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Abstract—AMD AI Engines (AIEs) extend the design space
and open up new options for coarse-grained processing in
re-configurable accelerators. Pure FPGA designs for machine
learning often struggle to compete with the high clock frequencies
of GPUs for data-intensive workloads with only limited control
flow. Having AIEs available on-chip with an FPGA fabric allows
for low-latency co-processing and permits parts of an application
to be placed on the most suitable kind of processing unit.

Many data-heavy workloads, particularly in the AI domain,
benefit from data streaming. With TaPaSCo-AIE, we present
a framework for heterogeneous systems centered around data
streams. Our framework focuses on AMD Versal devices and
incorporates AI Engines and 100G network. We demonstrate
the efficient use of TaPaSCo-AIE in a real-world evaluation
based on a neural network, and achieve significant performance
improvements over CPUs, and even exceed the performance of
an A100 GPU.

Index Terms—FPGA, Versal, AI Engine, Heterogeneous com-
puting, Network

I. INTRODUCTION

Designing hardware for an FPGA design is a tedious task.
The required times for synthesis, place, and route usually take
hours. In addition, implementing optimized hardware designs
requires deep knowledge of hardware design languages (HDLs).
FPGAs can achieve good performance for control-flow intensive
tasks with wide data paths. However, FPGA designs usually
operate at frequencies (far) below 1 GHz and cannot match
the performance of GPUs for highly parallel workloads, such
as AI/ML workloads. Moreover, programming GPUs does not
require expertise in an HDL, and compilation times are shorter
compared to FPGA synthesis. Thus, it is desirable to choose the
best architecture balancing high performance with development
effort.

Heterogeneous computing systems combine different types
of computing units into a single system. For instance, System-
on-chips like AMD Zynq integrate hardened ARM CPUs with
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FPGA fabric. This allows designers to use the fast CPU for
general computing tasks and benefit from shorter development
cycles. On performance-critical sections, designers can spend
more time and effort to implement accelerators on the FPGA
fabric.

With the AI Engines (AIEs) AMD introduced for Versal
devices and for selected AMD Ryzen CPUs (Ryzen AI), a
developer is offered an additional option for performance
improvements. As AIEs consist of VLIW-based tiles with
vector units implemented as hard-cores, they operate at higher
clock frequency than the FPGA fabric, closer to that of GPUs.
In addition, with an array of up to 400 AIE tiles in Versal AI
Core devices, the AIEs provide a vast range of opportunities
for implementing operations in parallel. Furthermore, the
connections between FPGA Programmable Logic (PL) and
AIEs provide an aggregated performance of up to 1.56 TB/s
from PL to AIEs. Since each AIE not just supports wide
SIMD-style operation, but also VLIW-style parallelism, it is
more flexible than a pure vector/SIMD machine. AIEs have
a software-like programming model and are independent of
FPGA synthesis after PLIOs are placed.

In this paper, we present TaPaSCo-AIE, which extends
the existing FPGA accelerator framework TaPaSCo [1] with
support for AMD/Xilinx Versal FPGAs, its AIEs and DMA
streaming infrastructure. Furthermore, we also combine several
new architectural features of Versal, such as the Network-on-
Chip (NoC) and 100 G Ethernet, to realize scalable distributed
streaming processing architectures. To demonstrate the ad-
vanced capabilities of TaPaSCo-AIE, we implement a custom
neural network inference application, which we also distribute
across two devices.

II. RELATED WORK

As the models for artificial intelligence are increasing in
size, many novel computer architectures have been created. A
common characteristic of these architectures is high computing
power through parallelism and fast, distributed memory. The
tile-based architecture in Graphcore [2] facilitates a highly
scalable system by splitting computing and communication
into separate phases. Another approach by Cerebras [3]
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Fig. 1. TaPaSCo-AIE system overview on a Versal device.

enables scaling of compute power by improved manufacturing
techniques which allow the operation on entire wafers. AMD
Versal [4], which is used in this work, extends its existing
FPGA fabric by incorporating highly optimized, hardened IP
cores, such as AI engines. A similar approach can be observed
in networking, where hardware acceleration is necessary for
computations at line rate. To address this need, Intel and
NVIDIA have both introduced specialized hardware units
known as IPU and DPU, respectively. These units offload and
accelerate network functions from a host, leading to improved
performance [5], [6]. FPGAs are commonly used for network
processing, e.g. in the NetFPGA framework [7] and as a
network switch [8].

AIEs have already been utilized for different applications
[9], [10], [11], [12], [13]. The existing work focuses on specific
applications, while this work presents the integration of AIEs
into a general-purpose framework and tries to reduce the effort
for many future applications. In contrast to existing work, we
target entire applications, including data transfers between host
and device. To our knowledge, no prior work exists on using
the network on the Versal architecture to scale AIE operations
across distributed Versal cards.

III. TAPASCO ON VERSAL

TaPaSCo is a platform-independent framework to integrate
FPGA accelerators into heterogeneous systems. The framework
provides a tool-flow to generate the FPGA design based on
a composition of Processing Elements (PEs). PEs may be
provided as HLS kernels or directly written in an HDL. The
required infrastructure around the PEs, such as interconnects,
memory controllers, interrupt controller, or host connection, is
auto-generated according to the specific platform.

In addition, a software runtime library and Linux kernel
module facilitate the interaction with the accelerator. The
easy-to-use C++ and Rust APIs allow passing arguments and
data buffers, and launching the PE in just one function call.
Once written, the application runs on all platforms. Supported

platforms include various data center cards (AMD Virtex-
7, UltraScale+), AWS cloud instances, and embedded Zynq-
based devices (7000 and MPSoC). A plugin system allows for
extensions, such as Shared Virtual Memory (SVM) [14] or
100 G Ethernet [1].

The Versal architecture introduces many new hardened
units, which can be used in addition to the programmable
logic. With this approach, commonly used functionality can be
provided efficiently and does not need to be implemented on
the PL, reducing the mapping time of design synthesis, leaving
more logic available for custom applications, and potentially
achieving higher clock frequencies.

An example of such a system is shown in Figure 1. This
system consists of 9 PEs, of which the upper left one has a
DMA streaming connection to PCIe, and the lower left one
has a streaming connection via the MRMAC 100 G network
module to Ethernet. The lower two PEs on the right provide
data to and consume data from the AIEs, respectively. All PEs
have their control interface and memory access connected via
the NoC.

A. Network-on-Chip

As chip size grew in transistor count, Network-on-Chips
(NoCs) became a common mechanism to connect the individual
components on a chip. Even for FPGA designs, “soft” NoCs
have been implemented on top of the programmable logic [15],
[16]. As routing resources and clock frequencies are more
limited than in custom ASIC designs, though, performance is
often more limited.

In the Versal architecture, AMD provides an efficient
hardened NoC as a central part of the chip. It connects the
on-chip hard-cores, such as DMA engine, AIEs and memory
controllers, and provides multiple ports to communicate with
the programmable logic. The hard NoC provides a 128 bit wide
data path at a frequency of 1 GHz [17], which enables a high
throughput that would be difficult to achieve in many soft
NoCs.

By using the various NoC ports, TaPaSCo enables efficient
memory access to the entire address space for all PEs without
additional resources or latency costs due to crossbars in the
PL.

B. QDMA for PCIe Transfers

Memory transfers are among the most important aspects
of heterogeneous acceleration systems. If the data transfers
from the host to the PCIe-attached accelerator card are slow,
even the fastest accelerator cannot achieve much system-level
acceleration. Thus, high-performance DMA has always been an
important aspect in TaPaSCo. The initial implementation was
based on ffLink [18], and has since then been improved with
a switch to BlueDMA, a fast DMA core written in BlueSpec
System Verilog.

The original vendor-provided DMA interface, in the form
of the XDMA IP block, is known to have somewhat limited
performance [19]. The successor IP with better performance,
namely the Queue-based Direct Memory Access (QDMA)
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Fig. 2. TaPaSCo-AIE flow for flexible system design with AI Engines,
integrated into the general-purpose Vivado platform.

block, was initially made available for the UltraScale+ genera-
tion of devices. As many cores on UltraScale+, it was realized
on programmable “soft” logic.

The Versal implementation of QDMA has been refined
further. First, it now is a hard-core, meaning that more
programmable logic can be saved for use by the actual
application, and synthesis times are reduced. In addition, the
QDMA hard-core is directly connected to the hard NoC and
can perform memory operations without interaction with the
programmable logic.

Thus, we have integrated QDMA into TaPaSCo. In default
operation mode, the QDMA expects host software to place
descriptors for DMA transfers in host memory. However, we use
the QDMA in bypass mode, meaning that a custom hardware
module generates the descriptors on the FPGA and feeds them
directly into the QDMA. This saves PCIe bandwidth, especially
for larger transfers, since the host software writes the control
registers of the descriptor generator only once per transfer, and
the QDMA does not need to fetch any descriptor from host
memory. Furthermore, we reduce latency since the descriptors
are already on the FPGA, saving the PCIe turnaround time for
fetching the first descriptor from host memory. The interface
of the descriptor generator is compatible with the existing
BlueDMA infrastructure, thus keeping changes to the runtime
and kernel module at a minimum. Additionally, the TaPaSCo
interrupt controller had to be adapted to the interrupt interface
of the QDMA core, as interrupts are now also managed by the
hard-core.

C. Streaming DMA

Moving data from the host to off-chip memory on the device,
and vice versa, is often a major performance bottleneck in
hardware-accelerated applications. Usually, all required data
is moved from the host to off-chip memory on the PCIe card
before the accelerator is launched and operates on the data.
After it has finished, results are copied back to the host memory.
However, a streaming accelerator (as most neural network
accelerators are) does not access its input data randomly, and,
thus, does not need to have all data available in off-chip memory.
Hence, we use the QDMA streaming mode and enable direct
streaming DMA operations in TaPaSCo. Instead of writing
input data to device memory prior to launching the PE on
the FPGA, we stream the data directly from the host memory
using the QDMA into the PE during runtime. In the same
way, we write the PE output stream directly back to the host

memory, without involving device memory operations at any
point. However, TaPaSCo does retain the option to involve
off-chip-memory for other kinds of accelerators (e.g., for a
database of graph operations) that do require random access
to the input and/or output data.

Descriptors for streaming QDMA operations are generated
directly in hardware, similar to the process for standard memory
writes. We use a separate queue for streaming in order to enable
both streaming and ordinary DMA operations in parallel. This
allows a user to combine streaming and non-streaming-based
PEs in one hardware design. The TaPaSCo runtime creates
one thread per stream to supply the PE with data as required,
thus avoiding blocking other concurrently running operations
on the host side.

D. AI Engine

AIEs in the Versal architecture are a cluster of VLIW
compute elements called tiles. Each tile provides a scalar and
SIMD vector processor each. Two 32 bit streams to a streaming
interconnect provide fast and high-bandwidth data transfers
to all tiles. Moreover, every tile has a 384 bit cascade stream
interface to one neighboring tile. In addition, neighboring tiles
have access each other’s tile-local memories and exchange
data using ping-pong buffers, providing higher bandwidth than
streaming interconnections.

The entire AIE cluster can communicate over multiple PLIO
connections with the PL FPGA fabric and access the off-chip-
memory through the GMIO interface via the NoC.

The recommended flow for integrating ML applications with
the AIEs is through the AMD Vitis AI development platform.
However, this platform is only capable of implementing a deep
learning processing unit (DPU) on the AIEs. In contrast, the
Vitis platform and TaPaSCo-AIE allow developers to create
custom AIE graphs, enabling a wide range of applications
beyond typical AI workloads. The AIE graph is composed of
kernels that run on the AIE tiles. These kernels are written in
C++ using the custom AIE SDK. As shown in Figure 2, the
TaPaSCo-AIE toolflow is solely based on Vivado. In addition to
the AIE graph and PL PEs, the user may provide the mapping
between PE streaming ports and PLIOs to the TaPaSCo-AIE
composer.

E. 100 G Ethernet

For the Versal architecture, AMD includes a hard-core
Multirate Ethernet MAC (MRMAC) for 100 G Ethernet [20].
As the name suggests, the core can be configured to operate at
different speeds. Here, we only consider the mode for 100 G,
as current data centers often employ 100 G (or even higher)
network speeds.

The user interface of the core can be configured to two
different data widths. A low-latency data path, which runs
at the same frequency as the MRMAC core itself, provides
256 bit at 644.531 MHz. When the datapath can only operate
at a lower frequency, a wider interface is provided to handle
the bandwidth at the slower clock, namely having 384 bit at
390.625 MHz.
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Fig. 3. AI engine graph. Input features and weights for Layers 0 through 2 are streamed into the matrix multiplication graph over PLIOs from the programmable
logic. Weights in the final matrix multiplication are kept in AIE tile SRAM. Results are streamed out from Layer 3 over PLIO.

For small 192 B frames, we observed a latency with a loop-
back 100 G DAC in low-latency 256 bit and low frequency
384 bit mode of 189 ns and 220 ns, respectively, compared to
298 ns on previous generation UltraScale+ (US+) devices. This
increases to 295 ns and 328 ns, respectively, for Ethernet frames
of 1500 B (406 ns on US+). Overall, the MRMAC on Versal
has a significantly lower latency compared to US+.

In TaPaSCo-AIE, the networking feature connects AXI
stream interfaces of PEs to the MRMAC, making it easy to
implement accelerators with Ethernet connectivity.

IV. CASE STUDY: NEURAL NETWORK

To demonstrate and evaluate TaPaSCo-AIE, we examine a
simple feed-forward neural network for regression. We compare
software-only approaches on CPU and GPU to an AIE-based
accelerator, which we describe in the following. Our evaluation
results are given in Section V. Note that we do not aim to
realize the most optimal NN, we strictly focus on using it as
a real-world benchmark for the different system architectures.

The input dataset is randomly generated and consists of
samples with 64 features. Each input sample is mapped to
a single result value. The network consists of three fully
connected hidden layers with 128, 64, and 64 units, respectively,
each applying a tanh activation function. The regression value
is obtained after computing the output layer with one output
neuron without any activation. The network structure is shown
in Figure 3.

We leverage the AIEs for the compute-intense tasks, namely
matrix multiplication, bias addition, and activation function
calculation. Splitting these tasks into several kernels and
subgraphs makes it possible to pipeline the entire computation.
We use the PL for input and output data handling. One PL
kernel is responsible for streaming the matrix weights for the
first three layers into the AIEs over PLIOs. A second PL kernel
handles the feature input and result output streams.

We designed the accelerator to perform inference with a batch
size of 32 samples. Thus, the input feature matrix consists of
32 rows and 64 columns, resulting in the matrix multiplications
in Table I. By instantiating the graph two times on the AIEs,
we can always process two batches in parallel.

TABLE I
PER-LAYER MATRIX MULTIPLICATION DIMENSIONS.

Layer Feature Matrix Size Weight Mat. Size Output Mat. Size

0 32× 64 64× 128 32× 128
1 32× 128 128× 64 32× 64
2 32× 64 64× 64 32× 64
3 32× 64 64× 1 32× 1

The following sections elaborate on the AI engine graph’s
implementation details.

A. Weights and Bias

Except for the output layer, every layer is implemented
by using the Vitis DSP Library matrix multiplication graph
[21]. This graph allows us to parallelize parts of the matrix
multiplication over several AIE tiles without significant effort.
When not using automatic insertion of tiling kernels, it requires
that the first input matrix arrives at the graph using a four-by-
four tiling for floating-point input values. The second input
matrix and the output matrix each cohere to a four-by-two
tiling. These tiling constraints require us to add some data
re-arrangement logic inside our hand-written bias addition
kernels.

The computation’s data parallel nature allows instantiating
matrix multiplication, bias addition, and activation function
several times per layer. Moreover, each matrix multiplication
uses four cascaded AIE tiles, resulting in intra-layer pipelining
and increasing throughput further. In addition to the input
features, the Vitis DSP Library requires streaming the matrix
multiplication weights through PLIOs into the AIE. Due to the
limited number of available PLIOs, we can only instantiate the
matrix multiplication eight, four, and four times for the first
three layers, respectively. This results in using a total of 68
out of 78 input PLIOs.

The final layer stores its weights in SRAM local to the used
AIE tiles and streams the output from its bias kernel to the PL
through a further 128 bit PLIO.

For the first three layers, the output values of bias kernels
are fed into a hand-written tanh implementation on the AI
engines, which we explain in the next section.
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B. Tanh Activations

Since the AI engines do not have built-in support of the
tanh function, but also do not support the exponential function
natively, we decided to implement an approximation kernel
manually on the AIE array. The corresponding function is
shown in Equation (1).

tanh(x) ≈ min

(
max

(
x

(
n0x

2 + n1

x2 + d0
+ 1

)
,−1

)
, 1

)
(1)

Due to the asymptotic behavior of tanh, we simply cut values
outside the range [−1, 1]. A rational approximation is used
for the function itself with the parameters computed based on
the Remez algorithm. The approximation achieves an absolute
error below 2.8 × 10−3 while requiring only seven operations
[22]. All operations are vectorized to compute eight values in
parallel, except the division, for which only a scalar floating
point unit is available. More accurate, but slower approximation
functions would be feasible as well if desired, since the profiling
data of the AIE hardware emulation in Vitis shows that the
tanh kernels are not time-critical in comparison to the matrix
multiplications. With Vitis HLS, it is also easily possible to
implement tanh as a kernel in the PL. Again, as this function
is not time-critical, we do not expect any improvements in
performance. On the contrary, the data transfers between AIE
and PL add additional load on the interconnect between the
AIE tiles and require additional PLIOs.

V. EVALUATION

Our test system is based on an AMD Epyc 7443P 24-core
CPU, combined with 256 GB memory, and running Rocky
Linux 8. We evaluate our flow targeting the AMD VCK5000
accelerator card, which carries a VC1902 Versal AI Core
device and provides two QSFP28 network ports. Two VCK5000
are attached by PCIe 4.0 x8 to our host CPU, which is the
maximum supported by this FPGA generation, and connected
via a direct 100 G Ethernet link to each other. GPU experiments
are run on an NVIDIA A100.

As tools, we use Vitis 2022.2 for XRT, which is the latest
supported version for the VCK5000 card, and Vivado 2023.1
for our TaPaSCo designs.

All our results are averaged over 1,000 runs, and include
runtime of all necessary data transfers over PCIe. We vary the

overall number of samples in our test points. The AIE graph
processes data in batches of 32 samples with 64 single-precision
float features each, equalling to 8 kB of input data.

A. Evaluation Setups
As a baseline, we use a NumPy-based implementation. We

also evaluate our neural network compiled with Keras on both
CPU and GPU. To evaluate our AIE-based implementations,
we compare three different variants shown in Figure 4. All
variants use the AIE graph described in detail in Section IV.

PCIe-based TaPaSCo designs act as an accelerator card for
a host system, similar to the commonly used XRT. Figure 4a
shows the setup of our neural network implementation on the
VCK5000 accelerator card using TaPaSCo (denoted as T-MM
in the following) or XRT, containing the FPGA with AIE and
off-chip DRAM memory, connected via PCIe to a host.

In both frameworks, it is required to copy data from the
host to the off-chip memory of the FPGA. From there, data
streaming kernels in the PL (M2S and S2M) can convert
between this memory-mapped off-chip memory and the streams
required to interface with the AIE. The result data is copied
back to the host memory afterward.

The new TaPaSCo streaming feature introduced in Sec-
tion III-C, allows us to stream data directly from the DMA
engine into the PL FPGA fabric and vice versa. As a result,
we can avoid intermediate copies to the off-chip memory, as
shown in Figure 4b. A PL kernel splits the incoming stream
and forwards feature data directly to the AIEs. We denote this
variant as T-ST.

In our third variant, we utilize the 100 G feature of TaPaSCo
to distribute the AIE graph over two FPGAs, as shown in
Figure 4c. Using a network connection as a fast link with low
latency to transfer data between two FPGAs allows realizing
large applications that would not fit into a single FPGA or
require more AIE tiles than available on a single device. To
demonstrate this capability, we partition the computation of
our neural network between Layer1 and Layer2, assigning
each FPGA with the calculation of two layers. We again use
DMA streaming to transfer the input data and results via
PCIe between the host and the respective FPGA. However, the
intermediate results are streamed over 100 G Ethernet from the
first to the second FPGA. This variant is denoted as T-ST-N
in the following.



TABLE II
ABSOLUTE MEAN RUNTIMES OF THE NEURAL NETWORK BENCHMARK MEASURED ON THE HOST, DEPENDENT ON THE NUMBER OF INPUT SAMPLES

Samples 26 28 210 212 214 216 218 220 222

NumPy (CPU) 0.137 ms 0.579 ms 3.100 ms 12.04 ms 42.91 ms 146.8 ms 455.2 ms 1.476 s 5.613 s
Keras (CPU) 0.240 ms 0.370 ms 0.606 ms 1.36 ms 2.51 ms 15.3 ms 38.2 ms 0.122 s 0.465 s
Keras (GPU) 0.405 ms 0.394 ms 0.404 ms 0.56 ms 0.83 ms 3.1 ms 27.2 ms 0.106 s 0.423 s
XRT (FPGA) 0.786 ms 0.888 ms 0.917 ms 1.29 ms 2.77 ms 11.0 ms 27.0 ms 0.497 s 1.952 s
T-MM (FPGA) 0.224 ms 0.237 ms 0.284 ms 0.60 ms 1.72 ms 6.2 ms 24.4 ms 0.096 s 0.384 s
T-ST (FPGA) 0.138 ms 0.154 ms 0.190 ms 0.36 ms 1.02 ms 3.6 ms 14.1 ms 0.056 s 0.223 s
T-ST-N (2 FPGAs) - 0.156 ms 0.229 ms 0.30 ms 0.70 ms 2.4 ms 9.7 ms 0.039 s 0.156 s

Partitioning the neural network on two FPGAs allows us
to instantiate our AIE graph four times in total and process
always four batches in parallel, while the AIE tiles of a single
FPGA can only accommodate two graph instances.

B. Results

Figure 5 shows the speedup of XRT, T-MM, T-ST, T-ST-N,
and Keras (CPU and GPU), compared to the NumPy software
baseline. The absolute mean runtimes are listed in Table II.

For the smallest number of samples (26), the NumPy baseline
is the fastest implementation with 0.14 ms. However, as soon
as we increase the number of samples, all other variants
achieve speedups. All variants using TaPaSCo show the highest
speedup for 215 samples with 25x (T-MM), 43x (T-ST), and
67x (T-ST-N), respectively. Beyond this point, runtimes of
these three variants grow proportionally to the number of
samples. However, the NumPy baseline increasingly benefits
from multi-threaded execution and scales superlinearly, leading
to a decrease in the speedups achievable using other techniques.
Nonetheless, T-ST and T-ST-N process 222 samples (1 GB input
data) in 0.22 s (25x) and 0.16 s (40x) compared to 0.46 s using
Keras, and 5.61 s using NumPy. In general, T-ST is about 1.7x
faster than T-MM, since data is now streamed directly from
host memory into the PL and AIEs, without being written to off-
chip memory first. Our distributed T-ST-N achieves additional
40–60 % speedup over T-ST. However, T-MM is still faster
than Keras (CPU) for all numbers of samples.

XRT achieves its highest speedup over the NumPy baseline
for 218 samples with 17x. This is the only test point where
XRT achieves comparable runtimes to T-MM. However, XRT’s
performance drops significantly for larger numbers of samples,
with a slowdown of 2.5x - 3x compared to Keras on the CPU.

Running inference with Keras on the GPU achieves the
best performance between 213 - 216 samples with up to 52x
speedup. This is faster than both single-FPGA TaPaSCo variants
on a single FPGA, but cannot beat our distributed T-ST-N
implementation. For the remaining test points, GPU execution
is slightly slower than T-MM. In addition, power consumption
of T-ST is less than half of the GPU’s consumption with 68 W
(Xilinx Power Design Manager estimation) compared to 155 W
on the GPU.

In real-time inference applications, it is important to have a
low “jitter” of execution times. We thus examined the relative
standard deviation of our execution time measurements. T-ST
shows higher relative standard deviations for a small number
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Fig. 5. Speedup compared to NumPy software execution baseline for the
inference of the neural network, evaluated on different system architectures.
Geomean across 1,000 executions.

of samples, with a maximum of 18 % for 27 samples. The
higher variance in T-ST can be attributed to the spawning
and rejoining of the DMA handling threads. However, T-ST
achieves the lowest relative standard deviations of all variants
for sample sizes beyond 215, with a minimum of 0.02 % for
the largest number of samples. In T-ST, the variance is only
influenced by the fill and drain phases of the streams, since
the remaining data in between is streamed seamlessly into the
PE. These phases only constitute a small fraction of the total
execution time when processing large amounts of data, leading
to highly deterministic runtimes. T-ST-N has slightly higher
standard deviations in the measurements than T-ST.

VI. CONCLUSION

We have presented the TaPaSCo-AIE programming frame-
work for Versal devices, which supports several novel device
features, most notably the heterogeneous execution across
AIEs and FPGA logic. As an array of software-programmable
processing units, the AIEs can be programmed without needing
expert knowledge in hardware description languages and
computer architecture.

TaPaSCo-AIE enables the efficient use of the streaming-
based architecture of the AIEs by actually performing streaming
DMA, avoiding data transfers buffered in off-chip memory.



For our neural network case study, we achieve a speedup of
up to 67x compared to a CPU implementation and up to 2.9x
compared to GPUs while maintaining low variance. Due to its
streaming architecture, TaPaSCo-AIE has lower latency and, as
a result, reduced overhead for hardware accelerators compared
to traditional memory-mapped transfers. In combination with
100 G network, TaPaSCo-AIE allows using the AIEs as in-
network accelerators and scaling across multiple cards without
the PCIe bus becoming the bottleneck.

TaPaSCo-AIE will be made publicly available as an extension
to TaPaSCo.
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