
SCAL: An Open-Source Scalable Core Adaptation
Layer for Interfacing RISC-V ISA Extensions

Brindusa Mihaela Damian-Kosterhon, Florian Meisel, Andreas Koch
Embedded Systems and Applications Group

Technical University of Darmstadt
Darmstadt, Germany

damian@esa.tu-darmstadt.de, meisel@esa.tu-darmstadt.de, koch@esa.tu-darmstadt.de

Abstract—Instruction Set Architecture eXtensions (ISAX) are
one of the key methods to improve the performance of software-
programmable processors. However, adding them into processor
cores is cumbersome and becomes even more challenging if the
ISAX needs to be portable among multiple different cores. Existing
extension interfaces aim to alleviate these difficulties. However,
they lack an abstraction layer that encapsulates commonly used
adaptation mechanisms for mediating between the base core and
the ISAX. Typical adaptation issues include latency matching,
shared resource management, or hazard handling.

For this purpose, we propose the Scalable Core Adaptation
Layer (SCAL), which builds on an existing open-source interface,
SCAIE-V. By using SCAL, we show that for ISAXes reading and
returning a result, their interface width and semantics remain
unchanged independent of their latency, number, or base core. We
demonstrate this for four cores with different microarchitectures.
Moreover, the ISAX is agnostic of its execution mode (in-pipeline
or in parallel to the main pipeline), and its datapath does not
change even if the result is written to the memory, program
counter, or a new internal state element. This brings us closer to
fast ISAX development and integration into multiple cores.

Index Terms—SCAIE-V, ISAX, Portability, RISC-V

I. INTRODUCTION

Extending an existing Instruction Set Architecture (ISA) is
an attractive approach to obtaining faster and more power-
efficient designs for specific applications. Yet, the tremendous
advantage of custom instructions comes with high expenses
like engineering effort, chip area, frequency drop, or li-
cense costs. To make Instruction Set Architecture eXtensions
(ISAXes) more accessible, multiple cores already provide
specialized interfaces for ISAX integration.

Some commercial tools for ISAX integration are available,
such as CodAL [1]. However, these are proprietary and not
portable to non-vendor cores. The open-source community
also provides ISAX interfaces. Some are general-purpose [2],
while others are tailored for a specific application, like vector
processing [3]. Yet, the latter can reuse the core’s ALU, while
other solutions are similar to a separate execution unit [4]–
[6]. Such implementations usually return a result but don’t
allow LSU access. RoCC [7] gives access to the L1 cache.
[5] has the limitation that an ISAX must take at least two
cycles, and [8] stalls the core until the ISAX is finished.
Still, the most common limitation is the lack of support for
branching instructions [2], [5], [8]–[10]. Moreover, they were
not evaluated on several open-source cores. Thus, porting an

application with ISAXes to another processor is non-trivial.
To approach this issue, a portable interface that can be used
across different microarchitectures was presented in [11]. We
base our paper on this work and further extend the technology
to reduce the effort to port the interface to new cores, and also
ease ISAX generation.

SCAIE-V [11] provides a tight ISAX integration, allowing
better ISAX-core communication than more loosely coupled
approaches. Through this interface, ISAXes can read or write
the register file, read or update the program counter, read
instruction fields, or start memory transactions. Some of these
operations can be moved between earlier or later pipeline
stages (for better ISAX timing) or even be decoupled from
the processor (for better parallelism). The interface relies on
signal taps, which are automatically inserted into the base core.
Moreover, on top of these raw signals, the interface defines
higher-level functionality, which is required for each core, like
hazard handling. We observed many commonalities that can
be factored out into a reusable abstraction layer. This layer,
the Scalable Core Adaptation Layer (SCAL), is shown in Fig.
1 and is the topic of this work.

There are multiple reasons for a common abstraction layer.
SCAL can ease the support of new cores, and ease adding
new interface capabilities for all cores. Unifying much of
the per-core logic into SCAL also simplifies the verification
problem, as SCAL can be verified independently of the
base cores. Moreover, an abstraction layer can also facilitate
ISAX development. Some ISAXes require instruction-internal
state. Similar to the core’s main register file, such state also
needs hazard-handling mechanisms. This can be abstracted
into SCAL. Similar abstractions can be introduced for the
writeback, both of in-pipeline as well as decoupled ISAXes.
We identified multiple points where such per-ISAX logic can
be abstracted into a shared adaptation layer, enabling easier
ISAX generation, as an HLS tool (e.g., [12]) no longer has to
handle these integration complexities.

To sum up, we present the Scalable Core Adaptation Layer
(SCAL), which makes the following contributions to the
problem space of extending processors with ISAXes:

• easier ISAX generation
• improved ISAX portability across cores
• better area efficiency by sharing interface logic across

ISAXes

ease support of new cores

ISAX Module
ease custom instruction generation

Scalable Core Adaptation Layer (SCAL)

Core

Fig. 1. Proposed configuration with a middle adaptation layer to ease ISAX
generation and core support.

• reduced complexity within the base core
• reduced maintenance and verification effort by refactored

logic

II. FUNDAMENTALS AND TERMINOLOGY

Before we discuss our architecture, we will first establish
fundamental concepts. By ISAX, we mean a single custom
instruction. The individual interactions that occur between the
core and an ISAX during the latter’s execution are called nodes
or operations. These will be scheduled to take place in the
base core’s pipeline stages. Note that not all the cores have
a pipeline microarchitecture, such as PicoRV32, which is a
multicycle core. Here, we will use the term stage to specify the
cycle number in which a node is scheduled to occur, defining
that the fetch of a new instruction occurs in Stage/Cycle 0.

SCAIE-V employs different operations, which will be ab-
breviated here as follows: register file reads (RdRS) and writes
(WrRD), program counter (PC) reads (RdPC) and updates
(WrPC), memory reads (RdMem) and writes (WrMem), accessing
the instruction fields (RdInstr), and accessing stall signals
(RdStall, WrStall) and flush signals (RdFlush, WrFlush).
The RdIValid_X_n bit informs if an instruction X is currently
in stage n. Write (Wr) interfaces are from ISAX to core, while
read (Rd) interfaces have the opposite direction.

III. SCAL’S ARCHITECTURAL CONCEPTS

To ease ISAX generation and reduce the SCAIE-V footprint
within the core, we move more interface logic into the
potentially reusable SCAL layer. The following subsections
present SCAL’s capabilities.

A. Multi-ISAX Arbitration

When multiple ISAXes are needed for a certain application,
it is desirable to generate each of them independently. This
enables faster parallel generation of ISAXes and allows for
different suppliers to provide them separately. SCAL then has
the responsibility to arbitrate between them. This is done to
manage interfaces that represent ISAX results and are inputs
to the core (e.g., WrPC, WrMem, WrRD).

Apart from multiplexing this “data plane,” SCAL also
computes the “control plane” in the form of valid bits. For
example, in the case of a RdMem operation, two mandatory
valid bits exist between SCAL and the core: the request valid
bit and the custom address valid bit. The first one is used to
start a memory transaction and is computed using the opcode

and the optional valid bit from an ISAX. The custom address
valid bit refers to the memory address given by the ISAX.
This bit is set to 0 if the ISAX uses the standard “offset+base
register” address (allowing reuse of the base core’s hardware).

Depending on the core’s implementation, the valid bits
discussed here are sometimes needed by the core in earlier
stages than the ISAX provides in its schedule. One such
example is a memory transfer in the non-pipelined multi-
cycle PicoRV32 core. The user may schedule it in cycle 2,
but to transition to the load/store FSM state correctly, the
core must know in advance whether the instruction requires
memory access. For this, SCAL informs the core based on
RdIValid. Correspondingly, we have moved the generation
of the RdIValid bits out of the core and into SCAL.

B. Reconstructing SCAIE-V Signals from Limited Core State

In some cases, SCAL requires signals that are either un-
available in a particular stage of the base core or are invalid
when SCAL would typically sample them. A sample scenario
is Piccolo, where the core does not pipeline operands (RdRS)
into the last stage; an example of incorrect data is PicoRV32,
where the operands exist but can be overwritten by a memory
request in the third cycle.

To cover this, SCAL instantiates registers and shifts this
data in sync with the main pipeline into the stage in which
the ISAX requires it. SCAL also uses this mechanism for
instruction decoding if RdInstr is missing in a specific stage.

C. Abstracting Latency and Decoupled Execution

The supported pipelined cores have different depths. Yet,
our goal is that the same ISAX can be integrated without
modifications to the logic, independent of its own latency.
Thus, an ISAX must be allowed to return a result in earlier or
later stages than the underlying core would natively expect it.
SCAL abstracts away these discrepancies.

To enable further application cases, we extend the original
SCAIE-V tool so that we now support five user-selectable
ISAX execution modes (Table I). For example, the in-pipeline
execution mode can be used for a combinational popcount
[13] instruction, stalling multicycle for a low-area multicycle
AES [14], static decoupled for a pipelined dot product with
a pipeline deeper than the core’s, dynamic decoupled for
an ISAX whose latency depends on an external sensor, and
the always decoupled mode for a Zero Overhead Loop [15].
Multiple ISAXes can have different execution modes.

To encapsulate this flexibility, we model the timing with:
• EarliestStage (ES) - the earliest stage the SCAIE-V node

may be used in (introduced in SCAIE-V 1.0)
• LatestStage (LS) - the latest stage in which the node may

be used; remains undefined for nodes with a decoupled
mode (introduced in SCAIE-V 1.0)

• CommitStage (CS) - the stage in which the core actually
implements the node (new in SCAL / SCAIE-V 2.0)

• SpawnStage (SS) - the stage from which SCAL integrates
the node as decoupled. (new in SCAL / SCAIE-V 2.0)

TABLE I
EXECUTION MODES FOR STATE UPDATES. HH: DYNAMIC HAZARD HANDLING, ST: STATIC TIMING, ISAX RUN-TIME DEFINED AT COMPILE TIME.

Execution mode Behavior Tool Attributes HH ST Example

in-pipeline ISAX latency matches pipeline’s depth;
result is returned in-pipeline - Fig. 3a)

stalling multicycle ISAX latency > pipeline’s depth;
result is returned in-pipeline; core is stalled - Fig. 3c)

static decoupled ISAX executes decoupled, in parallel to the main pipeline “is decoupled” Fig. 3e)
dynamic decoupled ISAX executes decoupled, in parallel to the main pipeline “is dynamic decoupled” X Fig. 3d)

always decoupled similar to an independent hardware block;
may update the core’s state at any point in time instruction’s opcode = don’t cares X X Fig. 3b)

VexRiscv Core

Stage 0 1 2 3 4

WrPC - ES
WrPC - CS

WrRD - ES
Rd/WrMem - ES
Rd/WrMem - SS
Rd/WrMem - CS

WrPC - SS
WrPC - LS
WrRD - SS
WrRD - CS

Fig. 2. Pipeline requirements in case of VexRiscv for SCAIE-V nodes.

Our tool receives as input from the user the stage number in
which a node must be scheduled (UserStage) and the optional
attributes. It then inserts logic into the core in the stage:

stage = UserStage
if(opcode == "-") // "-" = don't care

stage = CommitStage // always block
else if(stage > SpawnStage)

if("is decoupled" ||
"is dynamic decoupled")

stage = CommitStage
else // default is with stalling

stage = EarliestStage

Listing 1: Updated stage computation for the SCAIE-V node.

To better clarify these concepts, we illustrate them through
an example based on the 5-stage VexRiscv core. Fig. 2 presents
the core’s pipeline requirements, meaning the ES, LS, CS,
and SS stages, for four of the SCAIE-V nodes: WrPC, WrRD,
RdMem, and WrMem. The ISAX may request these interfaces
in different cycles (US). Based on the US and the specified
tool attributes, SCAIE-V instantiates a specific execution mode
and adds hardware logic in a particular stage. Some examples
are shown in Table II, where the first row represents the user
requirements, and the following rows show the pipeline stage
in which SCAIE-V adds logic for the ISAX.

As can be seen in Table II, PC updates after the writeback
stage are not supported. In practice, such a late branch can
lead to a performance penalty due to expensive flushes. Also,
it would require stalling to prevent later instructions from
already committing state updates before potentially flushing
(writeback or memory). Although we do not allow such PC
updates, application scenarios such as Zero Overhead Loops
[15] are still supported through the always decoupled mode.

In the following, we show the generated hardware for the
different execution modes. In Fig. 3a), the ISAX reads an
operand and returns a result. We have in-pipeline execution,

TABLE II
STAGE MAPPING OF OUR TOOL FOR THE 5-STAGE VEXRISCV USING THE

TOOL ATTRIBUTES AND THE GIVEN USERSTAGE (US).

Attributes
US WrRD WrMem WrPC

7 3 7 3 7 3

- 2 (Fig.3c) 3 (Fig.3a) 2 2 x 3

is decoupled 4 (Fig.3e) 3 (Fig.3a) 2 2 x 3

is dynamic decoupled 4 (Fig.3d) 3 (Fig.3a) 2 2 x 3

opcode = don’t care 4 (Fig.3b) 4 (Fig.3b) 2 2 0 0

where the hardware overhead is given by decoding (Dec* box),
multiplexing, and hazard handling logic.

Fig. 3b) illustrates the scenario of a functional unit that may
update the core’s state at any time, denoted here as always
decoupled. An application scenario would be a malfunction
in the system, signaled by an external trigger, which should
overwrite and clear the current result. It is mandatory that
besides the result (WrRD), the functional unit also provides
a valid bit (WrRD_valid). Without it, SCAL can not know
when the update is required, as always blocks are not bound
to an opcode. The hardware overhead for this execution mode
is minimal, given only by the multiplexing.

Case c) is similar to a), except the ISAX latency is longer
than the pipeline. Without additional tool attributes, this is, by
default, implemented as a stalling multicycle ISAX. A counter
keeps track of the latency so that SCAL reads a valid result
from the ISAX in the correct cycle.

SCAL generates the hardware in e) if the user wants to avoid
stalling the core and requests the static decoupled execution
mode through tool attributes. Here, the ISAX is executed in
parallel to the core. A scoreboard implements the hazard
handling mechanism (DH box in Fig. 3e). When the result
is available, the fire logic (Fire box in Fig. 3e) checks that the
core may be stalled based on the ISAX_spawnAllowed signal
and stalls the ongoing instruction to write the result. Because,
for this execution mode, SCAL knows the ISAX latency at
compile time, it generates the “valid result” bit WrRD_valid
internally through a shift register. This bit is optionally AND-
gated with the ISAX-provided WrRD_valid bit. The register
number for the result is given in the instruction word (bits
11:7) and is stored in a FIFO until the ISAX is finished. A

- DH
- Fence instr.
- Write of a decoupled ISAX result

*Dec = Decoder, uses
RdInstr and RdFlush
*DH = Data Hazard
Handling

a)
......

0
1
S0

Dec*

4

...

0
1
S0

2

0
1
S0

Dec*

-1

Stage 3 4

4...

0
1
S0

DH
Fire

FIFO

WrStall

4...

0
1
S0

DHFire

FIFO

WrStall

Dec*

FIFO[11:7]

Dec*

ISAX_spawnAllowed

WrRD

WrRD_valid

WrRD_addr

RdInstr
RdRS

0
1

0
1

0
1

0
1

0
1

external trigger

WrStall

VexRiscv
Core

SCAL

ISAX

WrStall
due to
fence

ShiftReg

b)

c) d)

e)

Fig. 3. Integration of an ISAX reading operands and returning a result with
different execution modes: in-pipeline (a), as an always block (b), stalling
multicycle (c), or decoupled with dynamic (d) and static (e) run-time.

FIFO is adequate since the static latency guarantees ordered
results. In contrast, for a dynamic (variable) latency, as in Fig.
3d), the ISAX must provide the result register number and
the valid bit. For the decoupled modes, the user can cancel
such ongoing ISAXes through the kill ISAX and stall the core
until they are finished through the fence ISAX, both added by
SCAIE-V. SCAL already implements these for static-latency
ISAXes. However, for the dynamic decoupled mode, the ISAX
must implement them according to its execution status. For
kill, it has to flush its internal registers; for fence, the ISAX
has to stall the core (WrStall) while executing.

It is important to note that the ISAXes in scenarios 3 a), c),
and e) have identical interfaces despite their different execution
modes. This was an essential goal to achieve, providing
portability independent of the ISAX latency and the underlying
core. Only for the special cases of always-decoupled and
dynamic-decoupled does the ISAX interface change to allow
the ISAX itself to initiate state updates.

D. Abstracting Operation Semantics

To ease ISAX generation, it is desirable to abstract the
semantics of the SCAIE-V operations. Whether a value is
written to the program counter or the register file should not
make a difference for an ISAX.

One step in reaching this is abstracting PC updates. This
is now implemented within SCAL, which sets the WrFlush
signal on its own in case of a valid PC update. Another issue
arises when a WrPC occurs after a state update. Although this
is not possible in the base core, it may occur after ISAX
integration because SCAIE-V allows later WrPC operations.
If a memory transfer occurs in a stage before the ISAX WrPC,
SCAL stalls the core until the WrPC is resolved.

Another issue is posed by data hazards, which were already
considered in the original SCAIE-V tool. This work further
extends SCAIE-V, and SCAL now generates two helping
signals (valid and valid_data) to ease hazard handling
within the core. The valid bit signals that this is indeed a
valid ISAX instruction that wants to commit a result. The
valid_data bit communicates that the payload is also valid
and was provided by the user. In case of a data hazard, the
following cases can occur in a pipeline stage:

• valid = 0, valid_data = -, no DH with ISAX
• valid = 1, valid_data = 0, pipeline must be stalled
• valid = 1, valid_data = 1, data forwarding possible
While these two signals are generated by SCAL and sent

to the processor, data forwarding must be implemented in
the core’s datapath. These helper signals are used in the
Piccolo and ORCA implementations. No hazards can occur in
the multicycle PicoRV32, while VexRiscv has a user-friendly
system that automatically handles hazards for new plugins.

E. Abstracting ISAX-Internal State

Some ISAXes require internal state, e.g., the accumulator
in a multiply-and-accumulate ISAX. In former versions of
SCAIE-V, this state was instantiated and managed (including
hazard handling) by the ISAX itself. With SCAL, all state
handling, whether at the architectural or ISAX-internal scopes,
is consistently provided by the adaptation layer instead.
RdInternalState and WrInternalState operations are
supported for the new user-defined InternalState, and all
SCAL execution modes are allowed.

F. Control Synchronisation

ISAXes and the core need to be synchronized with regard
to control events such as stalls and flushes, and thus, they can
communicate bidirectionally on these using SCAIE-V opera-
tions. WrStall and WrFlush can be requested by the ISAX
to stall or flush the base core. SCAL distributes these signals
to the appropriate stages in the core (Fig. 4). Analogously, the
core can stall the ISAX by sending it a RdStall operation.
We have modified the SCAIE-V stalling concept for SCAL
to support multicycle ISAXes, which start and commit in the
same pipeline stage. For example, VexRiscv reads operands
and starts memory accesses in stage 2, so a stalling multicycle
ISAX with RdRS and WrMem adds SCAIE-V logic in stage 2.
Yet, the ISAX may start only after data hazards are resolved.
The former SCAIE-V could not distinguish if RdStall is
set due to hazards in the core or due to WrStall, which
would wrongly stall the counter in Fig. 3c). Thus, we separated
RdStall and WrStall within the core (red and green arrows).

SCAL

ISAX

CORE Hazard now

WrStall_0 WrStall_1 WrStall_2 RdStall_2

RdStall_2WrStall_2WrStall_1

Xold

Fig. 4. Stalling mechanism. RdStall is computed similarly in all stages.

TABLE III
SYNTHESIS RESULTS FOR THE UNMODIFIED CORES.

ORCA PicoRV32 VexRiscv Piccolo
FFs 1408 574 857 6184
LUTs 3108 889 1353 14924
Freq.(MHz) 77.262 194.742 95.283 36.528

IV. EVALUATION

Prior work [11] already demonstrated the benefits of
SCAIE-V for a selection of different ISAXes. In this eval-
uation, we focus on the flexibility of SCAL to adapt different
implementations of the same ISAX to multiple different base
cores. We thus integrate the same ISAX but with different
latencies, SCAIE-V destination nodes, and execution modes
into the ORCA [16], PicoRV32 [6] (non-pipelined, FSM-
based), VexRiscv [17], and Piccolo [18] cores.

A. Evaluation Setup

We provide FPGA and ASIC results. For FPGA, we use the
xc7z020 [19] device, and the resource usage corresponds to
the minimal positive slack. The baseline synthesis results are
given in Table III and were obtained for the four standalone
cores. Consequently, it does not contain the wrapper used
when adding the ISAXes, which would guide the tool in
optimizing the logic for the core’s unused interface signals.
Thus, a direct comparison of the core’s area is accurate only
for the evaluation scenarios that synthesize the cores separately
as well (Sections IV-D-IV-E). For these scenarios, the highest
overheads in FFs and LUTs are below 1% for Piccolo, below
4% for VexRiscv, below 4% for ORCA, and below 3% in
FFs and 20% in LUTs for PicoRV32. For PicoRV32, SCAIE-
V must keep track of certain interface signals that become
invalid over time, such as the instruction word. PicoRV32’s
particularly small area exacerbates the relative overheads.

For each core in our 22nm ASIC evaluation, we have
selected a target frequency for which the area results produced
by the proprietary tool flow are stable across all scenarios
(VexRiscv: 1.1GHz, PicoRV32: 1.4GHz, Orca: 1.0GHz, Pic-
colo: 556MHz).

For the charts with two vertical axes, the right one corre-
sponds to the Piccolo core.

B. Abstracting Latency

Scenario: In this scenario, the ISAX multiplies two
operands and writes the result in the register file. We vary the

implementation between combinational (0 cycles of latency)
up to pipelined with 3 cycles of latency. We used the is
decoupled tool attribute here without a specific reason, as
further attributes are analyzed in Section IV-C.

Result discussion: For a combinational implementation,
the result is returned in the earliest core stage in which the
operands may be read (ORCA: 2, VexRiscv: 2, PicoRV32:
1, Piccolo: 0). Naturally, the more stages the ISAX requires,
the more FFs are used for pipelining (Fig. 5a). Depending
on the stage in which the result is returned, the data hazard
mechanism of the core must be adapted, having an impact on
the LUT number (Fig. 5b). When the ISAX requires 3 cycles,
it actually takes place later than the writeback stage of the
cores. Thus, it is integrated by SCAL as decoupled (as in Fig.
3e) and requires more LUTs.

As expected, the frequency drops significantly when the
multiplication ISAX is implemented combinationally (Fig.
5c). Each core computes the common ALU operations in a
different stage, so the ISAX may or may not fit the core’s
datapath well. For example, Piccolo computes operations in
the first cycle. Thus, although its frequency is lower for the
combinational ISAX, it does not differ significantly when
increasing the ISAX pipeline depth. On the other hand, ORCA
reads operands in stage 2 and computes ALU operations in
the following cycle. Thus, adding the multiplication in cycle
2 dramatically reduces the frequency. Depending on the core’s
datapath, a one- or two-cycle-ISAX may bring some further
frequency improvement (VexRiscv) or not (ORCA).

The ASIC area (Fig. 5d) of the combinational implemen-
tation is higher for some cores compared to the pipelined
versions. If we correlate this with the frequency drop we
observed on FPGA (or ASIC slack values), we can assume
that for the combinational implementation, the ASIC tool
instantiates larger gates to try to meet the timing requirements.

This scenario highlights well how a single ISAX configura-
tion does not fit all cores equally; being able to port an ISAX
to a different core in the search for the best performance is a
great advantage. A final quintessential remark to this scenario
is that thanks to SCAL, the ISAX interface remains the same
across different cores and latencies, even for the decoupled
integration. It requires from SCAL two operands and returns
one result. Naturally, the pipelined versions also use the stall
and flush signals to be in sync with the base core.

Comparison to SCAIE-V: In the original SCAIE-V tool,
experimenting with different ISAX multiplication latencies
would have been difficult because the result had to be returned
in the core’s writeback stage. Apart from allowing different
latencies, SCAL also takes over some logic that was previ-
ously added into the core, such as instruction decoding and
discarding a result when the stage is flushed. However, the
total area overhead remains the same, as logic has just shifted
from the core into SCAL. Moreover, in the original tool, the
three-cycle multiplication would have had a different interface
than the others. Like with SCAL, it would have been integrated
as decoupled and required, apart from the multiplication result,
the destination address, and the valid bit. SCAL can now infer

Fig. 5. Synthesis results when varying the ISAX latency.

these signals, as in Fig. 3e). Last but not least, data hazard
handling was solely done within the core in the prior SCAIE-
V. Now, SCAL provides the core two helper signals to ease
hazard handling due to ISAXes (Section III-D).

C. Supporting Different Execution Modes

Scenario: In this scenario, the ISAX still computes the mul-
tiplication of two operands, but it uses the different execution
modes supported by our tool, as presented in Table I. For the
stalling multicycle, static, and dynamic decoupled versions, the
ISAX returns the result in 7 cycles. Its critical path is equal to
the implementation with 3 cycles from Section IV-B. For the
always block scenario, we set it to two cycles to match the
cores’ writeback stage and not overwrite other instructions.

Result discussion: As expected, the always mechanism has
the lowest hardware overhead (Fig. 6a,b). This is because
SCAL does not handle hazards for always-decoupled ISAXes,
as the responsibility lies with software scheduling for this
execution mode. The resource usage is comparable between
static and dynamic decoupled execution. For the static latency
ISAX, SCAL buffers the destination address and valid signals
and implements the fence and kill instructions (see Section
III-C). In the case of a dynamic run-time, these must be
implemented by the ISAX. However, as the functionality is
similar, the total area is comparable. The stalling multicycle
version does not have to support a hazard mechanism; thus,
its footprint is smaller.

The lower frequency (Fig. 6c) in the case of the always
block is expected, as we chose a two-cycle implementation,
which has a longer critical path than the seven-cycle one. For
PicoRV32, the multicycle logic is integrated into the FSM state
reading the operands, which is sensitive to frequency drop
(see Section IV-B). The multiplication ISAX should register
its inputs and outputs to avoid such lower frequencies. This is
not done in SCAL, as it would lead to a cycle penalty even
for simpler ISAXes. These observations demonstrate again the
importance of a fast evaluation for different ISAX configu-
rations and base cores, which is facilitated through SCAL.
We see no difference in frequency between the dynamic and
static decoupled execution modes. Still, supporting both of
them enables more applications.

TABLE IV
FPGA AND ASIC RESULTS, FOR FIG. 5-8.

ORCA PicoRV32 Vex Piccolo

0 cycles
(Fig. 5)

FFs 1296 584 865 6181
LUTs 3784 1662 2065 15884
Freq. (MHz) 57.8 58.8 57.2 33.3
Area (um2) 13052 11125 11491 36725

1 cycle
(Fig. 5)

FFs 1328 649 942 6256
LUTs 3790 1624 1990 15544
Freq. (MHz) 72.2 89.5 74.6 35.2
Area (um2) 12835 8169 12007 38336

2 cycles
(Fig. 5)

FFs 1358 682 986 6290
LUTs 3768 1626 1975 15732
Freq. (MHz) 72.2 89.5 78.6 35.4
Area (um2) 13725 8601 11964 37062

3 cycles
(Fig. 5)

FFs 1562 794 1161 6484
LUTs 4047 1701 2220 15724
Freq. (MHz) 80.4 115.7 83.1 34.1
Area (um2) 13875 7905 13152 36550

Stalling
Multicycle
(Fig. 6)

FFs 1485 805 1087 6406
LUTs 3880 1733 2097 15775
Freq. (MHz) 80.1 115.7 90.5 34.5
Area (um2) 13533 8412 11433 37361

Decoupled
(Fig. 6)

FFs 1600 977 1199 6520
LUTs 4072 1992 2279 15957
Freq. (MHz) 80.4 123.0 83.3 34.8
Area (um2) 14012 9045 12886 40368

Dyn. Dec.
(Fig. 6)

FFs 1619 1028 1233 6539
LUTs 4080 2011 2268 15960
Freq. (MHz) 80.4 123.0 85.7 34.8
Area (um2) 13907 9132 12793 36951

Always
(Fig. 6)

FFs 1353 670 953 6282
LUTs 3717 1613 2111 15640
Freq. (MHz) 72.1 89.5 81.0 34.8
Area (um2) 13312 8716 11704 37505

WrMem
(Fig. 7)

FFs SCAL 0 2 2 1
LUTs SCAL 4 8 13 7
FFs Core 1407 583 865 6182
LUTs Core 3195 1061 1357 15074
Freq. (MHz) 71.9 89.5 74.7 35.4
Area (um2) 13045 8806 11975 37680

WrPC
(Fig. 7)

FFs SCAL 0 2 0 0
LUTs SCAL 4 7 4 4
FFs Core 1409 590 882 6188
LUTs Core 3190 1048 1336 14931
Freq. (MHz) 72.2 89.2 83.9 35.9
Area (um2) 12819 8877 11828 36302

WrInternal
(Fig. 7)

FFs SCAL 33 35 33 33
LUTs SCAL 13 10 13 13
FFs Core 1409 583 882 6189
LUTs Core 3145 938 1337 14918
Freq. (MHz) 72.5 91.0 83.1 36.2
Area (um2) 13032 4752 9648 36189

WrRD
(Fig. 7)

FFs SCAL 2 2 0 2
LUTs SCAL 12 6 4 12
FFs Core 1409 583 888 6190
LUTs Core 3232 1032 1377 14942
Freq. (MHz) 72.2 89.5 74.6 35.2
Area (um2) 12835 8169 12007 38336

1 ISAX
(Fig. 8)

FFs SCAL 2 2 0 2
LUTs SCAL 12 6 4 12
FFs Core 1409 583 888 6190
LUTs Core 3232 1032 1377 14942
Freq. (MHz) 72.2 89.5 74.6 35.2

8 ISAXes
(Fig. 8)

FFs SCAL 2 16 0 2
LUTs SCAL 118 170 112 118
FFs Core 1409 583 888 6190
LUTs Core 3211 1033 1373 15047
Freq. (MHz) 71.1 89.5 75.7 35.3

Fig. 6. Synthesis results when using different execution modes.

The observations regarding FPGA utilization also apply to
the ASIC area (Fig. 6d). For Piccolo, we observed a correlation
between the area and the slack, as the ASIC tools usually
instantiate larger gates to reach the timing requirements.

Comparison to SCAIE-V: The prior SCAIE-V implemen-
tation supported the following execution modes (Table I): in-
pipeline, stalling multicycle, and dynamic decoupled. We now
add the decoupled execution mode with static run-time to
allow the same interface for ISAXes running decoupled or in-
pipeline, as explained in the previous section. To reach this,
SCAL constructs a shift register for the valid bit and a FIFO
for the destination register number (Fig. 3e). We note in Fig.
6 that these do not add much area overhead nor impact the
frequency. We also add the always decoupled execution mode,
which allows for persistent interaction and core state overrides.
Moreover, we updated the stalling multicycle mechanism, but
we discuss this in more detail in an application scenario in
Section IV-D. In the former SCAIE-V [11], the logic for
committing results (the Fire box in Fig. 3d-e) and handling
hazards for decoupled modes required around 100 LUTs and
30 FFs. We reuse this mechanism as part of SCAL.

D. Abstracting Operation Semantics

Scenario: In this scenario, we use the one-cycle ISAX
from IV-B, but we write its result to different destinations:
an internal register file instantiated within SCAL (WrInternal),
program counter (WrPC), memory (WrMem), and register file
(WrRD). The ISAX datapath is identical in all four cases. The
operations’ semantics are hidden within SCAL and the core.
Thus, for the FPGA area analysis, we ran the synthesis for
SCAL and the core separately (Fig. 7a-d). The synthesis for
the core was done solely for the core’s top module, without the
top wrapper. Thus, it does not contain top-level optimizations.

Result discussion: It can be observed that when changing
the state element for the result, the modifications within the
core are small (Fig. 7c-d). Part of the SCAIE-V logic is now
shifted into SCAL to reduce the interface complexity within
the core (Fig. 7a-b). Naturally, the highest FF usage is when
instantiating a new internal state element to store this result.
For PicoRV32, SCAL also uses FFs to store the RdIValid
decoding bits, as the core invalidates the instruction word

Fig. 7. Analysis when writing the ISAX result to different state elements.

register while prefetching. Two FFs are needed for ORCA
and Piccolo to handle register file data hazards (see Section
III-D). More variation is seen in the LUT usage (Fig. 7b). For
WrPC, SCAL must generate the flushing mechanism, and for
WrInternal, it implements a data hazard system. In the case
of ORCA and Piccolo, it generates the two control signals
for data hazards due to WrRD, which can be seen in their
corresponding LUT usage. For VexRiscv, we observe higher
resource usage when writing the result to the memory. This
is because SCAL has to implement it as a stalling multicycle
instruction since the ISAX requests a WrMem in stage 3, while
VexRiscv starts memory transfers in stage 2 (Table II). Yet,
these microarchitectural differences are successfully hidden
within SCAL.

The frequency (Fig. 7e) is slightly higher when writing
the result to the new internal state managed by SCAL
(WrInternal), leaving the core’s main data path untouched.

Comparison to SCAIE-V: The former SCAIE-V tool could
not instantiate ISAX state elements. Moreover, its limitations
would not allow the integration into the VexRiscv core of
the one-cycle multiplication writing to the memory. This core
reads the operands and starts a memory transfer in the same
cycle in stage two (Fig. 2). Yet, the ISAX from this scenario
reads the operands in one cycle and writes the result to
the memory in the following one. Hence, it does not match
the core’s pipeline. By adding the concept of SpawnStage
from Listing 1, we allow this ISAX to still be integrated
within the core as decoupled or through stalling. To allow the
latter integration method, we update the stalling multicycle
mechanism such that the ISAX reads the operands in stage
n, runs for the number of cycles according to its latency, and
returns the result in the same core’s stage n. Previously the
result was returned in the following stage.

E. Supporting Multiple ISAXes

Scenario: In this scenario, we use the one-cycle ISAX from
IV-B and instantiate it eight times. Although it is not a real case

Fig. 8. FPGA results when instantiating multiple ISAXes.

application, it shows the impact of multiple ISAXes. Having
the same interface, they can be generated independently.

Result discussion: No handshake or arbitration scheme
is needed within ISAXes, as these are provided by SCAL.
Moreover, SCAL has only a single interface to the core,
independent of the number of ISAXes. This can be observed in
the core’s resource usage (Fig. 8), which remains unaltered.
Again, the overhead and complexity have been successfully
moved into SCAL. Furthermore, the PicoRV32 core overwrites
some registers depending on the current state (see Section
III-B); SCAL takes a safer path and preserves them locally,
causing a slightly higher FF usage compared to the other cores.
The 2 FFs used by ORCA and Piccolo are for data hazard
handling (see Section III-D). Naturally, the LUT number
increases for multiple ISAXes to multiplex the result.

Comparison to SCAIE-V: The former SCAIE-V tool
updated the core to decode the ISAXes in order to multiplex
between their WrRD and the core’s datapath. When using
the SCAL layer, the core must only check the incoming
WrRD_valid bit. For the VexRiscv core version used in this
paper, the original tool would add 188 LUTs within the core,
while our proposed mechanism adds 20 LUTs within the core
and 112 LUTs inside SCAL. This reflects that the ISAX
decoding for WrRD arbitration has been shifted to SCAL,
reducing the design effort within the core. In Figure 5c) of the
SCAIE-V paper [11], the authors show a slight increase in the
core’s resource utilization when adding all ISAXes together
versus integrating them independently. This increase within
the core is reduced in our work through SCAL (Fig. 8c, d).

V. CONCLUSION

ISAXes speed up applications, yet their integration into a
base core is typically complex, error-prone, and not portable.
We extended an existing ISAX integration tool, SCAIE-V, to
provide an adaptation layer (SCAL) that mediates between
the ISAX and the core. We demonstrated that SCAL eases
ISAX generation by maintaining a stable interface across
different ISAX latencies, execution modes, and cores. SCAL

also reduces the integration effort within the core, which eases
the support of new base processors. We provide our proposed
solution as an open-source tool to contribute to the growing
RISC-V custom extensions ecosystem [20].

VI. ACKNOWLEDGEMENTS

We acknowledge the financial support by the Ger-
man Federal Ministry of Education and Research in the
projects “MANNHEIM-FlexKI” (grant: 01IS22086A-L) and
“Scale4Edge” (grants: 16ME0122K-140, 16ME0465).

REFERENCES

[1] “Codasip CodAL.” https://codasip.com/products/codasip-studio/codal/.
[2] “OpenHW Group eXtension Interface.” https://docs.openhwgroup.org/

projects/openhw-group-core-v-xif/en/latest/index.html, 2022. Online;
accessed Nov. 2024.

[3] VectorBlox Computing Inc., “FPGA-Optimized lightweight Vector Ex-
tensions for VectorBlox ORCA.” https://riscv.org/wp-content/uploads/
2016/07/Tue1515 VectorBlox ORCA with LVE.pdf, 2022. Online; ac-
cessed Nov. 2024.

[4] Div., “Sapphire custom instruction interface.”
https://www.efinixinc.com/blog/blog-2023-risc-v-custom-
instruction.html, 2024. Online; accessed Nov. 2024.

[5] Div., “Intel Nios V processor custom instruction.” https:
//www.intel.com/content/www/us/en/docs/programmable/773194/
current/custom-instruction-types.html, 2024. accessed Nov. 2024.

[6] “PicoRV32 RISC-V CPU.” https://github.com/YosysHQ/picorv32.
[7] K. Asanović, R. Avizienis, J. Bachrach, S. Beamer, D. Biancolin,

C. Celio, H. Cook, D. Dabbelt, J. Hauser, A. Izraelevitz, S. Karandikar,
B. Keller, D. Kim, J. Koenig, Y. Lee, E. Love, M. Maas, A. Magyar,
H. Mao, M. Moreto, A. Ou, D. A. Patterson, B. Richards, C. Schmidt,
S. Twigg, H. Vo, and A. Waterman, “The Rocket Chip generator,” Tech.
Rep. UCB/EECS-2016-17.

[8] Div., “Intel Nios II processor custom instruction.” https:
//www.intel.com/content/www/us/en/docs/programmable/683242/
current/custom-instruction-types.html, 2024. accessed Nov. 2024.

[9] Div., “PicoRV32 and the PCPI interface.” https://github.com/
cliffordwolf/picorv32, 2022. Online; accessed Nov. 2024.

[10] B. Green, D. Todd, J. C. Calhoun, and M. C. Smith, “TIGRA: A
tightly integrated generic RISC-V accelerator interface,” in 2021 IEEE
International Conference on Cluster Computing (CLUSTER), pp. 779–
782, 2021.

[11] M. Damian, J. Oppermann, C. Spang, and A. Koch, “SCAIE-V: An
open-source scalable interface for ISA extensions for RISC-V pro-
cessors,” in Proceedings of the 59th ACM/IEEE Design Automation
Conference, DAC ’22, (New York, NY, USA), p. 169–174, Association
for Computing Machinery, 2022.

[12] J. Oppermann, B. M. Damian-Kosterhon, F. Meisel, T. Mürmann,
E. Jentzsch, and A. Koch, “Longnail: High-level synthesis of portable
custom instruction set extensions for RISC-V processors from de-
scriptions in the open-source CoreDSL language,” in Proceedings of
the 29th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, Volume 3, ASPLOS
’24, (New York, NY, USA), p. 591–606, Association for Computing
Machinery, 2024.

[13] “RTL implementation of the population count (popcount) module.” https:
//fpgacpu.ca/fpga/Population Count.html.

[14] “Advanced encryption standard (AES).” https://www.nist.gov/
publications/advanced-encryption-standard-aes-0.

[15] M. Gautschi, P. D. Schiavone, A. Traber, I. Loi, A. Pullini, D. Rossi,
E. Flamand, F. K. Gürkaynak, and L. Benini, “Near-threshold RISC-
V core with DSP extensions for scalable IoT endpoint devices,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 25,
no. 10, pp. 2700–2713, 2017.

[16] “Mirror of the ORCA RISC-V CPU.” https://github.com/cahz/orca.
[17] “VexRiscv RISC-V CPU.” https://github.com/SpinalHDL/VexRiscv.
[18] “Piccolo RISC-V CPU.” https://github.com/bluespec/Piccolo.
[19] Div., “AMD Zynq 7000 SoCs.” https://www.amd.com/en/products/adaptive-

socs-and-fpgas/soc/zynq-7000.html. Accessed Nov. 2024.
[20] “SCAIE-V 2.0 repository.” https://github.com/esa-tu-darmstadt/

SCAIE-V-2.0/.

