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ABSTRACT

We present a framework for developing compute graph-based ap-
plications targeting the AI Engine (AIE) array of AMD Versal SoCs.
This framework enables users to embed AIE-based dataflow graph
prototypes directly within existing C++ applications and automati-
cally transform them into deployable AIE graph projects. It thereby
eliminates the need to manually separate host and accelerator code-
bases, as required by the standard AMD Vitis workflow. The frame-
work comprises two core components: (1) a compute graph simula-
tion library that can be linked into existing C++ programs, and (2)
a Clang-based source-to-source translator that extracts simulator-
defined graphs and prepares them for compilation with AMD’s AIE
toolchain. We evaluate our framework using AMD’s official example
graphs and show that our generated AIE code achieves performance
comparable to hand-optimized Vitis implementations. Addition-
ally, we demonstrate how C++ compile-time code execution can
be leveraged to simplify the implementation of source-to-source
translation and static source analysis.
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1 INTRODUCTION

Specialized compute accelerators are playing an increasingly impor-
tant role in HPC, offering significantly higher performance per watt
and compute density compared to general-purpose CPUs. In addi-
tion to GPUs, streaming MIMD compute graph accelerators have
gained traction in recent years [6][12]. However, programming
these architectures remains challenging due to their complexity
and heavy reliance on vendor-specific toolchains.

One example of such an accelerator architecture is the AI Engine
(AIE) array integrated into AMD Versal SoCs. This array consists
of a two-dimensional grid of VLIW processors, each equipped with
SIMD vector units [2]. Each processor contains local code SRAM
and multiple banks of data SRAM, allowing them to execute in-
dependent compute kernels while communicating through data
streaming interfaces. AMD provides the aiecompiler toolchain for
AlEs as part of the Vitis software suite [3]. To use this toolchain, de-
velopers must express their application as a compute graph, which
is a collection of kernels that exchange data streams among them-
selves and with the array’s external interfaces. Since each kernel
runs as an independent program on its own processor, the toolchain
requires kernels to be defined in separate source files and compiled
individually. Thus, developers must manually partition their HPC
application into separate host and device codebases, each with dis-
tinct toolchains, simulators, and debuggers—significantly increas-
ing the complexity of porting to the AIE architecture.

To lower the barrier to entry for AIE programming, we introduce
a C++ library, cgsim, for building and simulating compute graph
prototypes, along with an associated source-to-source translator
that automatically converts these prototypes into deployable ATE
projects. Our primary goal is to provide an alternative development
workflow for AIE graphs in which developers can embed graph
prototypes directly within their existing applications using our sim-
ulation library, rather than separating host and device components
already in the early stages of development. Compared to AMD’s
standard AIE development flow, our approach ensures a fully func-
tional application throughout the graph development process and
eliminates the need for vendor-specific tools or build environments
during early-stage simulation and debugging.

Our contributions are summarized as follows:
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e We design and implement a compute graph simulation li-
brary, cgsim, which allows users to embed AIE-based data-
flow graph prototypes directly within C++ applications. In
contrast to the existing simulation library Graphtoy [15],
cgsimuses a compile-time graph construction approach, which
enables both efficient simulation and automated extraction
of graphs from a larger source file.

e We develop a corresponding compute graph extractor,
which leverages Clang’s semantic analysis capabilities to
transform cgsim graphs into AIE projects through a combi-
nation of source-to-source translation and code generation.

e We evaluate our approach by porting several official AMD
AIE examples to cgsim, demonstrating that the automatically
extracted graphs achieve at least 85% of the performance of
hand-optimized Vitis implementations.

e We release our framework as open source at: https://github.
com/esa-tu-darmstadt/cgsim.

The remainder of this paper is organized as follows: Section 2
reviews related work on AIE programming frameworks and source-
to-source translation tools. Section 3 and Section 4 present the
architecture of the cgsim simulator and its associated compute graph
extractor, respectively. Section 5 evaluates the proposed approach.
Finally, Section 6 concludes with a discussion of current limitations
and future work.

2 RELATED WORK

Several efforts have focused on improving the programmability of
AlEs. For example, PyAIE [18] is a Python-based framework that
allows developers to run numpy-based machine learning algorithms
on Versal SoCs. It utilizes PyLog [9] to translate Python functions
to HLS kernels and off-loads matrix multiplication operations to the
AlEs using code templates. Another example is Vyasa [7], which
extends the Halide DSL compiler [13] to automatically generate
vectorized Conv2D loops for the AIE architecture. Vyasa emits
C code that invokes AIE vector intrinsics and exploits both tem-
poral and spatial memory locality through vector register reuse
and the merging of adjacent accesses into wider vector operations.
Moreover, Vyasa can automatically explore the design space of
possible execution schedules by leveraging feedback from AMD’s
cycle-approximate AIE simulator [3].

In contrast to the high-level, code-generating abstractions of
PyAIE and Vyasa that are focused on matrix operations for machine
learning applications, Graphtoy [15] adopts a low-level, developer-
oriented approach. It provides a coroutine-based compute graph
simulation library designed for integration into existing C++ code-
bases, rather than as a standalone application development frame-
work. Graphtoy does not perform automatic code generation; in-
stead, it facilitates rapid prototyping and iterative refinement of
AIE kernels and graph structures. However, it lacks an automated
path for converting prototypes into deployable AIE projects, requir-
ing users to manually reimplement their application in Vitis once
their prototype is validated. In this work, we address this limitation
by introducing a source-to-source translation tool, which requires
a redesign of the simulation library to support automated source
code analysis and transformation.
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To enable source-to-source translation of compute graphs em-
bedded in C++ programs, an appropriate analysis and transforma-
tion framework must be first selected. We evaluated two candidate
frameworks for this purpose: Clang LibTooling and Clava.

Clang [16] is a standards-compliant C++ compiler that uses the
LLVM compiler infrastructure [11] as its backend for code genera-
tion. The LibTooling project extends Clang’s modular architecture
to support static analysis and source-to-source translation [17]. It
does so by exposing the Clang frontend as a library, allowing ex-
ternal tools to access the AST representations of C++ source files
for analysis and transformation. LibTooling further enhances this
functionality with APIs for AST pattern matching and source-level
rewriting. Because Clang enriches the AST with semantic informa-
tion before it is passed to user-defined tools, LibTooling enables
not only syntactic but also semantic analysis. This includes support
for higher-level C++ constructs such as template instantiations,
constant evaluation, and compile-time code execution.

Clava [4] [5] is a source-to-source compiler that supports C,
C++, CUDA, and OpenCL. It is structured as a pipeline of tools and
leverages the Clang frontend to convert source code into a custom
AST representation. This simplified AST can be analyzed and trans-
formed using user-defined JavaScript code via the Clava Weaver
Engine. The modified AST is then reconstructed into source code
and written to disk for downstream compilation. Although Clava
offers a simpler API for source-to-source translation, it does not ex-
pose the full range of AST analysis and transformation capabilities
available in the underlying Clang frontend.

In this work, we choose to interface directly with the Clang
frontend using the LibTooling framework [17] rather than using
Clava. While this decision involves managing the added complexity
of Clang’s infrastructure, it provides access to its advanced semantic
analysis capabilities, which are essential for our translation goals.
Our rationale for selecting Clang over Clava is discussed in greater
detail in Section 4.

3 THE COMPUTE GRAPH SIMULATOR

The compute graph simulation library developed in this work,
cgsim, builds upon concepts introduced in the earlier Graphtoy
simulator [15], but has been completely rewritten to support pro-
grammatic post-processing of compute graphs. Like Graphtoy, it
employs C++20 coroutines to simulate concurrently executing ker-
nels through cooperative multitasking, and uses multi-producer,
multi-consumer (MPMC) queues for data streaming between ker-
nels. However, cgsim differs fundamentally in its implementation
from Graphtoy due to the need for its compute graph constructs
to be readily parseable by a source-to-source translation tool. The
following sections describe the architecture of cgsim in detail.

3.1 Architecture rationale

In the prior Graphtoy toolflow, compute graphs are constructed
dynamically at runtime when invoked by the host application. This
dynamic construction poses a major challenge for source-to-source
translation, as graph construction may be interleaved with and
be dependent on arbitrary user code. Thus, the structure of the
compute graph can vary based on runtime input data. To extract
all possible compute graphs from such a program, one would need
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to determine whether the program generates a finite set of graph
variants for all possible inputs—in other words, whether the graph
generation process halts. This problem reduces to the halting prob-
lem [14], which is undecidable, making it infeasible to enumerate
and extract all compute graphs in the general case for that approach.

To overcome this fundamental limitation, we considered three
alternative approaches:

(1) Runtime serialization of graph variants: Retain the original
runtime construction approach, but serialize all instantiated
compute graphs to disk during program execution. This
strategy requires users to provide a wide range of test inputs
that trigger all possible graph variants that the program
might generate.

Restricted runtime construction with interpretation: Maintain

the runtime graph construction, but restrict graph construc-

tion code to a well-defined subset of the C++ language and
disallow dependencies on runtime data. The compute graph
extractor can then parse and interpret this limited subset.

However, this approach would require an additional C++

interpreter alongside the compiler.

(3) Compile-time graph construction: Shift graph construction
entirely to compile time, requiring a complete redesign of the
simulator. While this departs from the original Graphtoy’s
runtime-based design, it enables—in the extractor—the use of
C++’s standardized constexpr compile-time execution mech-
anism [10], which is supported by all conforming compilers.
This approach also aligns with the programming paradigm
of AIEs and similar accelerator architectures, which do not
even support dynamic graph construction at runtime.

(2

~

Thus, we adopt the third approach for our cgsim because it better
matches the AIE programming model and offers the potential to
significantly reduce the complexity of the compute graph extraction
by leveraging existing, well-maintained compiler infrastructure.

The following sections will give an overview over the use of the
advanced C++ features that enable us to transparently (for the user)
leverage the existing Clang infrastructure by compile-time code
execution. This novel approach spares us from having to implement
a custom compiler front-end, which would be the usual solution in
such a tool flow.

3.2 Architecture overview

The compute graph simulator provides the compile-time constexpr
functions and macros that enable users to define compute graphs
using standard C++ syntax. These definitions are serialized into a
flattened, array-based data structure and stored in a constexpr vari-
able. This structure embeds references to the graph’s kernels and
I/O port types, enabling the graph runtime to reconstruct a com-
plete copy of the compute graph at program execution. The same
data structure can be parsed by the compute graph extractor (de-
scribed in Section 4) and transformed into a representation suitable
for cross-compilation targeting real hardware. Figure 1 illustrates
the architecture of compile-time graph construction, while Figure 2
shows how the cgsim library, which implements this compile-time
functionality, integrates into the overall graph prototyping work-
flow.
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Figure 1: A compute graph in cgsim consists of individual kernels,
defined by the user using the COMPUTE_KERNEL macro, and a graph def-
inition specified as a lambda function that describes graph’s connec-
tivity when invoked. The compile-time logic of cgsim, invoked via
the make_compute_graph_v template variable, combines these kernel
and connectivity definitions through postprocessing and flattening
steps to produce a complete compute graph. This graph can then be
stored in a constexpr variable for later execution or extraction.

3.3 Kernel definition

To enable compile-time inspection of external interfaces—such as
stream connections and parameters—via template metaprogram-
ming, kernels in a cgsim-based compute graph must be defined as
static functions using the COMPUTE_KERNEL macro. Figure 3 illustrates
this approach. Internally, the macro transforms the kernel into a
member function of a newly generated class. This class also stores
metadata, including the kernel’s execution realm (see Section 4.3)
and I/O port type information, which is collected using C++ type
traits.

3.4 Graph construction

Once all compute graph kernels have been defined, they must be in-
stantiated and connected to form a complete graph. cgsim performs
this construction at compile time using constexpr new, a C++20
feature that enables dynamic memory allocation within constexpr
contexts, as long as all compile-time allocations are properly deal-

located before the context concludes [10].

'While the C++ standard does not explicitly state that dynamic memory allocation is
allowed in constexpr context, it requires that compilers elide calls to the replaceable
global allocation functions in such contexts, while preserving the semantics of the
allocation operator. As a consequence, conforming implementations must provide an
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Figure 2: High-level overview of the cgsim workflow for prototyping
compute graphs. Developers define kernels and graph structure in-
sidet their application using the cgsim library, which they can then
either simulate on their workstation (left), or extract deployable
graphs from via source-to-source translation (right).

COMPUTE _KERNEL (

1

2 aie, // Realm (target HW)

3 adder_kernel , // Kernel name

4

5 // 1/0 ports

6 KernelReadPort<float> int,

7 KernelReadPort<float> in2,

8 KernelWritePort<float> out

o ) {

10 while (true) {

1 const float val = (co_await inl.get())
12 + (co_await in2.get());
13

14 co_await out.put(val);

15 }

16 };

Figure 3: Example of a compute kernel intended for execution on the
AIE array. The kernel reads pairs of values from two input streams,
computes their sum, and writes the result to an output stream.

Users initiate graph construction by passing a lambda func-
tion as a non-type template argument to the make_compute_graph_v
template variable. This lambda is executed at compile time and
defines graph connectivity using IoConnector objects. These ob-
jects are passed as parameters to kernel functions; when mul-
tiple inputs or outputs reference the same IoConnector, implicit
stream broadcast and merge operations are created, respectively.

alternative, allocation-like mechanism for compile time use. This mechanism is not
required to perform actual memory allocation; it must simply behave as-if it did.
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constexpr auto the_graph =

make_compute_graph_v<[](
// External graph inputs K[0]
IoConnector<int> a

1
2
3
4
5 1) {
6
7
8
9

// Internal connections
IoConnector<int> b, c;
// Kernels

10 k(a, b);

1 k(b, ¢);

12 k[1]
13 // External graph outputs

14 return std::make_tuple(c); \L

15 }>; @

(a) Compute graph definition. (b) Resulting
graph.

Figure 4: Side-by-side comparison of a compute graph definition and
the resulting in-memory graph after contexpr evaluation. Kernels
and IoConnector instances are color-coded to highlight how graph
elements correspond to their defining code sections.

The lambda’s IoConnector parameters become graph’s global in-
puts, while IoConnector objects returned from the lambda become
global outputs. Figure 4 illustrates this construction pattern.

In addition, users can attach a list of attributes to each I/O connec-
tion in the graph. These attributes are key-value pairs with string
keys and either string or integer values. While these attributes
do not affect cgsim’s runtime behavior, they provide auxiliary in-
formation, such as PLIO port names and buffering modes, to the
graph extractor running later in the flow. This auxiliary informa-
tion cannot be inferred automatically. In contrast, settings that
do influence graph behavior are specified as non-type template
arguments to the KernelReadPort and KernelWritePort parameters
within kernel functions. These settings include options such as
marking a port as a runtime parameter or specifying the beat size
of the underlying bus (e.g., AXI) for streaming interfaces. When
two parameterized ports are connected via an IoConnector, cgsim
checks for compatibility and merges their configurations into a
unified setting shared by all connected endpoints. If the settings are
incompatible, a compile-time error is generated. Again, note that
this functionality would typically need to be realized in a separate
compiler (pass), but, using compile-time code execution, can be
moved forward to the unmodified Clang front-end.

3.5 Graph serialization

When the compute graph definition lambda is executed, it gener-
ates a graph structure composed of dynamically allocated objects
in the compile-time heap using constexpr new. Graph edges are
represented as raw pointers between these objects. However, the
C++ standard requires that all compile-time allocations be deallo-
cated before the end of constexpr evaluation (see Section 3.4). As
a result, this pointer-based representation cannot persist beyond
the constexpr context, making it unavailable for use by the graph
runtime or the extractor.
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To overcome this limitation, cgsim applies an additional compile-
time processing step that transforms the graph into a flattened,
array-based data structure, eliminating the need for dynamic mem-
ory. This representation can be stored in a constexpr variable, en-
abling information to be transferred from compile time to runtime.
Type information for kernels and ports is preserved through tem-
plate functions, which reconstruct objects of the appropriate type
when invoked.

3.6 Runtime graph instantiation

To execute compute graphs defined and serialized using the mecha-
nisms described above, cgsim provides a runtime deserializer that
can be invoked via the function call operator of the serialized graph
object. This deserializer takes as input the serialized graph data
structure, which was produced at compile time, and reconstructs a
copy of the compute graph from it on the runtime heap. The instan-
tiation process begins by recreating all graph I/O ports from the
serialized descriptors detailed in Section 3.5. Subsequently, cgsim
instantiates all kernels in the same way and establishes connec-
tions between them via the previously constructed port objects. A
RuntimeContext object encapsulates and manages all reconstructed
components, representing a single execution instance of the com-
pute graph. Finally, global graph inputs and outputs are connected
to external data sources and sinks, as described in Section 3.7.

At runtime, kernels exchange data through fixed-capacity MPMC
queues with broadcast semantics, ensuring that each consumer
receives a complete copy of all data written to the buffer. While the
queue preserves the order of data from individual producers, data
from multiple producers may be interleaved.

3.7 Global I/0

In addition to managing data transfers between kernels within a
compute graph, cgsim supports streaming data into and out of the
graph’s global I/O ports. This functionality is implemented via run-
time data sources and sinks—specialized kernel coroutines that the
RuntimeContext attaches to the graph after instantiating it from its
constexpr representation (see Section 3.6). During graph execution,
each coroutine either produces or consumes a single data stream
by accessing standard C++ container objects supplied by the user.
The framework also supports passing scalar values and variables
through Runtime Parameter sources and sinks, respectively.

Users specify data sources and sinks as positional arguments
when invoking the graph, with sources (graph inputs) listed first,
followed by sinks (graph outputs).

3.8 Running a graph

After the compute graph is constructed and connected to its data
sources and sinks, cgsim executes it by starting the coroutine task
scheduler embedded within the RuntimeContext. Execution pro-
ceeds in two steps: First, the runtime context creates all compute
kernel coroutines in a suspended state and registers them with
the scheduler as pending tasks. This initialization step establishes
the set of cooperatively multitasked user-mode threads required
for graph simulation. Second, the context activates the scheduling
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algorithm, which invokes pending tasks until no coroutines can
continue execution.?

Once graph execution completes, the RuntimeContext terminates
all kernel coroutines and deallocates their associated heap-allocated
context objects. The results of the computation remain available in

the data sinks connected to the graph.

3.9 Using the AMD AIE intrinsics and API

Although cgsim does not directly emulate the AMD AIE intrinsics or
API, AMD provides C++ headers and libraries that implement these
functions accurately for x86 host CPUs [3]. The cgsim framework
can import these definitions through an adapter header, allowing
compute graph prototypes to leverage AIE SIMD intrinsics out-
side the Vitis environment. Due to licensing constraints, the cgsim
repository does not include these libraries; users must manually
supply a copy of the aietools directory from their Vitis installation
to enable AIE intrinsic support in the simulator.

4 THE GRAPH EXTRACTOR

After the compute graph-based application has been shown to be
functionally correct using the cgsim flow, it needs to be transformed
for mapping to the actual AIE hardware. The graph source code
extractor is a source-to-source translation tool that processes C++
source files containing cgsim graphs and converts them into one or
more AMD Vitis-compatible AIE projects through a combination
of automated source rewriting and code generation. Although the
current implementation targets AIEs exclusively, the tool’s architec-
ture is designed to support additional backends, such as high-level
synthesis (HLS). A special noextract target is also provided, allow-
ing users to exclude specific kernels from the extraction process.
The following sections describe the rationale, design decisions, and
implementation details of the graph extractor. Figure 5 presents an
overview of the extraction workflow.

4.1 Selecting a source-to-source translation
framework

To implement a source-to-source translator capable of extracting
compute graphs from C++ programs, an appropriate underlying
framework must be first selected. Based on the design decisions
made for the graph simulator (see Section 3.2), the framework must
provide the following capabilities:

o Support for C++20 or higher, including modern language
features required by the simulator.

e Semantic analysis, including access to type information and
template instantiations.

e Evaluation of constexpr expressions, through a built-in C++
interpreter capable of compile-time execution.

We select Clang LibTooling [11][17] as the foundation for the
compute graph extractor, primarily due to its comprehensive se-
mantic analysis capabilities, as explained in Section 2.

4.2 Graph ingestion

The compute graph extractor begins by invoking Clang’s frontend
to parse the input source file into an AST. It then scans the AST

There is no explicit termination condition.
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Figure 5: Overview of the graph extraction flow. Starting with a user-
provided source file containing one or more compute graphs, the
extractor first builds an AST using the Clang frontend. At this stage,
cgsim’s compile-time graph preprocessing logic executes, producing
serialized compute graph variables that the extractor can evaluate
later to recover all graph definitions. Finally, the extractor applies a
sequence of source transformations to the graphs and their associ-
ated kernel functions, writing the results to disk as individual source
files.

for global variables with static storage duration that are annotated
with the custom extract_compute_graph attribute, which is added to
Clang to mark extractable graphs. Since cgsim represents compute
graphs as constexpr global variables (see Section 3.5), the extrac-
tor can leverage Clang’s built-in constant expression evaluator to
retrieve the graph definition in serialized form. This approach sig-
nificantly simplifies the extraction process: instead of traversing the
entire AST, the extractor operates on a flattened data structure to
reconstruct the graph’s connectivity. The complexity of the actual
interpretation is offloaded to Clang’s well-tested constexpr inter-
preter, simplifying the implementation of our tool flow considerably.
After obtaining the serialized data, the extractor deserializes it, con-
verting index-based vertex references back into a pointer-based
graph representation.
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The serialized compute graph includes function pointers to tem-
plate functions instantiated with the specific kernel and I/O port
types used in the graph. While the cgsim library uses these pointers
to reconstruct the graph at runtime (see Section 3.6), the extractor
follows them to recover the graph’s type information from their
template arguments.

4.3 Graph partitioning

After deserialization, the extractor partitions the compute graph
into subgraphs based on their target hardware for execution, re-
ferred to as realms. Each kernel is annotated by the user with
its intended realm; currently supported values include AIE and
noextract. Based on these annotations, the extractor classifies all
connections between kernels into three categories:

o Intra-realm ports: Connections entirely contained within a
single realm.

o Inter-realm ports: Connections that transfer data between
different realms.

o Global ports: Connections that move data into or out of the

graph.

The extractor assigns this classification to each port in the graph,
enabling realm-specific backends to generate the appropriate inter-
nal connections and external interfaces.

4.4 Extraction of kernels

The deserialized and partitioned compute graph retains references
to AST nodes corresponding to each kernel’s function declaration.
To generate standalone source files for each kernel, the extractor
must isolate their source text from the original file and adapt it to
conform to the programming model of the target realm. This is
accomplished using a clang: :Rewriter, which operates on the ex-
pansion range of each function declaration®. The extractor processes
each unique kernel function twice: once to generate a forward dec-
laration (call signature only) and once to generate the full function
definition (including the body).

Each realm can define custom transformation routines for its
associated kernels. Additionally, the extractor provides a set of stan-
dard transformation functions that can be reused by realm-specific
backends, eliminating the need to duplicate common operations
such as removing co_await tokens or extracting declarations from
definitions.

When the extractor removes co_await tokens from a kernel,
the coroutine-based asynchronous stream operations are trans-
formed into synchronous, blocking calls. This conversion elimi-
nates the dependency on cgsim’s cooperative multithreading frame-
work. However, the streaming I/O port types (KernelReadPort and
KernelWritePort) remain unchanged in the kernel source. Conse-
quently, each realm must provide its own implementations of these
types that adapt the cgsim API to the native streaming I/O interface
of the target realm.

3The clang: :Rewriter must operate on the full macro expansion range, rather
than the function declaration’s source range, because cgsim kernel functions are
defined using preprocessor macros.
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4.5 AIE kernel transformation

In addition to the standard (realm-independent) transformations de-
scribed above, the AIE realm augments each kernel declaration with
an adapter thunk that converts AIE-specific kernel parameters—
such as buffer ports and runtime parameters—into the generic
KernelReadPort and KernelWritePort types expected by the kernel
implementation. This thunk serves as the entry point for the kernel
on AIE hardware.

4.6 Co-extraction of referenced code

In addition to extracting the source text of individual kernels, the
extractor can identify and co-extract other declarations from the
input source file that are required for successful kernel compilation
and execution. This capability enables users to define custom data
types, constant lookup tables, and helper functions at global scope
within the cgsim graph prototype, which the extractor automatically
includes in the appropriate kernel source files. The extraction pro-
cess captures not only direct dependencies of each kernel function
but also transitive dependencies and include directives. To prevent
simulation-specific helpers from being included in hardware builds,
the extractor allows each realm to blacklist specific headers.

4.7 Graph code generation

In addition to kernel functions, the extractor must generate a graph
definition for each realm to instruct the target hardware toolchain
on how to instantiate and connect the individual kernels. This
step requires a dedicated source generator, rather than source-
to-source translation, because the original graph definition is no
longer available in source code form when the extractor processes
it (see Section 4.2). To accommodate structural differences across
hardware targets, each realm-specific code generator may emit
multiple source files.

For the AIE realm, the code generator emits two header files per
compute graph: kernel_decls.hpp and graph. hpp. This structure fol-
lows AMD’s AIE graph programming guide recommendations [2].
The kernel_decls.hpp header contains declarations for all kernel
functions within the AIE realm, generated during the kernel trans-
formation step (see Section 4.5). The graph.hpp header defines the
compute graph itself, specifying kernel instantiations, external I/O
ports, connectivity, and user-defined attributes.

5 EVALUATION

To demonstrate that the graph simulator and extractor produce
correct results without incurring excessive overhead, we port sev-
eral demo applications from AMD’s Vitis-Tutorials repository [1] to
cgsim. We select applications that can be implemented entirely on
the AIE array, as the current version of the compute graph extrac-
tor does not yet support HLS targets (see Section 4). The selected
applications are listed below:
e Bilinear_Interpolation: Performs bilinear interpolation on
image data using AIE vector intrinsics.
e bitonic-sorting: A single-kernel graph that implements a
16-wide bitonic sort on 32-bit floating-point values using the
AIE vector intrinsics and APL Its extensive use of the AIE
API makes it a suitable test case for evaluating cgsim’s API
compatibility.
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Figure 6: High-level overview of the graph porting and performance
evaluation workflow.

e farrow_filter: Implements a fractional delay Farrow filter
[8] with throughput exceeding 1 Gsps. It uses two kernels
with ping-pong buffer I/O, VLIW loop pipelining, and hand-
optimized fixed-point SIMD convolution. Its heavily opti-
mized nature makes it ideal for revealing overhead intro-
duced by the automatic translation enabled using our flow.

e implementing-iir-filter (part 2b): Implements an IIR filter
using SIMD intrinsics, with a focus on maximizing system

throughput.

Figure 6 illustrates our graph porting and performance evalua-
tion workflow, which extends the cgsim graph prototyping work-
flow previously shown in Figure 2.

5.1 Graph porting

The example compute graphs provided by AMD rely exclusively
on standard C++, AIE intrinsics, and the AIE vector API within
their kernel code. Since cgsim provides full support for these APIs,
we were able to reuse the core algorithm implementations without
modification. As a result, we were also able to retain the AIE-specific
optimizations that AMD had applied to the example kernels in their
respective cgsim versions, which include manual vectorization and
optimized memory access ordering. Only the streaming I/O inter-
faces of the kernels required adaptation. Specifically, we updated
the parameter declarations, which in the original examples use
AlE-specific stream and runtime parameter types. This manual
replacement was straightforward, as the corresponding cgsim I/O
types preserve the same semantics as their AIE framework coun-
terparts. Our interface even improved type safety: cgsim supports
custom stream data types, including user-defined structs, whereas
the AIE framework requires flat, unstructured data buffers. More-
over, we successfully ported the graph definitions, which instantiate
and connect the kernels (see Section 3.4), without encountering
significant issues.

5.2 Performance

To ensure comparability, we measured the performance of the
ported graphs using the methodology also employed by AMD for
the original AIE examples:

e For the bilinear, IIR, and farrow examples, the primary per-
formance metric is the time between iterations as reported
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by the execution trace of AMD’s AIE cycle-approximate
simulator—aiesim.

e For the bitonic graph, performance data was obtained using
the Vitis AIE profiler.

We assume that all cgsim-based graphs operate at an AIE clock
frequency of 1250 MHz and a PL frequency of 625 MHz in the cycle-
approximate simulation, matching the configuration used in the
original AMD examples.

Table 1 presents the performance evaluation results. All ported
examples achieved at least 85 % of the throughput of the original
hand-tuned AMD implementations. The observed performance re-
duction is primarily attributed to differences in code generation
around I/O stream access in the aiecompiler (see Section 4.4). No-
tably, the cgsim port of the IIR example achieves performance parity
with its hand-optimized counterpart.

Table 1: Processing time per input block for original AMD examples
vs. cgsimimplementations, measured using aiesim on simulated AIE
hardware.

Graph Block size  AMD This work Rel. throughput

(bytes) (ns) (ns) (percent)
bitonic 64 3556.8 4168.8 85.32
farrow 4096 912.8 1019.0 89.58
IIR 8192 5410.0 5385.0 100.46
bilinear 2048 484.0 567.2 85.33

We also evaluated simulator performance by measuring the wall-
clock time required to execute each example graph. Since most
graphs complete in under 100 ms, we repeated the input test vectors
to extend the execution time of AMD’s AIE functional simulator—
x86sim—to approximately 20 s. This approach minimizes distortions
caused by process startup overhead. As shown in Table 2, cgsim
and x86sim exhibit comparable performance on compute-intensive
examples such as bilinear and IIR, where large data blocks are
transferred in bulk. This reduces the impact of synchronization
overhead in kernel-to-kernel data transfers. In contrast, the bitonic
graph processes smaller data blocks, leading to more frequent syn-
chronization. In this case, cgsim outperforms x86sim due to its low-
overhead cooperative multitasking architecture. We verified this
by profiling with perf, which revealed that cgsim spends 99.94 %
of its total runtime executing the bitonic kernel and only 0.06 %
on synchronization and data transfer. Profiling the remaining ex-
amples confirmed that synchronization overhead in cgsim remains
negligible across all cases.

The modest performance advantage that x86sim demonstrates
over cgsim when simulating the farrow graph stems from their
different execution models: x86sim assigns each kernel to a dedi-
cated OS thread, whereas cgsim employs cooperative multitasking
to execute all kernels on a single shared thread. Since the farrow
graph consists of two kernels, x86sim utilizes two CPU cores fully
for 20.70 s, while cgsim uses a single CPU core for 22.26 s. This
result highlights cgsim’s efficiency despite its single-threaded de-
sign. However, this design choice may lead to slower performance
in scenarios where graphs contain many compute-intensive ker-
nels with limited inter-kernel communication. Furthermore, for
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completeness, we also report the runtime of the cycle-approximate
simulator, aiesim.

Table 2: Wall-clock simulation time comparison between cgsim and
the AMD’s AIE simulators.

Graph Repetitions ~ Simulation runtime (seconds)

cgsim x86sim aiesim
bitonic 1024 1432 22.90 5825.96
farrow 512 22.26 20.70 4287.03
IIR 256 18.20 21.37 4346.19
bilinear 1 1495 15.57 3534.90

6 CONCLUSION AND FUTURE WORK

The compute graph simulator (cgsim) and source-to-source trans-
lator (graph extractor) introduced in this work enable developers
to prototype Al Engine (AIE) graphs directly within existing code-
bases. This approach eliminates the need to separate applications
into distinct host and accelerator components during the proto-
typing phase, leading to simpler and faster design iterations. Our
performance evaluation shows that AIE projects generated from
cgsim prototypes achieve competitive throughput—reaching at least
85 % of the performance of hand-optimized AIE implementations
across selected AMD benchmark examples. Importantly, it is possi-
ble to apply hardware-specific optimizations to AIE kernels in the
cgsim version of a compute graph, avoiding the need to manually
modify code generated by the graph extractor.

The combination of the graph simulator and extractor demon-
strates the potential of hybrid source-to-source translation architec-
tures that leverage C++ compile-time code execution. By exploiting
template metaprogramming and Clang’s built-in capabilities, this
approach substantially reduces the complexity of AST analysis and
source transformation. This design also minimizes code duplication
and lowers the risk of missing edge cases, as the extractor’s analysis
phase benefits directly from Clang’s mature support for template
metaprogramming.

Although cgsim currently supports many features of the AIE
array—including access to AMD’s AIE processor emulation library
outside the Vitis environment—several hardware capabilities re-
main unexposed. These include advanced DMA operations such as
corner-turning, templated kernel support, and Global Memory I/O
functionality. Furthermore, the current implementation of the graph
extractor generates code only for the AIE hardware target. How-
ever, its realm-based architecture already provides a foundation for
future extensions by automatically partitioning graph prototypes
into hardware-specific subgraphs. This design will enable the devel-
opment of code generators for additional targets, including FPGAs
via HLS.
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