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Abstract—Current programming models face challenges in
dealing with modern supercomputers’ growing parallelism and
heterogeneity. Emerging programming models, like the task-
based programming model found in the asynchronous many-
task HPX programming framework, offer new ways to express
parallelism, enhance scalability, and mask synchronization and
communication latency on multi-core and distributed systems.

Regular high-performance computing benchmarks are often
unsuitable for comparing different programming models due
to their limited code complexity. However, real-world scientific
applications are usually too complex. As a middle ground, proxy
applications model the behavior of actual scientific problems,
while reducing code complexity.

In our research on using HPX to program machines with
heterogeneous compute units (e.g., GPU and FPGA/AI Engines),
we have also substantially optimized a pure HPX-based software
baseline of the LULESH proxy application. This paper discusses
the techniques we applied yielding single-node speed-ups of 1.33x
to 2.25x for different problem sizes relative to the LULESH
OpenMP reference implementation.

Index Terms—HPC, task-based programming, LULESH, HPX

I. INTRODUCTION

Modern supercomputers provide enormous computational
power, enabling applications in all areas of High-Performance
Computing (HPC) that were previously unimaginable. In addi-
tion to machine learning and artificial intelligence, these new
possibilities greatly benefit applications in all scientific fields.
Notable advances include N-body simulation in astrophysics,
molecular dynamics simulation, climate modeling, and protein
folding.

In recent years, the enhanced computation power of HPC
systems is largely due to the continuous growth in parallelism.
The total number of compute nodes is increasing, and at the
same time, the number of CPU cores per node is also rising.
Furthermore, there is a growing emphasis on heterogeneity,
and new many-core architectures emerge.

The way these systems are programmed has not advanced
in the same way. The MPI+X programming model is still the
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most widely used. However, the underlying idea of dividing
and statically scheduling computational problems to different
cores and nodes is facing challenges when scaling up to
massively parallel systems. The overhead caused by synchro-
nization, communication, and data exchanges between threads
and nodes often leads to a waste of computing resources
due to waiting execution threads. These issues become even
more problematic in the case of load imbalance and irregular
applications.

In recent years, there has been a rise in various alternative
programming models. One such model is represented by Asyn-
chronous Many-Task runtime systems (AMTs). AMTs involve
breaking down a computational problem into countless fine-
grained tasks and expressing their dependencies. Unlike a fixed
schedule, AMTs dynamically schedule tasks during runtime
using the available computational resources. By specifying
dependencies at the task level, synchronization barriers can
be avoided. Although AMTs cannot completely eliminate
communication between nodes, they can effectively reduce
latency by overlapping communication and computation. This
approach leads to improved overall load balancing, even for
irregular applications.

Comparing the performance of different programming mod-
els is more challenging than comparing pure hardware per-
formance. Typically, HPC micro-benchmarks such as GEMM
or STREAM lack the code complexity needed to properly
evaluate new paradigms. On the other hand, porting an entire
scientific application to a different programming model re-
quires significant effort and understanding. Proxy applications
offer a middle ground. They are simplified versions of real-
world applications but maintain the typical structure related to
computation and communication. This approach enables the
assessment of new programming models using a manageable
code base without requiring in-depth knowledge of the under-
lying scientific context.

In this work, we adapt the LULESH proxy application [1]
to use HPX [2], an asynchronous model tasking implemented
as a C++ library, as a single-node application. We implement a
completely task-based approach and compare our implementa-
tion with the OpenMP-based reference implementation [3]. In



1 // create task (executed asynchronously)
2 hpx::future<int> f1 =
3 hpx::async(do_some_work, 42)
4

5 // attach continuation
6 hpx::future<int> f2 =
7 f1.then([](hpx::future<int> &&f_move) {
8 return do_more_work(f_move.get());
9 });

10

11 // create more tasks
12

13 // block until result is ready
14 int result = f2.get();

Fig. 1. Minimal code example demonstrating the use of futures and contin-
uations in HPX.

our evaluation using various problem sizes, we achieve speed-
ups ranging from 1.33x to 2.25x with our HPX implementa-
tion. We show that this speed-up is attained by increasing the
overall CPU utilization.

This paper is structured as follows: Section II provides
an overview of the HPX programming framework and the
LULESH proxy application. Afterward, we discuss related
work in Section III. In Section IV, we describe our HPX
implementation of LULESH in more detail, before evaluating
its performance in Section V. Finally, Section VI concludes
our work.

II. BACKGROUND

In this section, we first provide an overview of the HPX
programming framework, and then describe the LULESH
proxy application in more detail.

A. HPX Programming Framework

HPX [2] is an AMT C++ library. Its API is designed to
conform to the C++ standard API for asynchronous execution,
while including additional experimental features intended for
future standardization.

HPX is based on the concept of Futurization. HPX and
C++ use Futures as objects to hold the state and result of an
asynchronous operation. The code example in Figure 1 shows
a simple demonstration.

The use of future objects allows for the immediate return
when creating an asynchronous task using hpx::async() (cf.
line 2). This enables the current thread to continue executing
while the actual computation of the created task will be done
later. HPX offers further mechanisms for building task graphs
based on futures. Continuations make it possible to attach tasks
to a future object, and these tasks are executed after the pre-
vious task becomes ready (cf. line 6). hpx::dataflow() or
hpx::when_all() can be used to wait on multiple preceding
tasks. In our code example, the functions do_some_work()
and do_more_work() will be executed asynchronously, and
the current execution thread does not block until we finally
access the result of the asynchronous operation in line 14.

HPX creates a single lightweight thread for each task. These
lightweight threads are managed by the HPX runtime entirely
in user space, independent of the Operating System (OS).
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Fig. 2. The hexahedral mesh used in LULESH.

This approach allows for very short context switch times
and reduced synchronization overhead compared to traditional
“heavyweight” multi-threading at the OS-level. The HPX
scheduler runs these many lightweight threads on a smaller
set number of OS worker threads, generally one per CPU
core. HPX employs techniques like work stealing and sharing
to automatically distribute the workload evenly across CPU
cores, aiming for high resource utilization.

Furthermore, HPX offers templates for parallel algorithms,
such as hpx::for_each() and hpx::reduce(). The user
provides a custom function, which the runtime can execute
in parallel tasks on all input objects based on the specified
execution policy.

AMTs target not only local execution, but also distributed
systems. To simplify task execution on remote nodes, HPX
offers a uniform API for remote and local task execution,
improving the scalability of parallel programs.

B. LULESH Proxy Application

The LULESH (Livermore Unstructured Lagrange Explicit
Shock Hydrodynamics) proxy application [1] solves the spher-
ical Sedov Blast Wave problem using Lagrange hydrodynam-
ics. Hydrodynamics models the motion of different materials
when they are subjected to forces. The computational structure
of LULESH is representative of many computer codes that
solve hydrodynamics problems. It contains about 4,000 lines
of code, making it more complex than the usual HPC micro-
benchmarks, but far less complex than most actual scientific
codes.

In LULESH, the physical region of interest is represented
using a hexahedral mesh as shown in Figure 2. This mesh
consists of s3 hexahedrons, called mesh elements, and (s+1)3

nodes in-between these elements, where s is the size in each
dimension. During the calculation, each mesh element can be
deformed. Some quantities, such as energy and pressure, are
saved for each element, while others such as velocity and
position are saved at the node level. As a result, computation
steps are performed either node-wise or element-wise.



CalcTimeIncrement()
LagrangLeapFrog()

LagrangeNodal()
CalcForceForNodes()

CalcVolumeForceForElems()
InitStressTermsForElems()
IntegrateStressForElems()
CalcHourglassControlForElems()

CalcAccelerationForNodes()
ApplyAccelerationBoundaryConditionsForNodes()
CalcVelocityForNodes()
CalcPositionForNodes()

LagrangeElements()
CalcLagrangeElements()
CalcQForElems()
ApplyMaterialPropertiesForElems()

EvalEOSForElems()
UpdateVolumesForElems()

CalcTimeConstraintsForElems()

Fig. 3. Simplified call graph of the LULESH proxy application.

In order to model heterogeneous materials, the mesh ele-
ments are divided into multiple regions with different material
properties.

In the following, we provide an overview of the compu-
tational structure of LULESH as required to understand this
paper. A more detailed description and derivations of the actual
calculations are explained in detail in [1].

The main underlying data structure is called Domain, which
contains arrays for all element and node properties. It also
includes a mapping between each mesh element and its
surrounding mesh nodes using an array of the respective node
indices. Similarly, it has a mapping of all elements that belong
to each region.

The computation involves multiple for-loops iterating over
the mesh elements or nodes. The OpenMP reference imple-
mentation heavily uses parallel for-loops. However, some
loops are combined into parallel regions, resulting in a total
of 30 parallel regions.

Figure 3 shows a simplified call graph of LULESH. Each
of the listed steps involves multiple kernels. The primary com-
ponent is the Lagrange leapfrog algorithm, which progresses
the solution for a single time increment in each iteration. It
can be further divided into three steps:

The initial step takes place within the function
LagrangeNodal(). During this step, the properties of
the mesh nodes are updated. The most computationally
intensive task in this stage involves the calculation of forces
at each mesh node in all three dimensions. There are two
different force components in LULESH. The first component
is induced by stress, and is calculated for each mesh element

based on pressure and artificial viscosity. The second force
component is based on the Flanagan-Belytschko hourglass
control force of a kinematic hourglass filter. Both force
components are calculated on an element-by-element basis,
and subsequently, the contribution to each surrounding node
is determined.

Node acceleration is calculated based on the forces acting on
each node. By integrating the acceleration, we can determine
the velocity and position of the nodes at this time step.

In LagrangeElements(), quantities of the mesh elements
are updated. First, kinematic element quantities, such as the
updated element volume, its derivative, and the deviatoric
strain rate tensor, are calculated. Then, the artificial viscosity
is updated in CalcQForElems().

In ApplyMaterialPropertiesForElems(), the pressure
and internal energy of the mesh elements are updated. Unlike
other steps, this computation is performed separately for each
region rather than on the entire mesh. In real-world scientific
applications, the calculation of material properties varies for
each material, leading to differences in the computational
intensity of the regions. In LULESH, different material prop-
erties are modeled by essentially repeating large portions of
the EvalEOSForElems() subroutine in certain regions, even
though the calculation itself remains unchanged. Per default,
LULESH doubles the computation for 45% of the regions,
and increases it even by twenty times for 5%. Additionally,
the speed-of-sound in each mesh element is also determined
in this step.

At the end of each iteration, constraints on the maxi-
mum time increment for the next iteration are calculated
in CalcTimeConstraintsForElems(). However, the run-
time of this computation step is negligible compared to
LagrangeNodal() and LagrangeElements().

III. RELATED WORK

Besides HPX [2], there are several other AMT frameworks.
Charm++ [4] is a C++ library that takes a similar approach
to HPX. However, its API does not conform to the C++
standard like the HPX API does, but uses custom objects and
interfaces instead. StarPU [5] is another AMT library designed
for heterogeneous architectures. On the other hand, X10 [6]
and Chapel [7] are domain-specific languages to express task-
based programs. PaRSEC [8] falls in between, offering a
domain-specific language solely for building the task graph.

Legion [9] takes a data-centric approach using so-called data
regions. Each task specifies the data region it operates on, and
Legion then constructs a data flow and execution graph. Legion
can be used directly as C++ library, or with the custom Regent
language [10].

The LULESH proxy application [1] is used in various case
studies to evaluate programming models, compiler techniques,
or hardware architectures. The initial study by Karlin et
al. [11] examines and compares multiple emerging program-
ming models, e.g., Charm++ and Chapel, to an OpenMP- and
MPI-based implementation. They achieve similar performance
using Charm++ compared to the MPI baseline.



The LULESH code is a more challenging application to
implement on an AMT, as its structure at first glance leaves
little room for load balancing and overlap of communication
and computation. We were interested to determine which
techniques could be applied to even such “AMT-hostile” code
to reap the benefits of high-productivity development using the
AMT approach, while still reaching competitive (or ideally:
better) performance to the reference codebase.

Further studies include porting LULESH to X10 [12],
Chapel once again [13], and LAIK [14]. Ferat et al. [15] use
LULESH to investigate task-offloading to GPUs using tasks
and the target directive in OpenMP.

A prior effort [16] to realize LULESH in HPX primarily
just replaced the traditional for-loops with hpx::for_each
constructs. However, this version performs significantly worse
than the OpenMP reference [17], as confirmed by our own
measurements.

In contrast, we employ a completely different approach: We
manually divide the computation into tasks and utilize paral-
lelism across loop boundaries in our HPX implementation.
This style allows us to outperform the OpenMP baseline.

Orthogonal to these efforts of moving LULESH to efficient
HPX are initiatives such as [18], which aim to improve
the support of HPX for heterogeneous computing elements
(e.g., GPUs, FPGAs, AI Engines). We do not consider these
in the present work, and stay with homogeneous CPU-only
execution.

IV. IMPLEMENTATION

In this section, we describe our task-based approach of
implementing the LULESH proxy application using HPX in
more detail.

In Section III, we pointed out that simply replacing all
OpenMP parallel for-loop with the corresponding loop
constructs provided by HPX can lead to a decrease in perfor-
mance [17]. In fact, in [16], parallel regions are split into mul-
tiple for-loops, which introduces even more synchronization
barriers. Additionally, LULESH does not expose the existence
of load imbalance during its loops, preventing work-stealing
between execution threads. Moreover, creating HPX threads
for every loop implies more overhead than just distributing
the work on the execution threads in OpenMP. Thus, we need
to explore other ways to exploit parallelism and benefit from
the asynchronous execution model of HPX.

Figure 4 illustrates the typical structure of an OpenMP
program. We use this simplified example of four consecutive
kernels throughout this section to demonstrate our changes
to the LULESH implementation in a step-by-step fashion.
Each parallel for-loop and parallel region introduces a
synchronization barrier between all threads at the end of the
loop or region in OpenMP. These synchronization barriers are
also present in HPX’s parallel for loop constructs.

In our approach, the first step consists of manually breaking
down each loop’s computation into tasks, instead of just using
parallel for-loop constructs. This concept is illustrated in
Figure 5. Each task then iterates over P elements only, with

1 #pragma omp parallel for
2 for (i = 0; i < N; i++) { ... }
3

4 #pragma omp parallel for
5 for (i = 0; i < N; i++) { ... }
6

7 #pragma omp parallel for
8 for (i = 0; i < N; i++) { ... }
9

10 #pragma omp parallel for
11 for (i = 0; i < N; i++) { ... }

Fig. 4. Typical structure of an OpenMP implementation with a sequence of
parallel for-loops.

1 std::vector<hpx::future<void>> v0, v1, v2, v3;
2 for (i = 0; i < N; i += P) {
3 auto f0 = hpx::async([i] (...) {
4 for (j = i; j < (i + P); j++) { ... }
5 });
6 v0.push_back(f0);
7 }
8 hpx::wait_all(v0); // synchronization barrier
9

10 for (i = 0; i < N; i += P) {
11 auto f1 = hpx::async([i] (...) {
12 for (j = i; j < (i + P); j++) { ... }
13 });
14 v1.push_back(f1);
15 }
16 hpx::wait_all(v1); // synchronization barrier
17

18 for (i = 0; i < N; i += P) {
19 auto f2 = hpx::async([i] (...) {
20 for (j = i; j < (i + P); j++) { ... }
21 });
22 v2.push_back(f2);
23 }
24 hpx::wait_all(v2); // synchronization barrier
25

26 for (i = 0; i < N; i += P) {
27 auto f3 = hpx::async([i] (...) {
28 for (j = i; j < (i + P); j++) { ... }
29 });
30 v3.push_back(f3);
31 }
32 hpx::wait_all(v3); // synchronization barrier

Fig. 5. We manually partition loops into parallel tasks, but maintain the
synchronization barrier after each loop.

1 std::vector<hpx::future<void>> v;
2 for (i = 0; i < N; i += P) {
3 auto f1 = hpx::async([i] (...) {
4 for (j = i; j < (i + P); j++) { ... }
5 }).then([i] (auto &&f) {
6 for (j = i; j < (i + P); j++) { ... }
7 }).then([i] (auto &&f) {
8 for (j = i; j < (i + P); j++) { ... }
9 }).then([i] (auto &&f) {

10 for (j = i; j < (i + P); j++) { ... }
11 });
12 v.push_back(f1);
13 }
14 // synchronization barrier
15 auto f_all = hpx::when_all(v);

Fig. 6. If no dependencies exist between consecutive loops, we can
partition each loop into tasks, and build independent task chains using
hpx::future<>::then.



the partitioning size P being adjustable based on the overall
problem size. We use hpx::async() to create the tasks and
pass the function to be executed as a lambda expression in
this example.

In addition, we preserve the synchronization barriers at the
end of each loop in this step. They are implemented using
hpx::wait_all(), which blocks until all futures in the given
vector are ready. However, it is important to note that these
barriers are often not necessary for the correctness of the
calculation itself, but are imposed by the coding structures
offered by the programming model.

For example, if we consider the consecu-
tive kernels CalcVelocityForNodes() and
CalcPositionForNodes(), we can observe that both
involve element-wise operations. The velocity of each node
is calculated based on the acceleration of that node, and
similarly the position of each node is only dependent on its
velocity. This means that there are no dependencies between
different individual nodes, and there is no need to delay the
calculation of a specific individual node’s position until the
velocity of all other nodes has been calculated.

Thanks to our manual partitioning into tasks, we can im-
mediately launch the tasks calculating the node positions after
the task calculating the velocity for this partition of nodes has
finished. This structure is shown in Figure 6. In our example,
we directly attach the remaining kernels as continuations to
the task of the first kernel for each partition. We then need
only a single synchronization barrier at the end, after all tasks
for all kernels and partitions have been executed.

By creating these independent task chains, we provide the
HPX scheduler with more flexibility to improve load-balancing
and resource utilization.

We only need seven synchronization barriers in total per
iteration. They are required, for example, when a kernel
iterating over all mesh elements is followed by a kernel
iterating over all mesh nodes.

Note that we now use hpx::when_all() instead of
hpx::wait_all() to implement the synchronization barrier
in our example in Figure 6. Unlike hpx::wait_all(), which
blocks the execution, hpx::when_all() returns a future,
becoming ready as soon as all the futures in the passed vector
are ready. This enables us to directly attach additional tasks
to be executed after the barrier in our LULESH code.

The key computation in LULESH is performed on a central
data structure called the Domain. However, there are also some
temporary variables that require arrays to be allocated in each
iteration. This is particularly noticeable during the stress cal-
culation in LagrangeNodal(), as well as in the region-wise
computation in ApplyMaterialPropertiesForElems().
Instead of allocating a single global array for all nodes
or elements, we allocate task-local temporary arrays, when
possible, to improve data locality.

During implementation, we have observed that some kernels
contain relatively little work. Although HPX uses a lightweight
threading model, some overhead still exists to create and
schedule tasks on the underlying worker OS-threads. Hence,

1 std::vector<hpx::future<void>> v;
2 for (i = 0; i < N; i += P) {
3 auto f1 = hpx::async([i] (...) {
4 for (j = i; j < (i + P); j++) { ... }
5 for (j = i; j < (i + P); j++) { ... }
6 }).then([i] (auto &&f) {
7 for (j = i; j < (i + P); j++) { ... }
8 for (j = i; j < (i + P); j++) { ... }
9 });

10 v.push_back(f1);
11 }
12 // synchronization barrier
13 auto f_all = hpx::when_all(v);

Fig. 7. Combine consecutive loops in one task to reduce the number of total
tasks.

1 std::vector<hpx::future<void>> v;
2 for (i = 0; i < N; i += P) {
3 auto f1 = hpx::async([i] (...) {
4 for (j = i; j < (i + P); j++) { ... }
5 for (j = i; j < (i + P); j++) { ... }
6 });
7 v.push_back(f1);
8 auto f2 = hpx::async([i] (...) {
9 for (j = i; j < (i + P); j++) { ... }

10 for (j = i; j < (i + P); j++) { ... }
11 });
12 v.push_back(f2);
13 }
14 // synchronization barrier
15 auto f_all = hpx::when_all(v);

Fig. 8. Tasks for independent consecutive loops can be executed in parallel.

we combine consecutive kernels into one task to reduce the
overall number of tasks having to be created. In our example
in Figure 7, this is demonstrated by combining two loops into
one task each, reducing the number of chained tasks by half.
Note that we do not fuse the loops of these kernels in order
to preserve the computational structure of LULESH, and to
thus ensure a fair comparison to the reference implementation.
Instead, we maintain multiple separate loops, one after the
other, within a single task.

Additionally, we have identified two sections in the leapfrog
algorithm where independent kernels follow each other. In
these sections, the respective tasks can be executed in parallel.
The first part of the algorithm involves calculating the forces
on the nodes in the mesh. In this step, the two different types
of nodal forces, namely volume forces induced by stress and
the hourglass forces, can be calculated independently. As a
result, we can launch all tasks that calculate these forces in
parallel. This is illustrated in Figure 8. In this example, instead
of attaching the second task as continuation to the first, we
create an independent task and add the returned future to our
vector of futures. The HPX scheduler is then free to choose
the order in which it schedules the tasks. Once calculated, all
force components must be summed up for each node.

The second section that allows for parallelization is in
ApplyMaterialPropertiesForElems(). This part of the
algorithm is performed per region. While all kernels for a
particular region must be executed sequentially, the different
regions are independent of each other and can be calcu-
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Fig. 9. LULESH runtime of the OpenMP reference and our HPX implementation using different problem sizes and numbers of execution threads. The lowest
runtimes are achieved with HPX and 24 threads. Note that the y-axis has a logarithmic scale.

lated in parallel. To this end, we pre-create all tasks for
all regions simultaneously and allow the HPX scheduler to
balance the work on the worker threads. This works par-
ticularly well because there is load imbalance between the
regions due to differences in size and computational intensity.
As discussed in Section II-B, variances in computational
intensity between regions due to different material properties
are modeled in LULESH by repeating the calculation of
EvalEOSForElems() for certain regions.

Overall, our approach of building task chains using futures
and continuations provides us with greater flexibility in ex-
pressing parallelism across loops. Additionally, we now pre-
create tasks well in advance of the actual execution flow, rather
than waiting until the execution flow reaches the respective
for-loop. In fact, we pre-create all tasks for one iteration of
the leapfrog algorithm at once, relying heavily on futures and
continuations. Basically, the same applies to our short code
examples in Figures 6 to 8. These examples only demonstrate
how tasks are created. The actual task execution, however,
occurs entirely asynchronously outside of these code snippets
and is managed by the HPX runtime.

V. EVALUATION

In this section, we compare the performance of our
LULESH HPX version to the OpenMP reference implementa-
tion. First, we describe our experimental setup and then present
our evaluation results. Finally, we report on our programming
effort for the realization, to give a (subjective) impression on
the productivity of using the AMT paradigm.

All experiments are executed on an AMD EPYC 7443P
processor with 24 cores clocked at up to 4035MHz. Both
implementations are compiled using GCC version 13.1.1 with
identical optimization flags. Furthermore, we use HPX ver-
sion 1.10 with JEMalloc [19] as memory allocator. The task
scheduling policy being used is HPX’s default priority local
scheduling policy. However, we do not utilize different task
priorities. Depending on the problem size s, the reported
runtimes are the average over 50 runs (s ≤ 75), 15 runs
(s = 90), or 2 runs (s ≥ 120), respectively, due to very long
runtimes for larger problem sizes.

A. Perfomance Results

In our initial experiment, we change both the overall prob-
lem size and the number of execution threads. The problem
size is determined by the number of mesh elements in each
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dimension. We utilize six different problem sizes: 45, 60, 75,
90, 120, and 150 elements. The number of execution threads
is increased in powers of two. In addition, we also test with
24 and 48 execution threads to account for our 24-core CPU.
We maintain the default setting of dividing the mesh elements
into 11 regions. The actual runtimes of our experiments are
shown in Figure 9.

First, we have to examine the behavior of the OpenMP
reference implementation. It shows a similar trend when
increasing the number of execution threads for all problem
sizes. The OpenMP version takes the longest if executed on
just a single thread. Runtimes then decrease and reach their
minimum at either 16 or 24 threads. With more than 24
execution threads, runtimes slightly increase again. This is
most likely due to simultaneous multithreading (SMT) now
being required, and the two SMT threads on each CPU core
having more interference than speed-up.

In general, our HPX version exhibits similar behavior,
consistently achieving the shortest runtimes with 24 threads,
meaning we have one worker thread per CPU core and do
not incur a penalty due to SMT. The speed-up relative to
HPX single-threaded execution is approximately one order of
magnitude.

When comparing the OpenMP and HPX versions, we find
that the OpenMP version is faster when running with only a
single thread. This is because the OpenMP version essentially
runs all loops sequentially, while the HPX version incurs an
overhead for creating and scheduling many tasks. However,
for problem sizes of 45 and 60, we begin to see runtime im-
provements in our HPX version when using just two execution
threads. As we increase the number of OS-threads, the speed-
ups also increase, peaking at 24 execution threads (one per
core, no SMT).

The OpenMP reference implementation gets only rel-
atively little work done in each loop. For instance,
the two consecutive kernels CalcVelocityForNodes()
and CalcPositionForNodes() consist of three multiply-
accumulate operations per loop iteration each. When dealing
with a small overall problem size, this leads to a lower ratio

of productive work vs. synchronization effort. At this point,
our implementation benefits from combining consecutive loops
into single tasks. Once a task is scheduled, it runs for a longer
period until the scheduler needs to be invoked again, resulting
in reduced scheduling and synchronization overhead.

When the size of the problem increases further, a larger
speed-up is only achieved with 16 or more execution threads.
For the two largest problem sizes of 120 and 150, the OpenMP
version is even faster with less than 16 threads compared to
our HPX version. This is because each loop in the OpenMP
version covers a larger range of mesh elements or nodes,
resulting in more computation per loop, and a better work-
to-synchronization ratio.

Only when utilizing 16 or more execution threads can the
HPX scheduler take advantage of the advanced parallelization
possibilities in our finely-granular many-tasked implementa-
tion. But as the current trend goes towards ever larger per-
CPU core counts (e.g., 128 from AMD and Ampere, 288 from
Intel), using our HPX “native” AMT approach promises to
offer better scalability in the future.

In our second experiment, we analyze the speed-up of
our HPX implementation compared to the OpenMP reference
implementation. For this comparison, we use a fixed number
of 24 execution threads for both implementations. In addition
to the first experiment, we also vary the number of regions the
mesh elements are divided into. Figure 10 shows the speed-ups
of our HPX version for different problem sizes and numbers of
regions. In addition to the default of 11 regions, we increment
the number by intervals of five and also evaluate with 16 and
21 regions.

The greatest speed-up is observed for the smallest problem
size, consisting of 45 mesh elements in each dimension. In
this case, our HPX implementation achieves a speed-up of
up to 2.25x. We also notice the most significant variation
when adjusting the number of regions across all evaluated
problem sizes. As previously discussed, our implementation
benefits from reduced synchronization overhead as a result
of combining consecutive loops, while also providing the
scheduler with more parallelization flexibility due to finely-



TABLE I
NUMBER OF TASKS IN EACH PARTITION FOR DIFFERENT PROBLEM SIZES

USED IN OUR EVALUATION

Problem size LagrangeNodal() LagrangeElements()

45 2048 2048
60 4096 2048
75 8192 4096
90 8192 4096

120 8192 2048
150 8192 2048
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Fig. 11. Average ratio of productive time (during which the worker threads
actually perform computations) vs. the total execution time in the OpenMP
reference and our HPX implementation.

granular tasks. This effect becomes more pronounced with
an increasing number of regions. Since the computation in
ApplyMaterialPropertiesForElems() is performed sep-
arately for each region, the total number of loops increases
with more regions, while the number of elements being iterated
over in each loop decreases. This leads to even more small
loops with a synchronization barrier after each loop. Mean-
while, the number of tasks in our implementation remains
similar, as we use a fixed partitioning size for creating the
tasks and the total number of mesh elements does not change.

As the problem size increases, the maximum speed-up
achieved decreases. The limitations of the OpenMP implemen-
tation become less significant. The now-increased workload
per loop helps to reduce the synchronization overhead of the
OpenMP parallel regions. Additionally, LULESH already is
load-balanced, reducing the potential for further performance
gains along that axis. However, even with these challenges,
we were still able to achieve a speed-up of up to 1.34x for
the largest problem size of 150 using our HPX code vs. the
OpenMP baseline.

As described in Section IV, our implementation allows us to
adjust the partitioning size used for splitting the computation
into tasks. The partitioning size significantly impacts perfor-
mance. If chosen too finely-granular, the total number of tasks
increases, leading to rising scheduling overhead and more
context switches. In contrast, a too-coarse-grained granularity

of tasks may prevent the scheduler from exploiting parallelism
and balancing the load between CPU cores efficiently. Through
experimentation, we determined that the partitioning sizes
listed in Table I are best suited for our application.

We initially increase the partitioning size for the
LagrangeNodal() part of the leapfrog algorithm from 2048,
doubling it for each increase in problem size. However, in-
creasing the partition size beyond 8192 does not yield benefits,
even though it would reduce the total number of tasks for
larger problem sizes. On the other hand, the improved load
balancing possibilities compensate for the increased schedul-
ing overhead. Surprisingly, we even experience benefits from
decreasing the partitioning size in the LagrangeElements()
part for problem sizes of 120, and 150, to 2048, after using a
partitioning size of 4096 for problem sizes of 75 to 90.

In a separate experiment, we compare the resource uti-
lization of both variants. More accurately, we analyze the
ratio of the productive time, where worker threads actually
perform computations, vs. the total execution time, which
includes idling, or being engaged in management tasks. In
our task-based HPX implementation, we use the respective
performance counter provided by HPX to report idle times
of the worker threads. In OpenMP, we manually measure the
runtime each execution thread spends in each parallel region.
With this methodology, we exclude the single-threaded por-
tions of the OpenMP implementation from our measurement,
but do include the task creation in our HPX implementation.
However, we argue that this does not significantly impact our
comparison, since all computationally intensive operations are
contained in the parallelized parts of both implementations.
The reported numbers are the average across all execution
threads. In contrast to the previous experiments, we do not
run LULESH until completion but limit the iterations of the
main algorithm due to long execution times, and report the
mean over 50 runs.

Figure 11 shows the measured ratio of the time with
worker threads performing computations relative to the total
execution time. For both variants, we observe an improvement
in resource utilization with the increasing problem size. The
higher computational effort compensates for the parallelization
overhead. In the OpenMP implementation, the worker threads
spend only 54% of the execution time on computations for the
smallest problem size, whereas in our HPX implementation,
this percentage is already over 70%. The HPX implementation
then shows slight saturation for problem sizes above 90, with
the worker threads spending almost 96% on computations.
In contrast, the OpenMP implementation does not show a
saturation effect. The overhead of statically distributing the
computation of parallel regions across execution threads does
not increase proportionally to the amount of work, therefore
becoming more negligible. Nevertheless, the OpenMP imple-
mentation does not achieve a percentage of computation higher
than 87% in our experiments.

When comparing Figure 10 and Figure 11, we notice a
strong correlation between the measured speed-ups and the
percentage of computation. Thus, our task-based approach



achieves speed-ups by improving the ratio of actual computa-
tions to overhead and idle times of the worker threads.

B. Programming Effort

When deciding on a programming model, it is important
to consider not only performance, but also the size of the
programming effort required to use it. Although this is hard to
measure, we want to share our subjective experience in porting
LULESH to our many-task-based HPX implementation.

Parallelizing a sequential program using OpenMP is quite
straightforward. You identify sections, usually loops, that can
be executed in parallel, and add the corresponding pragmas in
the code. This approach also works using parallel algorithms
provided by HPX. However, we have observed that this alone
is not enough to achieve comparable or even greater speed-ups
when applied 1-to-1 in LULESH.

Instead, we had to take a number of additional steps to
be able to exploit more parallelism. Before modifying any
code, we needed to conduct a thorough analysis of the fine-
grained (per-element/per-node) data dependencies between the
different kernels of LULESH. This was necessary in order
to identify opportunities for additional parallelization and
concurrency beyond loop granularity.

In terms of the code itself, we made minimal changes to
the code that carries out the actual calculations. We only made
minor adjustments, such as tweaking loop ranges. The primary
changes were in the function declarations, as we needed to
pass arguments between tasks in different ways, and combine
multiple formerly separate functions into one task. However,
much effort was put into rewriting the main iteration loop
of the leapfrog algorithm. We decided to simplify the call
hierarchy, and pre-create all tasks in the top-level function in
order to better express dependencies.

Although we would say that the overall code complexity of
our HPX implementation is similar to the OpenMP version,
the complexity of the code in the main loop that builds the
entire task graph for one iteration is much higher than simply
calling all kernels sequentially, resulting in about 200 lines of
code. This is not only due to the actual code, but also the
planning effort involved in the implementation.

Thus, while HPX does enable the expression of more finely-
granular parallelism that can be exploited with growing CPU
core counts, it takes more intellectual effort on part of the
programmer to reason about these structures. Actually imple-
menting in HPX is then relatively easy again, as the AMT
framework relies only on a few, well understood primitive
constructs.

VI. CONCLUSION

In this work, we present a new implementation of the
LULESH proxy application using the HPX programming
framework. Unlike a previous implementation [16], we have
opted for an “HPX native” strictly task-based approach to
fully utilize parallelism across loop boundaries. This involves
manually dividing loops into tasks and creating task chains

using continuations. We then merge consecutive loops into
tasks, and execute independent tasks in parallel.

Our evaluation demonstrates that our approach achieves
speed-ups compared to the OpenMP reference implementation
for all problem sizes. Although LULESH is already well-
balanced and quite suitable for parallelization with OpenMP,
our approach outperforms OpenMP by improving the overall
CPU utilization, with speed-ups of up to 2.25x for the smallest
problem size of 45, and around 1.33x speed-up for the largest
problem size, even though OpenMP is slightly faster for
single-threaded execution.

The decrease in runtime comes with the downside of
requiring more programming effort in HPX. We had to to
more accurately analyze data dependencies in order to identify
separate parts of the program that could run in parallel.
Additionally, the process of pre-creating all the necessary tasks
and specifying their interdependencies for each iteration of the
leapfrog algorithm is significantly more complicated than just
calling different kernels of the program in the same sequence
as in the original version.

We are convinced that the optimization techniques presented
in this work are generally applicable to a wide range of ap-
plications. As proxy application, LULESH already represents
many scientific codes with a similar structure. However, its
general structure of consecutive, parallelizable kernels is not
specific just to LULESH-related codes, but is widely used in
many kinds of applications. In addition, the remote execution
capabilities of HPX ensure scalability not only on single-node
but also on multi-node environments.

In future work, our LULESH implementation could be
extended to run on multi-node environments and compared
to an MPI-based implementation. We anticipate additional
benefits from using the asynchronous mechanisms of HPX
instead of the mostly synchronous data exchange mechanisms
of MPI.

The source code of our implementation is available at [20].
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Appendix: Artifact Description/Artifact Evaluation
Artifact Description (AD)

I. OVERVIEW OF CONTRIBUTIONS AND ARTIFACTS

A. Paper’s Main Contributions

C1 We provide a many-task-based implementation in
HPX of the LULESH proxy application, achieving
speedups between 1.3x and 2.25x compared to the
OpenMP reference implementation.

B. Computational Artifacts

A1 https://doi.org/10.5281/zenodo.13683379

Artifact ID Contributions Related
Supported Paper Elements

A1 C1 Figures 9 - 10

II. ARTIFACT IDENTIFICATION

A. Computational Artifact A1

Relation To Contributions

This artifact provides the source code of our many-task-
based HPX implementation of the LULESH proxy application.
It is used to generate the presented runtimes and speed-
ups compared to the OpenMP reference implementation of
LULESH. The underlying data structure is generated by the
implementation at runtime. The reference implementation is
publicly available on Github.

Expected Results

Our HPX implementation should be faster than the OpenMP
reference implementation of LULESH for the configurations
as given in Figures 9 and 10.

Expected Reproduction Time (in Minutes)

The expected time for Artifact Setup is about 30 mins.
Using the exact same parameter as presented in the paper,

the expected time for Artifact Execution would take several
days. However, by limiting the number of iterations executed
by the main algorithm of LULESH, the time for Artifact
Execution is about 4 hours. This does not reproduce the total
runtimes, but it shows the relative speedup of our implemen-
tation compared to the reference implementation.

The expected time for Artifact Analysis is about 30 mins.

Artifact Setup (incl. Inputs)

Hardware: The experiments were conducted on an AMD
EPYC 7443 24-core processor. A processor with at least 16
cores may be used to reproduce the results, however, the runs
with 48 threads cannot be executed then.

Software: The following software packages are required to
reproduce the results:

• jemalloc (latest version, 5.3.0), available at:
– https://github.com/jemalloc/jemalloc

• HPX (version 1.10.0), available at:
– https://github.com/STEllAR-GROUP/hpx

• LULESH reference implementation (version 2.0), avail-
able at:

– https://github.com/LLNL/LULESH)
• LULESH HPX implementation of this work, available at:

– https://doi.org/10.5281/zenodo.13683379
Datasets / Inputs: No datasets as inputs are required. The

underlying data structure is generated by the evaluation soft-
ware itself and can be configured using program arguments.

Installation and Deployment: The artifacts were compiled
using GCC version 13.1.1. Older GCC versions may work,
but were not tested. In addition, the following build tools are
required:

• CMake
• autogen
• automake
• autoconf
Before compiling the LULESH reference implementation,

the patch provided by us should be applied. This sets the
same compilation flags used for our implementation for a fair
comparison, and adds output for easier result analysis.

Artifact Execution

The following table gives an overview of the relevant flags
of our HPX implementation of LULESH.

Flag Description

--s Set problem size
--r Set number of regions (default: 11)
--i Number of iterations
--q Suppress verbose output
--hpx:threads Number of execution threads

Use --q for all experiments to suppress verbose output.
To reproduce the results of the first experiment presented in
Figure 9, the problem size and number of execution threads
are varied using the --s and --hpx:threads flags, re-
spectively. For each size out of [45, 60, 75, 90, 120, 150], run
with 1, 2, 4, 8, 16, 24, 32 and 48 threads. You may adjust the
number of threads if you have a CPU with more or less cores.
The --r flag can be left out or set to the default of 11.

The second experiment presented in Figure 10 can be
reproduced by fixing the number of threads to 24, but varying
the number of regions to 11, 16 and 21 using --r.

The same measurements must be conducted for the
LULESH reference implementation. The following table show
the corresponding flags to be used.



Flag Corresponding flag
(HPX-based version) (OpenMP reference)

--s -s
--r -r
--i -i
--q -q
--hpx:threads OMP_NUM_THREADS

Note that the number of execution threads for OpenMP
is not set by a flag but using the environment variable
OMP_NUM_THREADS.

In our evaluation, we averaged over multiple runs to retrieve
our final results. To fit into the time budget of article evalua-
tion, every measurement should be run only once. In addition,
use the --i flag to limit the number of iterations done per
measurement instead of running until completion for problem
sizes larger than 60. The following table shows our suggestion
for the number of iterations dependent on the problem size.

Problem size Number of iterations

75 1500
90 770

120 360
150 180

Artifact Analysis (incl. Outputs)

Both programs print the result of the run in a CSV-
compatible format at the end. Reproduce the plots of the first
experiment in Figure 9 by plotting runtime over number of
threads for a given problem size.

The speed-ups plotted in Figure 10 can be calculated by
dividing the runtime of the reference implementation through
the runtime of our HPX-based implementation for a given
problem size and number of regions.

Artifact Evaluation (AE)

A. Computational Artifact A1

Artifact Setup (incl. Inputs)

In the following, we describe all required steps to compile
the provided artifact and its dependencies. As alternative to
manually preparing the artifact, we provide a script which au-
tomatically builds the evaluation software, including fetching
and building dependencies and the reference implementation.

1) Option #1: Build with compile script:
• cd scripts && bash compile.sh

2) Option #2: Build manually step-by-step:
• We refer to the base directory where our source files are

extracted as $BASE, return to the base directory before
each stop

• Create required install directories and export environment
variables:

– export Jemalloc_ROOT=$BASE/jem-install

– export HPX_DIR=$BASE/hpx-install

– mkdir $Jemalloc_ROOT $HPX_DIR

• Clone JEMalloc from https://github.com/jemalloc/
jemalloc and build using:

– git clone

https://github.com/jemalloc/jemalloc.git

– cd jemalloc

– ./autogen.sh --prefix=$Jemalloc_ROOT

– make -j && make install

• Clone HPX from https://github.com/STEllAR-GROUP/
hpx and checkout tag v1.10.0:

– git clone

https://github.com/STEllAR-GROUP/hpx.git

– cd hpx

– git checkout v1.10.0

• Create build directory and build using CMake:
– mkdir hpx-build && cd hpx-build

– cmake -DHPX_WITH_MALLOC=jemalloc

-DCMAKE_BUILD_TYPE=Release

-DCMAKE_INSTALL_PREFIX=$HPX_DIR

-DHPX_WITH_FETCH_ASIO=ON

-DHPX_WITH_FETCH_BOOST=ON

-DHPX_WITH_FETCH_HWLOC=ON

-DHPX_WITH_EXAMPLES=OFF $BASE/hpx

– cmake --build . --target install -j48

• Create build directory for LULESH HPX implementation
and build using CMake:

– mkdir build && cd build

– cmake -DCMAKE_BUILD_TYPE=Release $BASE

– make -j

• Clone LULESH reference implementation from https://
github.com/LLNL/LULESH and apply patch:

– git clone

https://github.com/LLNL/LULESH.git

– cd LULESH



– git apply $BASE/patches/ae.patch

• Create build directory for LULESH rereference imple-
mentation and build using CMake:

– mkdir build-ref && cd build-ref

– cmake -DCMAKE_BUILD_TYPE=Release

$BASE/LULESH

– make -j

Artifact Execution

In the following, we describe how to run the experi-
ments. We also provide two scripts to automatically run
all experiments: run-full.sh for a full evaluation, and
run-reduced.sh for the limited time budget of the AE
process.

1) Option #1: Run script:
• cd scripts

• bash run-reduced.sh

2) Option #2: Run manually: Perform all runs manually
with the configurations described in the Artifact Description
for both our HPX implementation and the OpenMP reference
implementation. You can find the executables in the respective
build directories. The following example command runs the
HPX implementation with problem size 90 and 16 worker
threads for 770 iterations of the main loop.

• build/lulesh-hpx --s 90 --q --i 770

--hpx:threads=16

The corresponding command for the reference implementa-
tion in the OpenMP directory is as follows:

• OMP_NUM_THREADS=16 build-ref/lulesh2.0 -s

90 -q -i 770

Create two separate CSV files, one for the HPX
and reference implementation each, with the header
size,regions,iterations,threads,runtime,result.
Write the output of each run into the respective CSV file.

Artifact Analysis (incl. Outputs)

The provided Python script in
scripts/generate-graphs.py generates graphs
out of the measurement results corresponding to Figures 9
and 10, and print the respective speed-ups of the second
experiment. It expects two CSV files, one with the results
of all runs using the HPX implementation and another with
all results using the reference implementation. If the CSV
files have not been generated with the provided run script,
they should be passed as arguments to the python script as
follows:

• cd scripts

• python3 generate-graphs.py

/path/to/hpx.csv /path/to/reference.csv

The graphs are saved as image files and can be viewed
manually. The absolute runtimes should show a similar trend
compared to Figure 9, although the absolute values will
diverge when running the reduced number of iterations. How-
ever, the speed-ups should be comparable to Figure 10.

The graphs can also be generated manually. For the first
experiment, plot the runtime over the number of threads in
one plot for each problem size. For the second experiment,
first calculate the speed-up by dividing the runtime of the
reference implementation through the corresponding runtime
of our HPX implementation. The resulting speed-ups can then
be plotted for each problem size, or directly compared to the
given numbers in Figure 10.


