COSSEA: Context-based SoC Security Enforcement
Architecture

Carsten Heinz, Andreas Koch
Embedded Systems and Applications Group
TU Darmstadt
Darmstadt, Germany
{heinz, koch} @esa.tu-darmstadt.de

Abstract—Modern embedded System-on-Chips (SoCs) increas-
ingly rely on third-party Intellectual Property (IP) blocks to
realize complex designs while meeting cost and time budgets.
However, this IP integration from many vendors can adversely
affect the SoC’s security when even a single IP originates from
a malicious actor and then threatens the integrity of the entire
SoC.

In this work, we propose COSSEA, a global, context-based
security architecture, to control communication on the SoC
at a fine-grained level. COSSEA isolates IP from the central
system interconnect with different access permissions based
on dynamically adaptable context descriptions. A global state-
machine coordinates the transition between these security con-
texts. COSSEA can scale to thousands of contexts using features
such as a parametrizable policy directory.

At run-time, the entire security architecture is managed
independently of any CPU or peripheral, reducing the attack
surface. COSSEA is already set up to be securely controlled
by a hardware root-of-trust using authenticated and encrypted
messages.

We evaluate COSSEA for both FPGA and ASIC and observe
hardware overheads of less than 2% for small SoCs typical of
MCU-level embedded systems.

Index Terms—Hardware Security, Embedded Systems, System-
on-Chip, ASIC, IP Blocks

I. INTRODUCTION

In our increasingly interconnected world, embedded sys-
tems have become omnipresent in various applications. From
consumer devices to safety-critical industrial or automotive
systems, System-on-Chip (SoC) architectures have become
essential.

At the same time, the widespread adoption increases the
potential attack surface and the possible impact of exploiting
such systems. Therefore, safeguarding the integrity of SoCs
against malicious threats has never been more pressing.

This paper presents COSSEA, a context-based hardware
security layer for small embedded SoCs that allows fine-
grained isolation of peripheral components within the SoC.
As a separate hardware component, it provides reliable secu-
rity guarantees independent of the firmware executed on the
SoC’s CPU. In combination with a real-time operating system
(RTOS), COSSEA can even provide isolation between tasks.

This research was funded by the German Federal Ministry for Education
and Research (BMBF) in project 16ME0233 (VE-Jupiter). The authors would
like to thank Markus Scheck and Yannick Lavan for providing their Bluespec
System Verilog wrapper for Synopsys SRAM macros.

II. THREAT MODEL

In this work, we assume that the communication network of
the SoC is trustworthy. Furthermore, we assume the COSSEA
security infrastructure is not manipulated during manufactur-
ing.

The first attack scenario involves an untrusted, malicious
IP with bus-master access to the communication network
integrated into an SoC. This IP could potentially exfiltrate
and manipulate data from memory. Furthermore, it could
instrument another IP, such as a DMA engine, to access
memory on its behalf.

In the second attack scenario, a malicious task within the
RTOS could access peripherals and memory intended only for
other tasks in a small embedded system. Even an MPU would
not protect against this scenario if tasks are allowed to use
DMA engines.

III. RELATED WORK

Small embedded systems typically employ Memory Pro-
tection Units (MPU) to restrict tasks running on the CPU
to access regions in the physical memory. The MPU resides
in the CPU and, thus, does not provide any protection from
peripherals.

In the open instruction set architecture RISC-V, such an
MPU is specified as a physical memory protection (PMP)
[1]. A draft specification proposal exists to extend the PMP
to cover the entire SoC, called /IOPMP, which has already
been integrated into SoCs [2], [3]. While these systems
protect the central interconnect from malicious peripherals,
the CPU configures the IOPMP’s access rules. In COSSEA,
the hardware module is completely separate from the CPU,
making it resilient against privilege escalation attacks in the
firmware. Furthermore, COSSEA reduces the attack surface by
splitting permissions into a sequence of smaller contexts. To
realize this with an IOPMP, the CPU would have to update the
configuration from software, changing one permission entry at
a time and thus carrying a high latency overhead.

A commercial solution for embedded Arm Cortex-M SoCs
is Arm TrustZone [4]. In this system, peripherals are divided
into different security levels. Peripherals within the same
security level can access each other and its associated memory
regions. However, this approach does not protect against a
malicious peripheral within a security level.

DMA
Controller

Security Interconnect

DDR Controller

Peripheral Peripheral

Memory

Fig. 1. Sample SoC with COSSEA security overlay.

Other, more fine-grained security solutions have been pre-
sented. A multi-level security system [5] is implemented on a
Zynq FPGA and IP Firewalls enforce access permissions. Sim-
ilar to COSSEA, a central policy server contains the firewall
rules. DD-MPU [6], as a decentralized security architecture,
has IP firewalls that monitor the associated peripherals’ con-
figuration interface. Based on the extracted information, the
rules in the firewall are updated. This allows for fast updates of
rules but lacks any global coordination. SECA [7] is a security
architecture that utilizes finite-state machines to enforce the
correct behavior of applications. While SECA relies on fixed
FSMs known at design time, COSSEA extends the concept
and allows runtime configurable state machines.

IV. COSSEA OVERVIEW

To achieve security guarantees against the threat model,
COSSEA adds a security overlay to the existing SoC commu-
nication infrastructure. A Local Security Enforcement (LSE)
unit is added to each bus master of the untrusted IPs. In addi-
tion, a Global Context Management (GCM) unit coordinates
the current context of LSE units.

The LSE units prevent prohibited transfers from (potentially
malicious) IPs from entering the SoC’s communication in-
frastructure. Thus, the communication infrastructure transports
only transfers allowed within the current security context.

A. Local Security Enforcement (LSE)

The LSE is responsible for protecting the communication
infrastructure of an SoC from malicious IPs. For this, it
monitors transfers on the bus-master interface of the IP and can
block forbidden transfers. The decision is based on a rule set
stored inside the LSE. This rule set contains a list of address
ranges that are allowed to be accessed or modified by this IP.
Each rule has a context identifier associated with it. Only rules
matching the current active context identifier are enabled.

An LSE protects the SoC against malicious IP at a fine-
grained level. However, an LSE alone does not have a global

Security Interconnect

Start Address, Length

(System Interconnect]

°
@
H

=

©

Context 1 not allowed

Context 2

Check Transfer

untrusted

(Peripheral IP]

Fig. 2. Internal architecture of a Local Security Enforcement unit, based
on [6]. The current context enables the rules contained in the corresponding
context.

view across the entire SoC, and thus, it is hard to coordinate
multiple LSEs to allow, for example, access to a memory
region shared between multiple IPs.

B. Global Context Management (GCM)

The global context management configures the currently
active context identifier at the LSEs. A finite state machine
specifies the allowed transitions between context identifiers.
This approach allows various control flow sequences and
security automata to be modeled and enforced. Furthermore,
it can extend permissions related to execution modes or task
switches on the CPU core across the entire SoC.

The transition to the next state is initiated by the application
running on the CPU, e.g., as part of the RTOS. The state
machine only allows approved transitions, but still, an attacker
could try to benefit from switching to consecutive contexts.
Since the permissions of individual contexts are minimal,
exploiting this is more difficult than without COSSEA. As
the protection of COSSEA is targeted towards malicious
peripherals, we only allow context switches originating from
the CPU. Protection against a malicious firmware can be
achieved by other means, e.g., an MPU can further restrict the
firmware to only allow context switches by the machine mode.
Furthermore, control-flow integrity of a firmware running on
the CPU can be enforced by an hardware monitor, such as
DEXIE [8].

Example: In an SoC with a DMA controller and two
peripherals A and B, which both read data provided by the
DMA controller, we can use different contexts to isolate
memory. The first context permits memory regions reserved
for peripheral A and a second context for the memory regions
reserved for peripheral B. In this way, the DMA controller can
only write to the memory allocated for the relevant peripheral.
An attacker thus cannot misuse the DMA engine to leak data
between the peripherals.

V. IMPLEMENTATION
A. Local Security Enforcement (LSE)

The LSE monitors and intercepts transfers between an IP
and the central communication infrastructure. It also provides
communication interface endpoints for the IP and the main

infrastructure. For allowed communication transfers, the LSE
forwards transfers transparently. If a transfer is not allowed, the
LSE prohibits it, so it is not passed on to the communication
infrastructure.

The LSE stores a list of allowed transfer rules. Each rule
consists of a context identifier, base and end address of
the allowed memory range, and access type (read, write, or
read/write). This information is stored in registers so that it
can be modified during runtime. When the peripheral initiates
a transfer, the LSE checks the transfer against the rules by
comparing the transfer in parallel against all stored rules.
When at least one rule of the current context matches, the
transfer is allowed to access the system interconnect. The
number of allowed rules is fixed at compile time. As each
rule requires comparators at the width of the entire address,
e.g., 32bit, scaling the number of rules makes the design
more hardware intensive. However, since we rely on multiple
contexts to hold an application’s entire ruleset, the number
of rules in each context is relatively small, reducing the
hardware cost of the comparators. To not restrict the LSE
to a single usage scenario, the content of each rule can be
configured during runtime. As this can introduce new security
issues, we utilize a separate interconnect for configuration (see
Section V-C).

B. Global Context Management (GCM)

The GCM coordinates the context transitions through a
finite-state machine (FSM). Instead of an FSM fixed at design
time (as in [7]), which would only support a single, specific
application, COSSEA aims for wide applicability and imple-
ments a memory-backed state machine. We store the FSM as
a transition table: The context identifier is used as the word
address of the memory. Each word in the memory contains
the context identifiers of succeeding states according to the
FSM. As the context identifier addresses the memory, the bit-
width of the identifier depends on the number of states. The
GCM can be loaded with custom FSMs adapted for individual
applications. At design time, only the maximum size of the
FSM needs to be specified. We restrict each state to two
transitions to reduce the required data for each state to be
stored. Each entry thus has a data width of twice the context
identifier. If more transitions are required, the FSM needs to
be transformed into binary transitions. This requires additional
state transitions but results in a more compact transition table.

A transition to the next state is signaled by an external
signal, which also contains the binary value for selecting the
next state. In our current implementation, this is controlled
by the CPU. If the SoC has another trust anchor, such as a
control-flow enforcement unit, it could easily be used for the
state transitions in COSSEA.

After reading out the next context identifier, the GCM
utilizes the security interconnect to broadcast the identifier.

C. Security Interconnect

We introduce an additional interconnect for the communi-
cation between the components of COSSEA. It is separated

from the existing communication infrastructure of the SoC to
reduce the attack surface.

The security interconnect serves the purpose of propagating
the current context identifier and raising security exceptions.

With this limited function set, the implementation is very
lightweight. The context identifier can be broadcasted by a 1-
to-n interconnect. In a system with an 8 bit context identifier
and a valid signal, only 9 signals must be routed from the
GCM to the LSEs. Each LSE has a signal wire connected to
the GCM to raise an exception.

Overall, the required number of signals is low compared to
a typical system interconnect with 32 bit or 64 bit address and
data channels.

The same security interconnect infrastructure can be utilized
to initialize the rules stored in the LSEs at startup. Initialization
is handled either by the SoC’s core or by a root-of-trust
(RoT) module for enhanced security. During system startup,
the timing is not essential; thus, we can serialize the rules over
the narrow interconnect.

D. Central Policy Directory (CPD)

The initial concept of COSSEA stores all rules locally in
the LSEs. This leads to scaling limitations as more rules in
an LSE require more resources and comparators. As the LSEs
are connected to the communication infrastructure of the SoC,
LSEs with a large number of rules can negatively impact the
achievable frequency. In our evaluation, we have observed a
negative impact on frequency with more than 16 rules. As a
countermeasure, the LSE can also be configured to operate in
a pipelined mode with an additional clock cycle, relaxing the
critical path but adding latency to all memory transfers.

Thus, COSSEA has the option for a central policy directory
in the GCM. The policies for all LSEs are stored in an SRAM
inside the CPD. Only rules of the current context are loaded
on-demand into the LSE. The transfer of rules utilizes the
Security Interconnect with an increased data width. Instead of
just transmitting the context identifier, it now transmits entire
rules. A transmitted message now contains the rule with start
and end address, context identifier, and destination LSE. For a
system with 32 bit addresses, this results in a message size of
around 80 bit, depending on the size of the context identifier
and number of LSEs. The current implementation transmits the
entire message in a single beat. For an improved routing, this
could also be divided into multiple beats. As all LSEs receive
the new context identifier at the same time, we have an atomic
switch to the next context. In system interconnects without
bursts, such as the tightly-coupled data memory protocol in
PULPissimo evaluated in Section VI, the updated rule-set,
activated by a context switch, is also immediately used. For
other, burst based systems, active transfers complete under the
old rules, before the new rule-set takes over.

For a context switch, an additional delay occurs when load-
ing the rules first at the time the context switch is requested. To
counteract the delay, COSSEA employs prefetching of rules.
The GCM knows the next transitions and can push rules for
the next context to the LSEs. Prefetching starts as soon as

ADC

|

Filter

SPI

Memory

DMA
Engine

Fig. 3. The memory map of the SoC with double buffering. Dashed lines
show the logical accesses performed by the DMA engine.

all rules for the current context are available at the LSEs. As
the rules contain the context identifier, they are first activated
when the actual context switch occurs.

VI. CASE STUDY

In this paper, we utilize COSSEA to improve the security of
two systems. Both are small embedded systems with a small
footprint and only physical memory addressing.

Our system is based on the PULPissimo [9], configured
with the Ibex RISC-V core. The peripherals with bus-master
access to the system interconnect are inserted into the SoC
as a HWPE, the existing mechanism in PULPissimo to add
hardware acceleration units. To provide the HWPE bus access
to the entire address range instead of just the memory, the
HWPE is in our setup and connected to the interconnect in
the same way as the RISC-V core.

A. Protection against Malicious Peripheral IP

The first scenario resembles the usage of a typical micro-
controller. The CPU core is accompanied by several peripheral
components, such as an ADC, an SPI master, and a DMA
controller. The peripherals and the CPU can send requests to
the DMA engine.

Our embedded system acquires analog data, filters it, and
sends the processed measurements via SPI. Thus, the SoC
contains an analog-to-digital converter (ADC), a hardware
accelerator to perform the filter operation, an SPI master
module, and a DMA engine. The DMA engine can perform
memory operations between memory and peripherals and is
shared between the peripherals. The ADC can send requests
to the DMA engine, e.g., when sufficient samples have been
captured.

Our application’s execution flow is as follows: The ADC
periodically instructs the DMA engine to store measurements
alternately in two buffers in the memory (double buffering).
The filter accelerator reads from the fully written buffer,
performs the filter operation, and stores the data alternately

in two other buffers. Further processing occurs on the CPU,
which produces the final results of the application. The DMA
engine is then requested to move the results to the SPI master
peripheral. Finally, the results are available on the SPI bus.
Figure 3 shows a sample memory map for such a system.

A malicious peripheral or software could now instruct
the DMA engine to read from a different memory location,
which may contain private security credentials, and store it
in the buffer intended for the SPI transfers. This way, the
attacker could exfiltrate secret data. Other attacks, such as data
manipulation, are also possible.

Typical SoC protection mechanisms do not provide suffi-
cient isolation in such a scenario. Physical memory protection
(PMP / MPU) would block only requests from the CPU to
the DMA controller, not the actual addresses of the DMA
requests. In the more platform-wide concept of TrustZone,
groups of peripherals can have different permission levels,
but peripherals in the same group are not isolated. In order
to access the same memory, the ADC and Filter peripherals
would need to be in the same group, resulting in no isolation
of the double-buffering. Even more, the ADC could directly
write to the output buffer of the filter accelerator and inject
manipulated data to the CPU.

With COSSEA, a protection scheme could be implemented
with the contexts shown in Figure 4. Double buffering is
divided into separate contexts to ensure that only one pe-
ripheral can access a buffer simultaneously. It would also be
possible to merge context 1 with 2 and context 4 with 5. This
would improve the parallelism, but it no longer enforces the
sequential execution of the units, as it no longer guarantees
that the CPU executes after the filter has finished its operation.
As a possible side effect, parallel memory accesses of both
CPU and filter accelerator could occur, resulting in memory
congestion and longer execution times.

Due to the use of double buffering, reading the buffer before
the previous component has written to it is not an issue here.
The important part, however, is that the different permissions
of the DMA engine are not combined in the same context.
Otherwise, a malicious actor could instruct the DMA engine
to leak data between the isolated memory regions.

B. RTOS Task Isolation

Our second scenario is a small embedded SoC running a
real-time operating system (RTOS). Due to the SoC’s em-
bedded nature, it has no virtual addresses and only limited
privilege levels. In the RISC-V world, this relates to a core
with machine and user mode and a memory protection unit
(MPU).

Each task of the RTOS runs at user mode, whereas task
scheduling by the RTOS is implemented with a trap handler
running in machine mode. With the MPU, the RTOS can
restrict memory access and provide separate address ranges
for each task. However, without an IOMMU, applying those
restrictions to peripherals is impossible. As long as a task
requires access to a peripheral, this peripheral has access to
the entire memory region.

Context 1
(ADC + Filter active)
DMA: Regapc,
DMA: Bufapc,l w
Filter: Bufapc,2

Context 3
(SPI active)
DMA: Bufgpy 1
DMA: Regspr W

Context 2
(CPU active)
CPU: Bufpjjer,2 1
CPU: Bufgp; w

Filter: Bufjjer,1 W

Context 4
(ADC + Filter active)
DMA: Regapc,
DMA: Bufapc,2 w
Filter: Bufapc,1 r
Filter: Buffijer,2 W

Context 6
(SPI active)
DMA: Bllfsp[T
DMA: Regspr W

Context S
(CPU active)
CPU: Bufpjjer,1 1
CPU: Bufgp; w

Fig. 4. FSM for the COSSEA contexts of the example embedded application.
Dummy predecessor contexts that just handle the initialization of the double
buffering are omitted to simplify the figure. The circles symbolize entry and
exit points to the remaining parts of the application.

In the first configuration, each task has a COSSEA context
associated with it. This way, a task can access peripherals
and offload operations, e.g., to a DMA controller. COSSEA
now ensures that even the peripherals can only access memory
ranges that are allowed for this task. The RTOS trap handler
triggers the context switches in the GCM and the configuration
changes in the MPU.

In a more integrated configuration, a task can have several
contexts with reduced permissions instead of just a single
context. This way, more complex tasks can be further restricted
for different segments of their execution. The transition to the
next context must be initiated by the RTOS task itself so it
does not protect against malicious tasks. However, it reduces
the surface of attacks for code injection attacks and malicious
IPs within the SoC. The task invokes a trap for the context
transition so the RTOS can communicate with the GCM at
the increased privilege level. To prevent the RTOS task from
entering a context intended for another task, we do not allow
a task to select a transition and only proceed sequentially in
the FSM. In addition to the sequence of contexts intended
for a task, each context in the FSM also has a second, exit
transition to the following global context. When the RTOS
scheduler runs, it can use this transition to enter a context
outside the task securely. An example is shown in Figure 5.

VII. EVALUATION
A. Hardware Overhead

We first evaluate the additional hardware overhead incurred
by COSSEA with hardware synthesis for an FPGA and an
ASIC target. For both technologies, the first case (GCM-only)
implements COSSEA with a GCM and LSEs with 16 rules
each. The second case (GCM+CPD) includes, in addition to
the GCM, the CPD.

O_)(Task 0) (Task 1) (Task 2) [Task 3 P
\Staie 0) \Staie 0) Stan/e 0) U
(Task 0)/]| (Task 1) [Task 2)
kStage 1) kStage 1) Staie 1)
(Task 0)/| (Task 1) [Task 2)
(Stage 2 | | | Stage 2 | nge 2]
(Task 0)/ (Task 1)
QStjge 3) \Stafe 3)
(Task 1)

j Stage 4

Fig. 5. FSM example for RTOS tasks divided into stages for fine-grain control
within a task. Each context has an exit transition to proceed to the next task.

For both cases, we define different presets, which define the
maximum number of GCM states and CPD rules. The Small
preset allows 256 states and 256 rules, Medium allows 2048
states and 2048 rules, and Large allows 8192 states and 4096
rules.

The FPGA target is synthesized with Vivado 2020.2 for the
ZCU102 board, which contains a Zynq UltraScale+ MPSoC.
The results from Table I show the hardware overhead in terms
of LUTs and Block RAM.

For evaluating COSSEA on an ASIC technology, we chose
a GlobalFoundries 22 nm FDX process with a flow based on
the Cadence reference flow. A Synopsys memory compiler is
used to generate the required SRAM macros. Table I contains
the required logic and routing area converted into kGE.

The resource overhead of the GCM-only setup on FPGA is
below 6 %, which can be considered as insignificant. Only the
Large preset on ASIC results in an overhead of over 10 %.
In the ASIC synthesis, we can see that the main resource
utilization is coming from the SRAM macros, and thus, the
large size of the FSM memory is more visible in the results.
On FPGA, even other parts of the SoC occupy Block RAM, so
we cannot directly compare the overhead between RAMB36
and ASIC.

GCM+CPD incurs a much larger overhead. This is mainly
due to an increase in the required memory. In contrast to
CPD-only, where each LSE can only store 16 rules, we can
store up to 4096 additional rules (in the Large preset) in
the CPD. The memory in the CPD utilizes Block RAM (or
SRAM macros on ASIC) and is thus more efficient than the
register-based implementation in the LSE. For addressing the
memory, the CPD requires additional address pointers in the
FSM of the GCM, which approximately doubles the required
size of the FSM storage. This is in addition to the actual
storage required to store the rules in the CPD. Furthermore,
the security interconnect is more complex. It now transmits
the rules and not just the context identifiers.

TABLE I
HARDWARE OVERHEAD OF DIFFERENT COSSEA CONFIGURATIONS IN
FPGA AND ASIC TECHNOLOGY. THE RELATIVE OVERHEAD IS
COMPARED TO THE ENTIRE PULP1ssM0 SoC.

Preset | LUTs RAMB36 kGE
FPGA | 673 (1.54%) 0 (0%)
o Small e 21.4 (1.38 %)
=
¢ . FPGA | 690 (1.58%) 1 (0.69%)
2 Medum ysic 40.7 (2.63 %)
© Laree FPGA | 721 (165%) 8 (5.56%)
8 ASIC 168.2 (10.86 %)
sman FPGA | 1851 423%) 3 (208%)
A ASIC 149.0 (9.62 %)
[a By
O FPGA | 2099 (4.79%) 10 (6.95 %)
7) : :
5 Medium 0 314.8 (20.32 %)
O Laree FPGA | 2021 4.62%) 27 (18.75%)
8 AsIC 659.6 (42.58 %)

Interestingly, the Large preset consumes fewer LUTs on
the FPGA. This is probably a result of the non-deterministic
behavior of the EDA tool. The design size for Large mainly
increases in memory; the main difference in the logic is the
increase of the context identifier by two bits to address the
larger address space.

B. Latency Analysis

In the GCM-only scenario, we measure a latency of just four
clock cycles for a context change. The latency includes the
AXI request to the GCM, evaluation of the FSM, broadcasting
the context, and finally activating the new rules within the
LSEs.

The GCM+CPD scenario requires a more detailed analysis.
When the rules have been prefetched, we measure a latency
of six clock cycles for the context change. In contrast to the
GCM-only setup, this is an increase of two cycles because we
implement the context change in the CPD and incur additional
communication and Block RAM latency. Contrary to typical
prefetchers, which operate on the assumption of, e.g., a
taken branch, the CPD in COSSEA prefetches both possible
consecutive contexts. This implies that all rules are prefetched
when there is sufficient time between context switches.

If a context switch occurs during prefetch, the remaining
rules need to be transmitted before the context switch can
happen. The highest latency occurs when the prefetch has
not yet started, or no rules have been transmitted yet for the
context of the faken transition. Here, the latency of six clock
cycles is extended by one clock cycle for each rule contained
in the context. Even for a large COSSEA system with many
peripherals, we expect that a context does not require more
than one hundred rules. The resulting latency of 106 clock
cycles is above but still comparable to a function call on the
CPU.

VIII. CONCLUSION

We have presented a security architecture that reduces the
overall attack surface within an SoC. Our evaluation has shown

that the resource overhead incurred for a small configuration is
minimal, causing only a slight increase in latency in a limited
number of cases.

For future work, we want to investigate a more automated
tool flow for creating contexts and their rules. For example, a
compiler could analyze the firmware, extract data buffers, and
control flow information.

REFERENCES

[1] J. H. Andrew Waterman, Krste Asanovi¢, “The RISC-V Instruction
Set Manual, Volume II: Privileged Architecture, Document Version
20211203, December 2021.

[2] J. H. Ng, C. H. Ang, and H. C. Law, “A Realization of IO Physical
Memory Protection for RISC-V Systems,” in 2022 IEEE 15th Interna-
tional Symposium on Embedded Multicore/Many-core Systems-on-Chip
(MCSoC), 2022, pp. 375-380.

[3] N. Wistoff, A. Kuster, M. Rogenmoser, R. Balas, M. Schneider, and
L. Benini, “Protego: A Low-Overhead Open-Source I/0 Physical Memory
Protection Unit for RISC-V,” in Proceedings of the 1st Safety and Security
in Heterogeneous Open System-on-Chip Platforms Workshop (SSH-SoC

2023). SSH-SoC, 2023.
[4] Arm Limited. TrustZone technology for Armv8-
M Architecture Version 2.1. [Online]. Available:

https://developer.arm.com/documentation/100690/0201/

[5] S. K. Saha, A. N. Butka, M. K. Ahmed, and C. Bobda, “OpenTitan based
Multi-Level Security in FPGA System-on-Chips,” in 2023 International
Conference on Field Programmable Technology (ICFPT), 2023, pp. 302—
303.

[6] C. Heinz and A. Koch, “Dd-mpu: Dynamic and distributed memory pro-
tection unit for embedded system-on-chips,” in Intl. Conf. on Embedded
Computer Systems: Architectures, MOdeling and Simulation (SAMOS).
Springer Nature Switzerland, 2023.

[7] J. Coburn, S. Ravi, A. Raghunathan, and S. Chakradhar, “Seca: security-
enhanced communication architecture,” in Proceedings of the 2005 In-
ternational Conference on Compilers, Architectures and Synthesis for
Embedded Systems, ser. CASES "05. New York, NY, USA: Association
for Computing Machinery, 2005, p. 78-89.

[8] C. Spang, Y. Lavan, M. Hartmann, F. Meisel, and A. Koch, “Dexie
- an iot-class hardware monitor for real-time fine-grained control-flow
integrity,” in Journal of Signal Processing Systems, vol. 94, no. 7, Jul.
2022, pp. 739-752. [Online]. Available: https://doi.org/10.1007/s11265-
021-01732-5

[9] P. D. Schiavone, D. Rossi, A. Pullini, A. Di Mauro, F. Conti, and
L. Benini, “Quentin: an Ultra-Low-Power PULPissimo SoC in 22nm
FDX.,” in 2018 IEEE SOI-3D-Subthreshold Microelectronics Technology
Unified Conference (S3S), 2018, pp. 1-3.

