
Julian Oppermann1*, Brindusa Mihaela Damian-Kosterhon1,
Florian Meisel1, Tammo Mürmann1, Eyck Jentzsch2, Andreas Koch1

1 Technical University of Darmstadt, 2 MINRES Technologies GmbH, * now at Codeplay Software

Longnail High-Level Synthesis of Portable
Custom Instruction Set Extensions for

RISC-V Processors from Descriptions in the
Open-Source CoreDSL Language

Contact: {oppermann, damian, meisel, muermann, koch}@esa.tu-darmstadt.de, eyck@minres.com
Supported by the German Federal Ministry of Education and Research in the projects “Scale4Edge” (grants:
16ME0122K-140, 16ME0465, 16ME0900, 16ME0901) and “MANNHEIM-FlexKI” (grant: 01IS22086A-L).

Introduction
• Modern embedded, IoT devices are expected to run ML, signal

processing, etc.
• ISA extensions ("ISAX") → cost-effective + energy-efficient way to

accelerate applications on generic base cores
• RISC-V ecosystem:

!

 for ISAX approach
• But in practice: only limited reuse and exploration

⁃ Implementing an extension manually: hard
⁃ Existing solutions are vendor-specific, not portable across cores or

microarchitectures

Idea: Accessible and portable ISAX design
• Longnail: Microarchitecture-agnostic high-level synthesis

⁃ CoreDSL: new user-friendly language
• Bi-directional communication with SCAIE-V interface generator
• Automatic integration into base core

CoreDSL — new ISAX design language
• Intuitive ADL with C-inspired syntax & concise structure
• Bitwidth-aware type system to prevent implicit loss of precision
• Control-flow constructs & ISAX-specific syntax extensions

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Oppermann et al.

1 import "RV32I.core_desc"
2
3 InstructionSet X_DOTP extends RV32I {
4 instructions {
5 DOTP {
6 encoding: 7'd0 :: rs2[4:0] :: rs1[4:0] ::
7 3'd0 :: rd[4:0] :: 7'b0001011;
8 behavior: {
9 signed<32> res = 0;
10 for (int i = 0; i < 32; i += 8) {
11 signed<16> prod = (signed) X[rs1][i+7:i] *
12 (signed) X[rs2][i+7:i];
13 res += prod;
14 }
15 X[rd] = (unsigned) res;
16 } } } }

Figure 1. 4x8bit dot-product ISAX in CoreDSL, the input
language for our high-level synthesis �ow. The base ISA de-
scription RV32I (not shown here) declares the standard RISC-
V register �eld X with 32 elements of type unsigned<32>.

again through the introduction of the free and open RISC-
V ISA with its modular design. The RISC-V speci�cation
[54] de�nes multiple lean base instruction sets and includes
�rst-class support for standardized and application-speci�c
extensions. RISC-V has received widespread adoption in the
industry and in academia, resulting in a diverse choice of
proposed microarchitectures and extensions.
While the RISC-V ecosystem provides an ideal environ-

ment for the ISAX approach, we observe that current so-
lutions for actually implementing an extension are highly
microarchitecture-dependent for all but the simplest cus-
tom instructions. This is unfortunate for two reasons: Firstly,
ISAX design is not accessible to application domain experts
unfamiliar with computer architecture and digital design.
Secondly, the hardware underlying an ISAX is traditionally
not portable across base core microarchitectures. Thus, the
developer is locked into the speci�c core, or core family,
supported by the chosen ASIP toolchain, or faces the high
development e�ort of manually integrating an ISAX into
one or more existing cores.

Our novel idea to tackle both issues simultaneously is to de-
sign and implement parameterized high-level synthesis (HLS)
algorithms that rely on bidirectional interaction with a vendor-
neutral abstraction of a core’s microarchitecture to generate
ISAX hardware from easily usable high-level descriptions,
and then automatically integrate them into the target core
using an adaptive scalable interface. Our approach supports a
wide range of ISA extensions, i.e. not just simple R-type, but
also control, memory, and decoupled execution, expressed
in a new user-friendly ISAX description language.

We present our contributions as follows:
• In Section 2 we introduce CoreDSL, an easily accessible
behavioral ADL that carefully extends a familiar C-
like syntax with arbitrary-precision integer types and

bit-level operations. Figure 1 shows a complete SIMD
dot-product ISAX as an example.

• In Section 3, we detail how we leverage the recently in-
troduced SCAIE-V interface generator [23] as a vendor-
neutral and HLS-friendly abstraction for di�erent base
processor microarchitectures and con�gurations.
SCAIE-V tailors the processor integration precisely
to the needs of the ISAX to be implemented. It also
provides the HLS �ow with metadata in the form of
a “virtual datasheet” for the base processor, in order
for the synthesis algorithms to perform core-speci�c
optimizations when generating the ISAX hardware.

• In Section 4, we present Longnail, our custom, portable
high-level synthesis �ow from CoreDSL to register-
transfer level SystemVerilog. Longnail processes SCAIE-
V’s coremetadata to create tailored, SCAIE-V-compatible
hardware for the ISAX.

We demonstrate a working end-to-end �ow and evalu-
ate the practical bene�ts of our approach in Section 5 by
compiling eight ISAXes to hardware, and then automatically
integrating them into four open-source RISC-V cores. We re-
view related work in Section 6 and outline future directions
in Section 7, before concluding in Section 8.

2 CoreDSL
In this section, we introduce the open-source CoreDSL lan-
guage, which is the entry point to our proposed ISAX design
tool�ow.

2.1 Goals and requirements
Early on, discussions with potential users and domain ex-
perts yielded the following requirements for an input lan-
guage that would be accessible to non-experts and still enable
powerful and portable ISAX design:

• User-friendly syntax: We identi�ed embedded software
engineers as the primary target audience for our tool-
�ow. In their daily work, C is the predominant high-
level language, but engineers often resort to assembly
programming as well to maximize the e�ciency of
embedded software. ISA manuals usually describe the
instruction behavior in imperative pseudocode. Hence,
we argue that our input language should be syntac-
tically familiar, or at least obvious, to this group of
people.

• Suitable for ISA description: The language should be
tailored to the task of describing an ISA. This includes
o�ering a concise syntax for the architectural state,
instruction metadata, and typical behavior such as bit-
level manipulations and arithmetic operations with
narrow data types.

• High-level language: Portability mandates that the lan-
guage is fully behavioral, but its semantics should still
enable e�cient hardware synthesis.

Longnail — HLS for ISAXes
• Built from scratch on top of MLIR and CIRCT
• Gradual lowering using upstream and custom dialects

⁃ coredsl: instructions, always-blocks, registers, etc.
⁃ lil: control-dataflow graphs of combinational logic

• Custom scheduling problem to target SCAIE-V-supported core
+ ILP-based scheduler
⁃ Respects availability of interfaces
⁃ Minimizes latency and lifetimes of intermediate values

• Construct ISAX module in CIRCT’s dialects, emitted in SystemVerilog

Bi-directional communication

ISAXes beyond R-type instructions
• Two novel language constructs in CoreDSL:

⁃ always-block: Execute behavior continuously, independently of
fetched instructions

⁃ spawn-block: Other instructions can be executed in parallel to
spawned behavior

• Extended SCAIE-V tool provides interface to the core
⁃ handles data hazards and arbitration, provides access to program

counter, instantiates custom registers

Longnail: High-Level Synthesis of Portable Custom Instruction Set Extensions ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

Table 1. SCAIE-V sub-interface operations for a 32-bit host core. SCAIE-V creates individual sub-interfaces for each custom
register on demand. �, denotes the register’s address width, dlog2 (num. elements)e, and ⇡, its data width.

Sub-interface Operands Results Description

RdInstr - i32 Read the full instruction word.
RdRS1, RdRS2 - i32 Read the value of the GPR indicated by the rs1 or rs2 encoding �eld.
RdCustReg i�, index, i1 pred i⇡, Read the value of a custom register at the given index.
RdPC - i32 Read the program counter.
RdMem i32 address, i1 pred i32 Load a word from main memory.
WrRD i32 value, i1 pred - Write a value to the GPR indicated by the rd encoding �eld.
WrCustReg.addr i�, index - Submit an index for a write to a custom register.
WrCustReg.data i⇡, value, i1 pred - Write a value to a custom register at the previously submitted index.
WrPC i32 newPC, i1 pred - Write the program counter.
WrMem i32 address, i32 value, i1 pred - Store a word to the core’s main memory.
RdIValid_B - i1 Query whether an instruction is currently executing in stage B .
RdStall_B , RdFlush_B - i1 Query whether stage B is stalled or being �ushed.
WrStall_B ,WrFlush_B i1 pred - Stall stage B or �ush stages zero to B .

1 InstructionSet zol extends RV32I {
2 architectural_state {
3 register unsigned<32> START_PC, END_PC, COUNT;
4 }
5 instructions {
6 setup_zol {
7 encoding: uimmL[11:0] :: uimmS[4:0] :: 3'b101
8 :: 5'b00000 :: 7'b0001011;
9 behavior: {
10 START_PC = (unsigned<32>) (PC + 4);
11 END_PC =
12 (unsigned<32>) (PC + (uimmS :: 1'b0));
13 COUNT = uimmL;
14 } } }
15 always {
16 zol {
17 // program counter (�PC�) defined in RV32I
18 if (COUNT != 0 && END_PC == PC) {
19 PC = START_PC;
20 --COUNT;
21 } } } }

Figure 3. Excerpt from an ISAX that provides zero-overhead
loop functionality via custom registers, a dedicated setup
instruction, and an always-block.

ISAXes, such as reading a register value, or writing the pro-
gram counter to initiate a jump, are represented by sub-
interface operations. For each such sub-interface, SCAIE-V
provides a virtual datasheet to characterize the base core’s
microarchitecture. This speci�es the latency and the tempo-
ral availability of a sub-interface, abstracted as earliest and
latest time steps relative to a time step 0 representing the
instruction fetch stage of the core. Each sub-interface can
only be used once per instruction in an ISAX, an exception
to this rule being the �ush and stall signals, which may be
instantiated in each stage. Our Longnail (Section 4) tool inter-
prets this virtual datasheet for its own scheduling decisions
in order to generate extensions that are compatible with and
optimized for the speci�c target core. Table 1 summarizes
the available sub-interfaces and their signatures.

1 InstructionSet sqrt extends RV32I {
2 instructions {
3 sqrt {
4 encoding: 12'd0 :: rs[4:0] :: 3'b000 :: rd[4:0]
5 :: 7'b0101011;
6 behavior: {
7 unsigned<32> arg = X[rs], res = 0;
8 spawn {
9 for (int i = 0; i < 32; ++i) {/* CORDIC */}
10 X[rd] = res;
11 } } } } }

Figure 4. Excerpt from an ISAX that computes the square
root of a register operand using an iterative CORDIC algo-
rithm. The operand is retrieved in-order with the fetched
instruction. Wrapping the long-running part of the computa-
tion in a spawn-block allows the core to execute independent
operations in parallel to the CORDIC iterations.

Using the original SCAIE-V tool as a baseline, we extend
its capabilities here to support CoreDSL features in an HLS-
friendly manner. One such feature is the added support for
SCAIE-V-managed custom registers, holding ISAX-internal
state. For these, SCAIE-V provides timing information on
the custom read- and write sub-interfaces, and receives size,
element type and usage information from a HLS tool. This
information is used to automatically instantiate new storage
elements that are accessed in a similar manner as the general-
purpose register �le. Custom register �les are accessed with
an index that is explicitly computed inside an instruction’s
behavior, rather than being extracted from the �elds in the
instruction’s encoding.

3.2 Execution modes
We support three execution modes for instructions, and a
dedicated mode for implementing always-blocks.

Results
• 8 ISAXes, 4 base cores
• Demonstrated end-to-end flow from CoreDSL description to RTL
• ISAXes can be composed

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Oppermann et al.

Table 3. ISAXes used in the evaluation to demonstrate the capabilities of our proposed �ow

ISAX Description Demonstrates

autoinc Auto-incrementing load / store instructions and setup, us-
ing a custom register to track the current address

Custom register and main memory access

dotp 4x8bit dot product (Figure 1) Use of loop and bit ranges to concisely describe SIMD
behavior

ijmp Read next PC from memory PC and main memory access
sbox Lookup from AES S-Box Constant custom register
sparkle Lightweight post-quantum cryptography [13] R-type instructions, bit manipulations, helper functions
sqrt_tightly CORDIC-based �x-point square root Loop unrolling, use of tightly-coupled interfaces
sqrt_decoupled CORDIC-based �x-point square root spawn-block, use of decoupled interfaces
zol Zero-overhead loop inspired by PULP extensions [27].

Loop bounds and counter modeled as custom registers.
PC and custom register access in always-block.

Table 4. ASIC results for area and frequency overheads of ISAX when integrated into base cores

ORCA Piccolo PicoRV32 VexRiscv (5 stage)
Area Freq. Area Freq. Area Freq. Area Freq.

Base core, area excluding any caches 6,612 `<2 996 MHz 26,098 `<2 420 MHz 4,745 `<2 1,278 MHz 9,052 `<2 701 MHz

autoinc + 20 % - 6 % + 3 % - 9 % + 23 % + 0 % + 12 % + 2 %
dotprod + 23 % - 14 % + 4 % + 0 % + 21 % - 2 % + 21 % + 2 %
ijmp + 2 % - 3 % + 7 % + 3 % + 7 % + 2 % + 12 % + 0 %
sbox + 7 % - 2 % + 0 % + 3 % + 6 % + 2 % + 8 % - 1 %
sparkle + 85 % - 24 % + 2 % - 1 % + 46 % + 0 % + 45 % - 2 %
sqrt_tightly + 80 % - 32 % + 22 % - 15 % + 100 % - 5 % + 43 % - 8 %
sqrt_decoupled + 56 % - 5 % + 10 % + 3 % + 111 % - 7 % + 47 % + 6 %
. . . without data-hazard handling + 46 % - 6 % + 10 % + 3 % + 96 % - 2 % + 40 % + 4 %
zol + 7 % - 2 % + 13 % + 4 % + 10 % - 1 % + 14 % - 3 %

autinc+zol + 29 % - 6 % + 3 % + 2 % + 32 % - 1 % + 16 % + 5 %

The square root ISAXes share the same behavior speci�-
cation, i.e. 32 unrolled iterations of a CORDIC-based ap-
proach, resulting in the largest extensions in our evalua-
tion. Longnail distributes the computation across 10 pipeline
stages, which is longer than any of our host cores can accom-
modate, necessitating either the tightly-coupled or decoupled
execution mode.
The tightly-coupled mode usually saves area, as we can

see for VexRiscv and PicoRV32. Yet, in case of ORCA and
Piccolo, the downstream ASIC synthesis have to put more
e�ort to achieve timing closure within the ISAX module,
using more area in order to satisfy the timing constraints.
For completeness, we performed a supporting experiment
where we manually added an additional pipeline stage in
the ISAX for returning the result. This simpli�es timing
closure signi�cantly and reduces the ISAX area overhead
considerably. As discussed before, this ine�ciency will be
solved in future work with a technology library that enables
the scheduler tomake better-informed decisions about where
to insert pipeline register to break long combinational paths.
As an additional experiment, we also deactivated the au-

tomatic data-hazard handling in SCAIE-V, while using the

decoupled mode. This con�guration reduces area further, but
would require either compiler support to handle data hazards,
or very careful manual use of the ISAXes as intrinsics.

5.5 ISAX performance bene�ts
While the focus of this paper is the synthesis and integration
of ISAXes and not the potential performance gains of speci�c
custom instructions, even a simple example, namely adding
the elements of an n-element integer array held in memory,
already shows typical bene�ts. When simulated, the baseline
VexRiscv version requires 18= + 50 cycles. The version using
our sample autoinc and zol ISAXes takes 11= + 50 cycles.
Considering the 5max on the 22nmASIC, we observe that the
core’s frequency is practically una�ected by the extension.
Hence, the 16% additional chip area enables a >60% speed-up
in this simple example.

In a more complex application of performingML inference
on audio signals (see Section 5.6) , we have observed four
ISAXes, including zol, leading to overall gains of 2.15x in
wall-clock performance and 30% power savings.

Impact in Scale4Edge ecosystem
• CoreDSL successfully used by application engineers to accelerate

audio event detection application
• Successful tapeout with earlier version of SCAIE-V and handwritten

ISAX module → 15 % area for ISAX enables real-time performance

Paper
CoreDSL

frontend &
specification

SCAIE-V
2.0

see: Ecker et al., A Scalable RISC-V Hardware Platform for Intelligent Sensor Processing, DATE 2024

