Sp
ee

du
p

Speedup on accelerated part only

11 regions
16 regions
21 regions

Fig. 6. Speedup of the HPX LULESH implementation running cooperatively on CPU
and AIE compared to running in software only. The speedup is given on the total
execution time as well as the execution time of the accelerated part only.

Table 2. Absolute execution times of the HPX LULESH implementation running
cooperatively on CPU and AIE compared to running in software only. Numbers are
given for the total execution time and the time of the accelerated part only. Underlined
numbers indicate that different task sizes are used for the software-only and AIE-
accelerated variants.

Total execution time

Problem size 45 60 75
Runtime HPX HPX+AIE HPX HPX+AIE HPX HPX+AIE

11 regions 1.663 s 1.277 s 3.074 s 2.575 s 4.749 s 4.414 s
16 regions 1.574 s 1.149 s 2.765 s 2.262 s 4.882 s 4.196 s
21 regions 1.422 s 1.088 s 2.697 s 2.225 s 4.816 s 3.860 s

Execution time of accelerated part only

Problem size 45 60 75
Runtime HPX HPX+AIE HPX HPX+AIE HPX HPX+AIE

11 regions 0.910 s 0.510 s 1.393 s 1.028 s 1.887 s 1.623 s
16 regions 0.819 s 0.387 s 1.228 s 0.718 s 2.138 s 1.383 s
21 regions 0.667 s 0.322 s 1.016 s 0.675 s 2.070 s 1.092 s

14 T. Kalkhof et al.

The heuristic determining the sizes of the regions includes some randomness,
though, and it is not directly proportional to either the number of regions or the
problem size. This is reflected in the numbers. For instance, when the problem
size is 60, the most expensive region is nearly halved during the step from 11 to
16 regions, but then only shrinks slightly for 21 regions.

In the software-only implementation, the runtime depends mainly on how
parallelizable the AIE-accelerated part is. When the problem size is 45, the
most expensive region dominates the runtime and is split into very few tasks.
This limited parallelizability actually allows for the highest speedups by our
AIE accelerator. However, if we increase the problem size to 60, all regions
become larger, which allows for more tasks per region and improves parallelism.
Nonetheless, the most expensive region still dominates the runtime.

Conversely, when we increase the problem size to 75, the total runtime does
not change significantly when varying the number of regions. This is because the
overall number of tasks for all regions is large enough to hide the higher compu-
tation cost of the expensive region. However, the runtime of the AIE-accelerated
variant decreases with the increasing number of regions in this scenario as well,
enabling higher speedups with a larger number of regions.

7 Conclusion

This work enables the transparent integration of TaPaSCo tasks executed on
FPGA and AIE accelerators in HPX. The main benefit of this integration is that
applications can leverage the asynchronous and lightweight execution model on
the CPU, while being able to include custom hardware accelerators on FPGA
or AIE at the same time.

We are able to achieve up to 2.4x speedup in our stencil-based microbench-
mark by offloading tasks to an FPGA, as compared to executing all tasks on a
CPU. Our comparison to an implementation using the C++ standard library for
concurrency, demonstrates that the lightweight HPX tasks, based on lightweight
threads in turn, significantly reduce overhead compared to multi-threading using
OS-level threads, especially when launching thousands of tasks in parallel.

Furthermore, we implement the LULESH proxy HPC application in HPX
and use the AMD Versal AIE to accelerate key parts. Our results showed that
we were able to achieve speedups of up to 1.37x on the total wall-clock time,
which serves as a proof of the usability of the HPX + TaPaSCo approach for
real-world applications.

TaPaSCo is already available as open-source on GitHub, where we will also
provide our HPX integration [7].

Acknowledgments. This research was funded by the German Federal Ministry for
Education and Research (BMBF) with the funding ID 01 IS 21007 B.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.

FPGA and AIE Tasks in HPX 15

References

1. Hydrodynamics Challenge Problem, Lawrence Livermore National Laboratory.
Tech. Rep. LLNL-TR-490254

2. Augonnet, C., Thibault, S., Namyst, R., Wacrenier, P.A.: StarPU: A Unified Plat-
form for Task Scheduling on Heterogeneous Multicore Architectures. CCPE - Con-
currency and Computation: Practice and Experience, Euro-Par 2009 (Feb 2011)

3. Bauer, M., Treichler, S., Slaughter, E., Aiken, A.: Legion: Expressing locality and
independence with logical regions. In: 2012 International Conference for High Per-
formance Computing, Networking, Storage and Analysis. pp. 1–11 (Nov 2012)

4. Chamberlain, B., Callahan, D., Zima, H.: Parallel Programmability and the Chapel
Language. The International Journal of High Performance Computing Applications
21(3), 291–312 (Aug 2007)

5. Charles, P., Grothoff, C., Saraswat, V., Donawa, C., Kielstra, A., Ebcioglu, K.,
Von Praun, C., Sarkar, V.: X10: an object-oriented approach to non-uniform cluster
computing. ACM SIGPLAN Notices 40(10), 519–538 (Oct 2005)

6. Deharo, J.M., Bosch, J., Filgueras, A., Vidal, M., Jimenez-Gonzalez, D., Alvarez,
C., Martorell, X., Ayguade, E., Labarta, J.: OmpSs@FPGA framework for high
performance FPGA computing. IEEE Transactions on Computers pp. 1–1 (2021)

7. Embedded Systems and Applications Group, TU Darmstadt: Esa group on Github,
https://github.com/esa-tu-darmstadt

8. Grubel, P., Kaiser, H., Cook, J., Serio, A.: The Performance Implication of Task
Size for Applications on the HPX Runtime System. In: 2015 IEEE International
Conference on Cluster Computing (2015)

9. Heinz, C., Hofmann, J., Korinth, J., Sommer, L., Weber, L., Koch, A.: The tapasco
open-source toolflow. Journal of Signal Processing Systems (May 2021)

10. Jin, Z., Finkel, H.: Evaluating LULESH Kernels on OpenCL FPGA. In: Applied
Reconfigurable Computing. Springer International Publishing, Cham (2019)

11. Kaiser, H., Diehl, P., Lemoine, A.S., Lelbach, B.A., Amini, P., Berge, A., Biddis-
combe, J., Brandt, S.R., Gupta, N., Heller, T., Huck, K., Khatami, Z., Kheirkha-
han, A., Reverdell, A., Shirzad, S., Simberg, M., Wagle, B., Wei, W., Zhang, T.:
Hpx - the c++ standard library for parallelism and concurrency. Journal of Open
Source Software 5(53), 2352 (2020)

12. Kale, L., Krishnan, S.: Charm++: A portable concurrent object oriented system
based on c++. pp. 91–108. Proceedings of the Conference on Object-Oriented
Programming Systems, Languages, and Applications, OOPSLA (Oct 1993)

13. Karlin, I., Bhatele, A., Keasler, J., Chamberlain, B.L., Cohen, J., Devito, Z., Haque,
R., Laney, D., Luke, E., Wang, F., Richards, D., Schulz, M., Still, C.H.: Exploring
traditional and emerging parallel programming models using a proxy application.
In: IEEE 27th Int. Symposium on Parallel and Distributed Processing (2013)

14. Kogge, P., Borkar, S., Campbell, D., Carlson, W., Dally, W., Denneau, M., Franzon,
P., Harrod, W., Hiller, J., Keckler, S., Klein, D., Lucas, R.: Exascale computing
study: Technology challenges in achieving exascale systems. DARPA IPTO, Tech-
nical Representative 15 (01 2008)

15. RIKEN: Japan’s fugaku gains title as world’s fastest supercomputer, https://www.
riken.jp/en/news_pubs/news/2020/20200623_1/

16. Slaughter, E., Lee, W., Treichler, S., Bauer, M., Aiken, A.: Regent: a high-
productivity programming language for HPC with logical regions. In: Proceedings
of the International Conference for High Performance Computing, Networking,
Storage and Analysis. pp. 1–12. SC ’15 (Nov 2015)

17. Wei, W.: lulesh-hpx on Github, https://github.com/weilewei/lulesh-hpx

https://github.com/esa-tu-darmstadt
https://www.riken.jp/en/news_pubs/news/2020/20200623_1/
https://www.riken.jp/en/news_pubs/news/2020/20200623_1/
https://github.com/weilewei/lulesh-hpx

	Enabling FPGA and AI Engine Tasks in the HPX Programming Framework for Heterogeneous High-Performance Computing

