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ABSTRACT
Network accessible databases are a common use case in modern
data centers, often paired with pre-processing before storing re-
sults for later use. However, general purpose CPUs struggle to keep
up with current Ethernet line speeds. Furthermore, in such a com-
pute pipeline, the CPU is mostly used to manage storage accesses,
wasting compute resources and communication bandwidth.

Due to their wide data path, FPGAs are very suitable for network
applications. Hence, we propose an open-source framework for
the seamless high-performance integration of custom FPGA-based
network-to-storage accelerators. Our solution leverages the flexible
communication interfaces of FPGAs, namely Ethernet and PCIe for
direct access to NVMe storage, without host CPU interaction. We
are able to saturate the bandwidth of both 100G Ethernet and state-
of-the-art SSDs, and demonstrate our implementation in a case
study performing DNN-based classification on an image stream.
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1 INTRODUCTION
Modern data centers handle vast amounts of data, which places
high demands on bandwidth and storage capacity, particularly in
databases. To meet these requirements, NVMe-based storage de-
vices are increasingly being utilized [1]. They are attached to the
PCIe bus, allowing for high-bandwidth access within a single node.
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For inter-node storage access, fast network links such as 100G
Ethernet are employed.

Although NVMe devices are directly accessible over the shared
PCIe bus by other devices like hardware accelerators, storage access
is typically managed exclusively by the host CPU. Relying on the
CPU solely to transfer data from storage to accelerators is inef-
ficient, as it underutilizes computing power. Therefore, enabling
direct access from accelerators to NVMe storage is advantageous.
Furthermore, CPUs often struggle to keep pace with the line rates
of high-speed network connections, which can limit the bandwidth
available for remote storage access. In contrast, FPGAs are well-
suited for processing incoming data over the network, thanks to
their wide data paths.

To address these issues, we propose SNAcc, a framework for cus-
tom FPGA-based network-to-storage accelerators. SNAcc facilitates
direct access to NVMe devices from the FPGA without the need
for host interaction. It provides NVMe access to user-defined ac-
celerators through standard AXI4 Stream interfaces, aligning with
the streaming-oriented structure of many FPGA-based hardware
designs. By integrating SNAcc into the open-source TaPaSCo frame-
work [5], we can leverage its networking capabilities, which we
enhance further by implementing flow control for 100G Ethernet.

We present three implementations within SNAcc that utilize
URAM, FPGA on-board DRAM, and host DRAM to exchange data
with the NVMe device. We evaluate these implementations against
SPDK [22], a state-of-the-art framework, demonstrating that our
fastest implementation can fully saturate the available bandwidth
of current SSDs. In our case study, we use SNAcc to perform image
classification on an incoming stream over 100G Ethernet, storing
the images and their classifications directly in a database on an
NVMe device.

This work is structured as follows: First, we provide the neces-
sary background on NVMe and TaPaSCo in Section 2, followed by
Section 3. We then give a detailed discussion of our SNAcc imple-
mentation in Section 4. The evaluation of our cores and comparison
with SPDK using synthetic benchmarks is presented in Section 5,
followed by our case study in Section 6 showcasing three competi-
tive approaches. We then discuss future extensions of this work in
Section 7, before concluding in Section 8.

2 BACKGROUND
In this section, we will provide a brief overview of the TaPaSCo
framework, which serves as the foundation for our work, as well
as an introduction to the NVMe protocol designed for non-volatile
storage devices.

https://doi.org/10.1145/3731599.3767412
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2.1 TaPaSCo
The open-source TaPaSCo framework [5] facilitates the integration
of FPGA-based accelerators into heterogeneous systems, covering
everything from hardware to the application layer. At the hardware
level, the user only needs to provide the accelerator, known as the
Processing Element (PE) in TaPaSCo, in the form of an High-Level
Synthesis (HLS) kernel or a hand-written HDL core in IP-XACT
format, complete with standard AXI4 interfaces. The toolchain then
automatically generates platform-specific infrastructure, such as an
interrupt controller and a DMA engine. The framework supports a
wide range of devices, from embedded ZYNQ devices to data center
accelerator cards like the Alveo U280 and VCK5000.

On the application level, the user interacts with the platform-
independent API provided by the TaPaSCo runtime and kernel
module, which creates an abstraction layer for all hardware inter-
actions. The runtime automatically manages data transfers and PE
execution, requiring only a few lines of user code.

Additionally, the toolchain includes a plugin system that allows
users to implement new hardware features for the supported plat-
forms. Existing plugins provide functionalities such as 10/100G
Ethernet networking, Shared Virtual Memory [9], and AMD AI
Engine [6] support across various devices. We utilize this plugin
system to incorporate our proposed support for direct NVMe access
in TaPaSCo, and to enhance the existing Ethernet feature with a
flow control mechanism.

2.2 NVMe
In recent years, the bandwidth offered by storage devices, particu-
larly SSDs, has increased significantly, making older protocols such
as SATA and SAS inadequate. As a result, NVMe [12] has emerged
as a widely adopted alternative standard. NVMe utilizes the PCIe
bus as its communication medium, promising substantially higher
bandwidth and lower latency for storage access.

To achieve this, the NVMe protocol is built around asynchronous
communication between host CPU and NVMe controller. The host
CPU manages command submission and completion queues, which
reside in the host’s memory and are accessible to the NVMe SSD
via PCIe. The CPU places commands in the submission queue and
then notifies the NVMe controller, which autonomously fetches
and executes the commands. Once a command is completed, the
NVMe controller writes the completion status, including any error
codes if necessary, to the completion queue. While there is only one
queue designated for administrative commands, multiple queues
are available for I/O commands.

The NVMe commands do not contain any payload data by them-
selves. Instead, they utilize additional memory buffers. The NVMe
protocol provides two methods for describing the layout of this
data.

Physical Region Pages (PRPs) are the most common way to
represent these buffers. Each PRP is a 4 kB page in memory and
can serve as a source or destination for the data payload of an I/O
command. The NVMe command includes two PRP entries that point
to the first and second PRP, respectively, allowing for the transfer
of up to 8 kB of data directly. However, transferring only 8 kB per
I/O command entails significant overhead and is often insufficient
to fully utilize the bandwidth of SSDs. To address this, the NVMe

protocol offers PRP lists, which use a memory page to hold the
physical addresses of up to 512 additional PRPs. When transferring
more than 8 kB in a single command, e.g. 1MB), the first PRP entry
in the command is still used to point to the initial memory page
containing the data payload. However, the second PRP entry instead
holds the address of a PRP list, which then contains the addresses
of the remaining PRPs. For even larger transfers, PRP lists can be
chained together to create a linked list by having the last of the 512
addresses point to the next PRP list.

Scatter-Gather Lists (SGLs) are a more advanced option that
expand on PRP lists by allowing the chaining of variable-sized,
contiguous buffers rather than being restricted to 4 kB pages. The
first SGL entry included in the NVMe command can point to nearly
4GB of contiguous memory. However, SGLs are not supported by
many NVMe drives and therefore are not employed by this work.

3 RELATEDWORK
Several works explore the use of NVMe with FPGA hardware ac-
celeration, addressing various aspects of this technology.

The works FastPath [17], FastPath_MP [16], DirectNVM [24],
and NoPHAE [23] focus on accelerating software access from the
ARM Processing System on ZYNQ devices to NVMe SSDs directly
attached to the FPGA board by offloading queue management to the
FPGA fabric. In contrast to SNAcc, these systems achieve signifi-
cantly lower bandwidths, ranging from 0.4 – 3.1 GB/s for sequential
accesses, and do not support the direct integration of custom hard-
ware accelerators.

DONGLE [20] offers a HLS library for accessing NVMe through
HLS kernels. Like the previous systems, DONGLE requires the
NVMe to be directly connected to the FPGA, achieving bandwidths
of 3GB/s for sequential reads and 1.9 GB/s for sequential writes
when utilizing its largest version with a 2MBURAM buffer. Notably,
only DONGLE 2.0 [19] introduces support for NVMe SSDs that are
not directly connected to the FPGA but are accessible via PCIe
P2P in a larger system, which aligns with the use case of SNAcc.
Unlike SNAcc, which enables autonomous access to the NVMe
device, DONGLE requires the host CPU to initiate each transfer.
This process involves polling status registers in the HLS core and
then submitting commands to the NVMe device while referencing
memory on the FPGA. The resulting synchronization overhead,
along with other limitations, results in significantly reduced band-
widths of approximately 1.6 GB/s for sequential reads and 0.8 GB/s
for sequential writes, considerably lower than the results presented
in this work.

NVMe over Fabrics (NVMe-oF) [13] utilizes a transport protocol,
such as TCP/IP or InfiniBand, to provide remote, high-bandwidth,
and low-latency access to NVMe SSDs. Sakalley [2] introduced an
NVMe-oF solution on an FPGA, achieving bandwidths of up to
7.6 GB/s when using eight or more SSDs in parallel. This work has
since been expanded to support custom accelerators [21].

OpenExpress [8], FVM [10], and Qiu et al. [15] implement the
NVMe controller typically found on NVMe SSDs within the FPGA.
While this approach can be beneficial for emulation or virtualization,
or research related to near-memory computing, it represents an
approach orthogonal to SNAcc.
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4 IMPLEMENTATION
In this section, we describe the various components of our imple-
mentation. Figure 1 illustrates our overall hardware designs, which
utilize URAM, on-board DRAM, or host DRAM to manage the data
buffer for NVMe transfers. The numbered arrows visualize the flow
of data and commands within the system, which will be explained
and referenced as x○ throughout this section.

In our setup, both the NVMe device and the FPGA are con-
nected to the PCIe bus of the host CPU. For Direct Peer-to-Peer
(P2P) accesses to function properly, permissions must be granted
by the IOMMU, enabling communication between the FPGA and
the NVMe device.

We start by outlining the interfacing between the user Processing
Element (PE) and our NVMe subsystem on the FPGA. Next, we
provide detailed insights into our newly introduced NVMe Streamer.
Following that, we discuss the necessary modifications to TaPaSCo
and our host side integration. Finally, we present our enhancement
of the 100G Ethernet interface of TaPaSCo, introducing a flow
control mechanism to handle network stalls correctly.

4.1 User PE Interface
As mentioned in Section 1, FPGAs are particularly well-suited for
streaming applications. Therefore, we abstract the NVMe access
using a total of four standard AXI4 Stream interfaces for commands
and responses. For read operations from the NVMe device, the
user PE issues a read command by sending the read address and
length over one stream ( 1○a), and subsequently receives the data
on another stream once the operation is complete ( 6○a). For write
operations, the first stream beat on the command interface repre-
sents the desired write address on the NVMe device, followed by
the write data ( 1○b). The length of the data is implicitly indicated
by setting the TLAST signal for the last data beat. Once the write
operation is finished, a token is sent on the write response stream
( 6○b).

4.2 NVMe Streamer
Our NVMe Streamer IP, highlighted in Figure 1, orchestrates all
NVMe accesses in SNAcc. After receiving a read command from the
user PE on the respective stream interface ( 1○a), the NVMe Streamer
immediately notifies the NVMe controller. The NVMe controller
then reads the commands from the submission queue implemented
as a FIFO in our IP ( 2○), and executes them by accessing the PRP
entries ( 3○) and retrieving or returning the data payload ( 4○). If
the read request exceeds the maximum supported read length per
command of the NVMe device in use, it must be split into multiple
smaller commands. We use a maximum size of 1MB, which, while
not the absolute maximum supported size of our SSD, is sufficient
to saturate the available bandwidth and simplifies processing. We
only request as much data as can fit in our available data buffer.
Afterwards, the respective data buffer space can be reused for the
next NVMe read command.

Once finished, the NVMe controller writes to the completion
queue ( 5○), which is implemented as a reorder buffer containing
the necessary information to finalize processing for each command,
along with one bit indicating its completion status. While the com-
pletion bits may be set out-of-order, the NVMe Streamer processes

FPGA

User PE

NVMe
Streamer

URAM

PRPQueues

PCIe
Bridge

PCIe
Bus

NVMe SSD Host DRAM

FPGA
On-board
DRAM

1○a 6○b 1○b 6○a 1○b 6○a 1○b 6○a

2○ 5○

3○ 4○ 4○

4○

URAM

On-board
DRAM

Host
DRAM

All

Figure 1: System Architecture of our NVMe implementation
on the FPGA using URAM, on-board DRAM, or host DRAM
to hold the data buffer for NVMe transfers. The numbered
arrows show the command/data flow in the system.

them in-order. Once the next in-order command is marked as com-
pleted, the NVMe Streamer fetches the read data from the memory
buffer and streams it to the user PE ( 6○a). Afterwards, the respective
data buffer space can be reused for the next NVMe read command.

Write commands, on the other hand, are forwarded to the NVMe
device as soon as all data from the user PE has been received and
buffered in the appropriate memory ( 1○b). Large write commands
are split at each 1MB boundary into individual commands for the
NVMe SSD. The command queue is shared between read and write
commands and all commands are retired in the order they are
received.

4.3 Buffer Memory
We implement three distinct versions of our NVMe Streamer, pri-
marily differing in the type of memory used for payload data buffers.
The first version uses on-die URAM blocks, while the other two
place them either in off-chip DRAM on the FPGA board, or in host
memory.

URAM. This NVMe Streamer integrates 4MB of URAM, which
are shared between read andwrite requests instead of using separate
buffers, thus reducing usage of limited URAM resources. To simplify
control logic, each new read and write command starts at a 4 kB
boundary, with a maximum of 1MB per command.

On-board DRAM. The next NVMe Streamer employs a data
buffer located in the on-board DRAM of the FPGA card. This ap-
proach conserves resources on the FPGA fabric, allows for larger
64MB buffers, and enables the complete separation of read and
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2nd PRP
entry PCIe offset 1 2nd page offset 0

63 23 22 21 12 11 3 2 0
PRP list
read address

PCIe offset 1 2nd page offset List offset 0

+

63 23 22 21 12 11 0
Returned
PRP entry PCIe offset 0 n-th page offset 0

Figure 2: On-the-fly calculation of PRP entries in our URAM-
based implementation.

write channels into distinct buffers. To maximize DRAM band-
width, we combine smaller memory accesses made by the NVMe
controller over PCIe into a joined 4 kB burst access whenever they
follow a simple incrementing pattern. Our analysis indicates that
the NVMe controller typically reads memory pages contiguously.

Host DRAM. The final NVMe Streamer is nearly identical to
the on-board DRAM version, with the DRAM interface connected
to the PCIe bus, and thus host memory, instead. This approach
conserves bandwidth on the on-board DRAM and minimizes the
number of P2P PCIe accesses between NVMe controller and FPGA.
The kernel driver is limited to allocating contiguous buffers of 4MB,
which introduces some overhead in address calculations, because
we must combine multiple buffers to reach the same 64MB as with
on-board DRAM.

4.4 Physical Region Page Lists
To leverage the full bandwidth of NVMe, our three NVMe Streamer
versions issue NVMe commands up to 1MB in size with 256 4 kB
PRPs. As explained in Section 2.2, the command itself is limited
to two PRP entries; therefore, we must utilize a PRP list. The first
entry in the command points to the initial 4 kB PRP of the buffer,
while the second points to an additional page that contains the
remaining 255 PRP entries.

A naive implementation might reserve extra memory resources
for this PRP list and store the required addresses before submitting
the command. However, a closer examination of the generated PRP
lists shows that this overhead is unnecessary. Since our Stream
Adapter uses a contiguous block of memory and streams data in
order, the PRPs are arranged consecutively in memory. Thus, the
𝑛-th PRP entry can be easily calculated by adding 𝑛 × 4096 to the
address of the first PRP entry in the list. Thus, instead of storing
the PRP lists in memory, we use the address of an incoming PRP
request to calculate the corresponding PRP entry on-the-fly.

Figure 2 illustrates this address translation for the URAM version.
We double our address space from 4MB to 8MB and use the upper
half for PRP entries. When issuing an NVMe command, we use the
addresses of the first and second PRPs of the buffer as PRP entries,
with one modification: bit 22 of the second PRP entry is set to 1,
prompting the NVMe controller to read from the upper half of our
address space instead. In case of PRP list reads, we can infer the
second PRP and the offset within the PRP list from the address.
Adding the offset to the second page’s address yields the requested
PRP entry, which we then return.

2nd PRP
entry PCIe offset cid[5:0] 0

63 18 17 12 11 3 2 0
PRP list
read address

PCIe offset cid[5:0] List offset 0

Regfile +

63 27 26 12 11 0
Returned
PRP entry DRAM PCIe offset n-th page offset 0

Figure 3: On-the-fly calculation of PRP entries in our DRAM-
based solution. The register file holds the base offset of the
second data page for each active command.

Figure 3 shows the address translation for the DRAM version,
which introduces an additional register file to avoid doubling the
already substantial 128MB address space. In this case, the PRP
lists are located in a separate, smaller address space. Unlike the
URAM version, we store the address of the second PRP in a register
file, which is indexed by the lower bits of the command ID – a
counter that increments each time a new command is submitted.
This command ID is used to form the second entry in the NVMe
command. When the NVMe controller reads from the PRP list,
we can again infer the address of the second PRP and the offset,
allowing us to compute the corresponding PRP entry.

4.5 TaPaSCo Integration
The integration of our NVMe subsystem in TaPaSCo [5] involves
two main components. Firstly, we utilize the toolflow’s plugin sys-
tem to incorporate an additional NVMe subsystem into the block
design. Currently, this plugin is available only for the Alveo U280
and Bittware XUP-VVH platforms. Our NVMe Streamer operates at
the 300MHz frequency of the memory controller. The PCIe base
address for the NVMe device can be specified in the NVMe Streamer
but may later be overridden by the host driver. Subsequently, all
necessary connections to the user PE, PCIe Bridge IP, and memory
controller are established.

TaPaSCo creates a single Base Address Register (BAR) of 64MB,
and the existing address map permits the addition of the required
8MB address space for our URAM-based implementation. However,
if we opt for a variant that uses local on-board DRAM, a second
BAR register has to be added once more than 8MB of memory is
utilized.

4.6 Host Side Initialization
While an FPGA only implementation is possible, e.g. by including a
soft CPU in the design, we choose not to do so for two reasons: (1)
Initialization is not performance-critical and only executed once,
hence any hardware spent is mostly wasted; (2) Managing the
NVMe admin queue and thus all NVMe configuration on the FPGA
side limits system debuggability and NVMe access from other de-
vices. This also precludes us from attaching the SSDs directly to
the FPGA.

Hence, our implementation uses the TaPaSCo driver and a cus-
tom host side PCIe driver for initialization of the NVMe Streamer
IP and NVMe controller after initially loading the FPGA bitstream.
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(a) Read (seq-r) and write (seq-w) bandwidth
of sequential 1 GB NVMe accesses.

(b) Read (rand-r) and write (rand-w) bandwidth
of random 4 kB NVMe accesses.
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Figure 4: Bandwidth and latency of NVMe read and write accesses from the FPGA using SNAcc (URAM, On-board DRAM, and
Host DRAM), and from the host CPU using SPDK as reference. (a) shows the bandwidth of sequential accesses with 1GB length.
The stacked bar tops showcase a fluctuating bandwidth for write accesses. (b) illustrates the bandwidth of 1GB transfer length,
but split into 4 kB accesses with randomly generated addresses on the NVMe device. In (c), we measure the latency of a single
4 kB NVMe access.

This includes setting up the NVMe admin queue and using it to
create command submission and completion queues, along with
dynamically configuring the NVMe Streamer and NVMe controller
with the global PCIe addresses of their queues and doorbell regis-
ters.

Additionally, the TaPaSCo driver allocates the DMA-capable
buffers when using the host DRAM version.

4.7 Ethernet Flow Control
When using network connections for data input or output in a
streaming application, flow control is essential to provide the back
pressure needed to prevent data loss. TCP is the default choice
for standard network applications to achieve this. However, while
TCP implementations for 100G on FPGAs exist, they require a
significant amount of FPGA resources and memory bandwidth.

Therefore, we opted for the basic Ethernet-802.3 flow control
protocol, which allows an overrun receiver to send a pause packet
to the sender. This protocol also works with intermediary switches,
which will first pause locally before propagating the pause request
further.

Once the transmission of an Ethernet frame starts, it cannot be
paused. Hence, we fully buffer the frames on the sender side to
prevent incomplete transmission, though this increases latency.

5 EVALUATION
In this section, we benchmark basic metrics of SNAcc, including
NVMe access bandwidth and latency as well as resource utilization
on the FPGA. We compare our numbers to the state-of-the-art
SPDK library for host accesses, detailed in the following section.
Our system setup consists of an AMD EPYC 7302P 16 core CPU as

host, a Samsung 990 PRO NVMe SSD with 2 TB of storage, and an
AMD Alveo U280 FPGA.

5.1 Storage Performance Development Kit
We use the state-of-the-art Storage Performance Development Kit
(SPDK) [22] library for our reference measurements, which uti-
lizes the host CPU to access the NVMe SSD. SPDK provides high-
performance, raw access to NVMe-based SSDs by shifting driver
functionality into user space. This approach avoids system calls
and enables zero-copy access. All required data buffers are located
in pinned memory, making them accessible to both the user space
application and the NVMe device through PCIe. Furthermore, SPDK
optimizes latency by polling for completions instead of relying on
interrupt mechanisms. In a setup with one SSD, it can leverage
the full SSD bandwidth running on a single thread. As many SSD
vendors actually use SPDK for their own benchmarking, we antici-
pate that SPDK will achieve the maximum bandwidth of the NVMe
device used in our setup. It thus sets a “gold standard” reference
that our hardware implementation should aim to reach.

5.2 Direct FPGA-to-NVMe Bandwidth
Figure 4a illustrates the achieved bandwidth of our URAM and
DRAM-based variants, as well as the SPDK reference for sequential
read (seq-r) and write (seq-w) accesses. Here, we benchmarked a
single large NVMe transfer of 1 GB. In the read direction, all SNAcc
variants reach a maximum bandwidth of approximately 6.9 GB/s,
which is also confirmed by SPDK measurements. In contrast, only
our implementation utilizing host DRAM achieves the same write
bandwidth of up to 6.24GB/s as measured by SPDK.

Interestingly, we found that the write bandwidth alternates be-
tween 5.90GB/s and 6.24GB/s without any intermediate values.
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This behaviour is visualized in Figure 4a, showcased by the er-
ror bars. Our URAM-based implementation attains a maximum
alternating bandwidth of 5.6 GB/s and 5.32GB/s. However, this per-
formance seems to be constrained by the PCIe P2P transfers rather
than by our NVMe Streamer.

We confirmed this by tracing the DMA interface of the NVMe
Streamer using an Integrated Logic Analyzer. The read accesses
employed by the NVMe controller to retrieve the data to be written
do not occur frequently enough to sustain a higher bandwidth, even
though our end responds immediately. Furthermore, disabling the
IOMMU had no affect.

However, the write bandwidth for our on-board DRAM imple-
mentation is slightly lower, varying between 4.6 GB/s and 4.8 GB/s.
We believe this limitation is due to simultaneous read and write
accesses to the DRAM. As the NVMe controller reads from DRAM,
we are concurrently writing new data into the buffer for the next
NVMe write transfers. Although we employ 4 kB bursts whenever
feasible, the DRAM controller often has to switch between read
and write operations, which introduces latency when responding
to NVMe read requests. A potential solution could involve utiliz-
ing two DRAM controllers or distinct HBM memory banks on the
FPGA. This would allow us to separate local writes from the read
requests made by the NVMe controller. However, the current hard-
ware design of TaPaSCo is limited to a single DRAM controller. We
further note that the smaller 4MB URAM buffer poses no limitation
on bandwidth compared to the 64MB DRAM buffer.

To evaluate random access performance, we transfer a total of
1 GB of data using NVMe commands, each with 4 kB payload, and
utilizing randomly generated read and write addresses. As shown
in Figure 4b, each of our solutions achieves approximately 1.6 GB/s
in random read bandwidth (rand-r). In contrast, SPDK can reach
up to 4.5 GB/s with the same submission queue depth of 64. Due
to the numerous short read commands, the NVMe device heavily
relies on out-of-order command execution. However, our NVMe
Streamer processes command completions in-order to simplify the
logic, which compromises performance in this specific scenario.
Another limitation is the submission queue size of 64. We observe
that SPDK can achieve even higher bandwidth when the submission
queue size is increased. Nevertheless, we argue that the typical
access pattern of streaming applications – targeted by SNAcc –
involves sequential accesses of some length, rather than entirely
random patterns.

In contrast, the randomwrite performance (rand-w) of our imple-
mentation is notably competitive. When utilizing host memory for
the data buffers, we achieve a bandwidth of 4.8 GB/s, compared to
SPDK’s 5.25GB/s. In this case, out-of-order execution is less critical
because the NVMe controller caches the data in its own DRAM
before writing to slower NVM. The bandwidth of the other two
SNAcc variants is slightly lower, which aligns with the findings
from our sequential write benchmark.

5.3 NVMe Access Latency
Figure 4c shows the the latency of a single 4 kB read or write trans-
fer to a random address. The measurements for our implementation
start with the user PE sending the read or write command to the

Table 1: FPGA resource utilization of SNAcc’s NVMe
Streamer.

URAM On-board DRAM Host DRAM

LUT 7260 (0.6 %) 14063 (1.1 %) 12228 (0.9 %)
FF 8388 (0.3 %) 16487 (0.6 %) 13373 (0.5 %)
BRAM - 24 (1.2 %) 17.5 (0.9 %)
URAM 4MB (13.3 %) - -
DRAM - 128MB 128MB*
*pinned host memory

NVMe Streamer and stops after it received its completion. In con-
trast, the SPDK benchmark transfers data only between the SSD and
host memory, and wemeasure the time from the start of the transfer
to its completion. We observe that our implementation achieves
significantly lower read latency compared to SPDK. The URAM-
based version is the fastest, with a latency of 34 µs in contrast to
SPDK’s 57 µs. Our DRAM-based implementations show latencies
of 41 µs and 43 µs, respectively. After command completion, the
DRAM-based versions must read data from DRAM before stream-
ing it to the user PE, which takes longer than directly reading from
local URAM. For write accesses, SPDK is slightly faster; however,
all four implementations maintain a latency below 9 µs.

5.4 FPGA Resource Utilization
Table 1 presents the FPGA resource utilization of our three different
NVMe Streamer implementations, highlighting the general trade-
offs among various resources. At this point, we only compare the
utilization of this specific IP implementing the main functionality
of our NVMe connection. In terms of Flip-Flop (FF) and Look-Up Ta-
ble (LUT) utilization, the URAM-based version consumes the least
resources. However, it utilizes approximately 13 % of the URAM
blocks, which may be significant for accelerators that require sub-
stantial scratch pad memory on the FPGA fabric. In comparison, the
DRAM-based versions require double to triple the amount of LUTs
and FFs, primarily due to the additional AXI interfaces needed for
DRAM access and the register file for on-the-fly PRP computation.

These implementations do not use any URAM, but they do utilize
a few BRAMs as FIFOs to buffer data for memory burst accesses.
The implementation using on-board DRAM requires more BRAMs
due to the additional burst logic for NVMe accesses to on-board
DRAM. Additionally, we must reserve space in DRAM that cannot
be used by the user application, which also necessitates a significant
portion of the available bandwidth. When host memory is used, the
respective memory range is pinned by the kernel driver throughout
the entire execution time.

6 CASE STUDY: IMAGE CLASSIFICATION
We demonstrate the integration of SNAcc’s NVMe and Ethernet
extensions to TaPaSCo through a case study performing image clas-
sification. In this application, we receive image data over Ethernet,
perform image classification on the FPGA, and directly write both
the original image and classification data to an NVMe SSD. After
initialization, the entire application operates autonomously on the
FPGA without any host interaction. We view image classification
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Figure 5: Dataflow on the FPGA in our image classification
case study. SNAcc infrastructure IPs are marked in red, and
user PEs in blue.

as a good proxy application for many streaming-based network-to-
storage use cases, where high-rate input data is received, processed
in the FPGA, and the results are directly written to storage.

In the following, we describe the structure of our case study
in more detail, along with our reference implementations, before
presenting the benchmark results.

6.1 Reference Implementations
We compare five implementations, the first three of which utilize
our SNAcc framework.

FPGA.Our hardware design is illustrated in Figure 5. We receive
a stream of images over 100G Ethernet, sent by another FPGA as
transmitter in our setup. Our flow control extension, described in
Section 4.7, is designed to indicate backpressure to the transmitter.
We assume that images are captured at a higher resolution than
our classification accelerator can handle, so we scale the images
down to 224x224 pixels. The classification is performed using a
streaming-based accelerator, based on the MobileNet-V1 [7] net-
work and generated with AMD FINN [18]. While there are more
accurate image classification networks, such as ResNet50 [4], we
chose MobileNet-V1 due to its high throughput, with the aim to
truly stress our infrastructure. Finally, our database controller for-
wards the original image data stream, bypassing the classification
pipeline, alongside with the stream of classifications from the FINN
PE to the NVMe peripherals of SNAcc. We include three versions of
this design utilizing our different NVMe Streamer implementations.

SPDK. Our first reference implementation is based on SPDK.
If we assume direct access to the NVMe device from the FPGA
is unavailable, the host will need to manage saving the resulting
data. Thus, we maintain the image classification accelerator on the
FPGA but transfer the image and classification data to host memory,
allowing the host software to handle writing to the NVMe SSD.
Again, we employ the SPDK library, as introduced in Section 5.1.
To provide a fair comparison with the streaming-based SNAcc
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SPDK GPU
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Figure 6: Bandwidth in our image classification case study
using SNAcc, SPDK, and GPU as reference.

solution, we process the incoming data in batches – e.g., 32 images.
Using double buffering, this approach enables us to overlap image
classification with data transfers from FPGA to host memory and
from the host to the NVMe device.

GPU. In our second reference implementation, we perform im-
age classification on an NVIDIA A100 GPU. We utilize PyTorch [14]
to evaluate batches of images on the GPU. Meanwhile, other CPU
threads manage data transfers between the NIC, for which we use
our FPGA, host DRAM, GPU, and NVMe SSD. To circumvent limi-
tations related to Python’s multi-threading and multi-processing
capabilities, we implemented these functionalities in C++ and pro-
vided a simplified interface for Python. This solution incurs more
PCIe traffic since the downscaled images must be transferred to
the GPU, and the classifications must be retrieved from it. While
NVIDIA offers GPUDirect Storage [11] to enable direct writing
from the GPU to NVMe SSDs, we were unable to use this feature
in conjunction with PyTorch and therefore reverted to SPDK.

6.2 Evaluation Results
We evaluate our case study using the identical system setup de-
scribed in Section 5, with the addition of an NVIDIA A100 GPU.
We measure the bandwidth by streaming 16384 images, totaling
147GB, and present the results in Figure 6. All three variants of
SNAcc nearly achieve the same bandwidth as measured for sequen-
tial writes in Section 5.2. Similarly, the SPDK-based version fully
utilizes the available bandwidth of our NVMe SSD, though the
CPU must retrieve results from the FPGA before writing to the
SSD. The host DRAM and SPDK-based implementations achieve
the best performance, reaching about 6.1 GB/s, which is equivalent
to 676 frames/s. Clearly, the NVMe bandwidth is still the limiting
factor since we are nowhere close to the maximum 12.5 GB/s of our
100G connection. In comparison, the GPU reference has an overall
bandwidth of 5.76GB/s.

6.3 Considerations Beyond Bandwidth
While our case study indicates that the SPDK and host DRAM imple-
mentations achieve the highest bandwidth, this may be misleading,
as other system-level factors need to be considered. Both the SPDK
and GPU-based variants utilize one CPU thread running at 100 %
capacity, doing nothing but moving data around. In contrast, the
SNAcc-based variants operate autonomously without putting any
load on the CPU after the initial setup, freeing up a CPU core to
perform useful work. This impact will most likely become stronger
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Figure 7: PCIe data transfers for the different configurations
in our case study. URAMand on-boardDRAMhave the fewest
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when scaling-up to systems with multiple SSDs, which increase the
host CPU load even further.

It may be notable that SPDK implements its driver functionality
in user space to enhance performance, which requires root privi-
leges to map the necessary hardware registers into user space and
to pin host memory for transfer buffers. In SNAcc, all hardware
interactions are encapsulated within the TaPaSCo driver and run-
time as well as the provided NVMe driver. However, it is important
to note that the host DRAM-based implementation of SNAcc also
requires pinned memory, which cannot be utilized by the Linux
kernel for other purposes.

Finally, visualizing the data transfers over the PCIe bus in Fig-
ure 7 shows that both SNAcc variants, which use memory on the
FPGA board for data transfers, result in the least PCIe traffic. This
approach avoids unnecessary copies and frees up PCIe bandwidth
for other applications on the shared bus.

7 DISCUSSION OF LIMITATIONS AND
FUTUREWORK

This work presents a functional implementation of direct FPGA-
to-NVMe access, comparing three buffer strategies. Our current
implementation already reaches the maximum bandwidth as val-
idated by comparison with SPDK, and does so without any load
on the host CPU during application runtime, while SPDK occupies
one CPU thread at 100 % load. However, our single NVMe cannot
keep-up with the 100G network rate, even though the PCIe bus is
not fully loaded. We will tackle this in the following enhancements:

PCIe 5.0. Current NVMe SSDs support PCIe Gen5 x4, doubling
the bandwidth compared to the SSD used in Sections 5 to 6. Our
implementation already can accommodate these SSDs without mod-
ifications. Transitioning to newer FPGA generations will further
increase PCIe bandwidth, preparing us for even faster SSDs. We
will also investigate whether recent SSDs overcome the PCIe P2P
traffic limitations observed in our evaluation.

Multi-SSD Support.Our design can easily be extended to access
multiple SSDs concurrently. To this end, we will establish separate
submission and completion queues for each SSD, either consolidat-
ing them into a single address space or providing distinct stream
interfaces. Both approaches will better saturate PCIe bandwidth
and mitigate the PCIe P2P limitation by hiding the latency of a
single SSD.

HBM.Without using data buffers in host DRAM,memory will be-
come a bottleneck in multi-SSD setups. Available URAM resources
are limited, and we already observed bandwidth constraints us-
ing a single SSD with on-board DRAM. However, we can leverage
HBM and distribute data buffers across different HBM controllers
to maximize parallelism and bandwidth.

Out-of-order Retirement. The low random-read bandwidth
could challenge non-streaming applications. This can be improved
by increasing the submission queue size, which requires additional
resources, or by implementing out-of-order retirement. Our current
in-order model allows up to 64 in-flight commands but issues new
commands only after the first previous command is completed,
potentially leading to idle time. An out-of-order approach must
appropriately handle large transfers split across multiple commands
while maintaining correct processing order.

8 CONCLUSION
We have introduced the SNAcc framework, which enables autono-
mous, streaming-based access to NVMe devices for custom FPGA-
based accelerators directly attached to a 100G Ethernet connection
supporting flow control. In our evaluation and image classification
case study, we demonstrated that SNAcc fully utilizes the maxi-
mum available bandwidth of our NVMe SSD, as verified using SPDK,
achieving 6.9 GB/s for read operations and 6.24GB/s for write oper-
ations. However, the maximum write bandwidth was only attained
by using buffers in the host memory to exchange data with the
NVMe controller, due to limitations in PCIe P2P transfers and the
on-board DRAM controller. To address this bottleneck, we look
forward to extending our implementation for PCIe 5.0 devices and
multi-NVMe setups.

SNAcc does not require any third-party IP and is publicly avail-
able as an easy-to-use extension to TaPaSCo [3].
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