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Abstract

Tensor Cores (TCs) are specialized hardware units designed for
efficient matrix multiplication and are widely utilized in deep learn-
ing workloads. However, their adoption in more irregular high-
performance computing (HPC) applications remains limited. This
paper presents a methodology for effectively integrating TCs into a
representative HPC application: molecular docking with AutoDock-
GPU. The irregular computational patterns and strict accuracy
requirements of this application pose significant challenges for TC
utilization. To address these, we adopt a twofold strategy: (i) ac-
celerating sum reduction operations using TCs, and (ii) applying
state-of-the-art numerical error correction (EC) techniques to main-
tain accuracy. Experimental evaluations on NVIDIA A100, H100,
and B200 GPUs show that our CUDA-based implementation con-
sistently outperforms the baseline while preserving algorithmic
accuracy.
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1 Introduction

General matrix multiplication (GEMM) is a fundamental computa-
tional pattern in both high-performance computing (HPC) and deep
learning applications. The growing demand for high-throughput
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GEMM operations—particularly for training and inference in large-
scale deep neural networks that underpin emerging large language
models—has driven hardware vendors to develop dedicated accel-
erators to support these workloads [1, 5, 32].

Several commercial hardware accelerators have been developed
to optimize GEMM operations. Notable examples include NVIDIA
Tensor Cores (TCs) [25], Google Tensor Processing Units (TPUs) [6],
Intel Xe Matrix Extensions (XMXs) [12], and AMD Versal Al En-
gines [3]. Among these, NVIDIA TCs are the most widely adopted,
as they are integrated into general-purpose GPU (GPGPU) archi-
tectures. To date, NVIDIA has released five generations of TCs—
starting with Volta and continuing through Turing, Ampere, and
Hopper [31, 32], up to the most recent Blackwell architecture [23].
Successive generations have introduced increased arithmetic through-
put and support for a wider range of data formats. For example,
the H100 PCIe GPU achieves up to 756 LSOP of theoretical half-
precision floating-point (FP16) performance using TCs (without
using their sparsity feature), representing approximately a 7.4x
speedup compared to the general-purpose non-TC computing units
(SMs) on the same device [24], and a 2.4X increase over the previous-
generation A100 with TCs [22].

Due to their quickly growing compute capabilities, TCs have
spurred various efforts, including: (a) algorithmic redesigns that
exploit specific arithmetic operations supported by TCs [2], (b) de-
velopment of programming guidelines for implementing custom
applications [32], and (c) comprehensive benchmarking across GPU
generations [31]. Despite these advancements, TCs remain intrinsi-
cally tightly specialized, limiting their applicability to a relatively
narrow set of domains. Initially, only GEMM-based algorithms
utilized TCs. However, in recent years, their use has expanded to
include certain non-GEMM operations, notably key arithmetic prim-
itives such as reduction and scan—commonly used in data-parallel
applications [1, 5]. This suggests that, although TCs support a
constrained set of compute operations, they offer compelling op-
portunities for broader adoption beyond deep learning, particularly
in HPC applications [4].

Molecular docking represents a compelling application domain
within HPC. As a key method in computer-aided drug design, it
simulates close-range interactions between two molecules with
known three-dimensional structures and aims to predict their bind-
ing poses (i.e., spatial arrangements) with favorable binding energy.
The two interacting molecules are typically referred to as the ligand
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(a small molecule) and the receptor (a macromolecule). Molecular
docking is used to identify ligands with antiviral properties that
bind to a receptor modeling a given biological target (e.g., a protein
or nucleic acid) [11]. One of the most widely used molecular dock-
ing applications is AutoDock [9]. It explores the pose space through
a systematic search composed of multiple irregular nested loops
with variable upper bounds. Search refinement is guided by the
score of each pose, which quantifies the strength of the molecular
interaction. This score is calculated using computationally inten-
sive models and is typically evaluated 10° times during the search
iterations.

The high computational demands of AutoDock have attracted sig-
nificant interest in parallelizing and accelerating the application. To
that end, the official parallel implementation, AutoDock-GPU [29],
was initially developed in OpenCL [7] and later migrated to CUDA
to run on the Summit supercomputer for COVID-19 research [27].
Since its release, AutoDock-GPU has undergone several perfor-
mance enhancements for both CPUs and GPUs [14, 15], and has also
been ported to a variety of heterogeneous architectures, including
FPGAs [13] and vector processors [16]. Moreover, AutoDock-GPU
has served as a case study in migration experiments to alternative
heterogeneous programming models. These include corresponding
mini-apps implemented in HIP and Kokkos [18], as well as our
recent work [17], which enables the execution of a unified SYCL-
based AutoDock-GPU codebase on high-end GPUs from multiple
vendors.

Given its complex code structure and high practical relevance,
AutoDock-GPU serves as a compelling case study within the HPC
domain for leveraging the compute capabilities of NVIDIA Tensor
Cores (TCs) and evaluating their performance and algorithmic
impact. The key contributions of this work are summarized as
follows:

(1) We demonstrate how the CUDA codebase of AutoDock-GPU
can be adapted to leverage NVIDIA TCs, outlining the modifi-
cations required to offload compute-intensive regions—such
as sum reduction operations—to TCs, while integrating nu-
merical error correction (EC) techniques for preserving the
expected algorithmic accuracy.

(2) We evaluate the performance of our TC- and EC-enhanced
CUDA implementation (TCEC), and analyze the impact of
different TC generations available on the A100, H100, and
B200 GPUs.

The remainder of this paper is structured as follows. Section 2
provides background on AutoDock-GPU, and Section 3 reviews
prior efforts in leveraging TCs that serve as a baseline for our work.
Section 4 presents our implementation, while Section 5 evaluates
its performance on high-end NVIDIA GPUs. Finally, Section 6 con-
cludes the paper with a summary.

2 Background on AutoDock-GPU

Here, we provide a relevant overview of AutoDock-GPU’s func-
tionality. Detailed descriptions of the program’s fundamentals and
the evolution of its codebase can be found in prior work [7, 14, 15].
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2.1 Functionality Overview

AutoDock-GPU performs a systematic search based on genetic
evolution heuristics, wherein each ligand pose is treated as an
individual within a population. Each individual is represented by a
genotype, which consists of a set of genes describing the translation,
orientation, and torsion of the ligand during the docking process.
The computational core of AutoDock-GPU is an irregular Lamar-
ckian Genetic Algorithm (LGA) that performs a hybrid search by
combining a genetic algorithm (GA) with a local search (LS). These
two LGA phases generate new individuals from the current popula-
tion, but employ different methods. The genetic algorithm applies
genetic operations—namely crossover, mutation, and selection—
while the local search uses minimization techniques to further
improve the score of the molecular interaction. As presented in
Algorithm 1, AutoDock-GPU executes several independent LGA
runs (default: NLTgAT/_\}uns = 100). Each LGA run terminates when
one of the predefined upper bounds is reached—either the maxi-

mum number of score evaluations (default: NMAX =2500000)
score—evals

or the maximum number of generations (default: NQQQSX = 27000).

Algorithm 1: Lamarckian Genetic Algorithm (LGA)

1 Function AutoDock-GPU
/* Coarse-Level Parallelism */
par for each LGA-run in Ngg%%&?s do
while (Ngcore—cvals < NoX ) and (Ngens < Njax) do
L GA (population)

Qe oW N

LS (population)

Scores, expressed in %, quantify the strength (i.e., energy)
of molecular interactions and are computed for every pose dur-
ing both LGA phases. Algorithm 2 presents the code structure
of the scoring function (SF), which comprises three components.
The PoseCalculation phase transforms the genotypes into atomic
coordinates, which are subsequently used to compute the ligand-
receptor (InterScore) and ligand-ligand (IntraScore) score com-
ponents. The upper bounds of the corresponding loops depend
on the molecular structure of the input—specifically, the number
of elements in the rotation list (Nyo¢_1ist), the number of ligand

atoms (Natom), and the number of intramolecular contributor pairs
(Nintra—contrib)~

Algorithm 2: Scoring Function (SF)

/* Fine-Level Parallelism */
1 Function SF (genotype)

2 par for each rot-item in Nyo_jisy do
3 | PoseCalculation
4 par for each lig-atom in Nytom do
| InterScore
6 par for each intra-pair in Niptra—contrib d0
7 | IntraScore

Of the two LGA phases in AutoDock-GPU, the local search (LS)
is the most time-consuming, typically accounting for more than
90% of the total execution time. Among the alternative LS meth-
ods featured in AutoDock-GPU, ADADELTA [19] achieves the
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best results in terms of molecular docking quality and is therefore
the focus of this work. As presented in Algorithm 3, ADADELTA
generates a new genotype using the gradients of the current geno-
type’s score (see Algorithm 3, Line 4). Then, if the score of the
new genotype is minimized, it replaces the current genotype (see
Algorithm 3, Line 6). ADADELTA terminates when the number of

iterations reaches a predefined maximum (default: NLI\gAX =300).
—iters

Algorithm 3: ADADELTA (AD) local search

/* Coarse-Level Parallelism %/
1 Function AD (genotype)
gradient = GC (genotype)

2
3 par while (Nis_jters < Nﬁ’siéﬁers )do

4 new-genotype = update-rule (genotype, gradient)
5 if SF (new-genotype) < SF (genotype) then

6 L genotype = new-genotype

7 gradient = GC (genotype)

A fundamental computation in ADADELTA is the gradient cal-
culation (GC), whose code structure, presented in Algorithm 4,
resembles that of the scoring function (see Algorithm 2). First,
PoseCalculation computes the atomic coordinates, which are then
used to calculate the numerical and analytical (InterGradient and
IntraGradient, respectively) derivatives of the score components.
At this stage, these derivatives are represented as a list of atomic
contributions. However, since the overall LGA search operates
on genotypes, it is necessary to convert the atom-based contribu-
tions into gene-based ones. This conversion is performed by Gtrans,
Grigidrot, and Grotbond (see Algorithm 4, Lines 8-10), which are
loops that execute data-dependent operations to compute the trans-
lational, orientational, and rotational components of the gradient.

Algorithm 4: Gradient Calculation (GC)

/* Fine-Level Parallelism */

1 Function GC (genotype)
/* Gradients in atomic space */

2 par for each rot-item in Nyo—jisy do

3 | PoseCalculation

4 par for each lig-atom in Naom do

5 | InterGradient

6 par for each intra-pair in Niptra—contrib d0

7 | IntraGradient

/% Convert from atomic into genetic space */

8 Gtrans // Translational gradients

9 Grigidrot // Rigid-body rotation gradients
10 Grotbond // Rotatable-bond gradients

2.2 Parallelization

As previously noted, AutoDock-GPU was originally developed in
OpenCL [7], and later ported to CUDA [27] and SYCL [17]. These
implementations are similar and all follow a Single Instruction, Mul-
tiple Thread (SIMT) programming model.

Table 1 illustrates how AutoDock-GPU’s computations are mapped
onto CUDA processing elements across different levels of paral-

lelism. In general, AutoDock-GPU executes Ngggﬂ‘uns independent
LGA runs, indexed by Runyp = {0, 1,2, ..., Ngggﬂ‘uns — 1}. Within
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Table 1: Mapping of AutoDock-GPU’s computations onto
CUDA processing elements, with corresponding paralleliza-
tion levels indicated in Algorithms 1-4

Computation CUDA element Parallelization level
Genetic algorithm, Local search Kernel Coarse
Individual Thread block Medium
Generation, Scoring, Gradient Thread Fine

each LGA run, both the genetic algorithm and local search oper-
ate on a population of size Popg;,., with individuals indexed by
Indip = {0,1,2,...,Popg;,. — 1}. The core idea behind AutoDock-
GPU’s parallelization strategy is to simultaneously process indi-
viduals from different LGA runs. Based on this mapping scheme,
each of the Ngggﬂ‘uns X Popg;,. individuals is assigned to a dis-
tinct CUDA thread block, with the block index defined as Blockp =
Runp XPopy;,. +Indip. Moreover, fine-grained tasks—such as geno-
type generation, scoring and gradient calculation—are executed by
CUDA threads.

3 Related Work on Accelerating AutoDock-GPU
with Tensor Cores

As discussed in Section 2.1, the ADADELTA algorithm relies on
gradient calculation (GC), which performs seven block-level sum
reductions per iteration. In this context, Schieffer and Peng [8]
observed a significant number of warp stalls caused by these reduc-
tions. According to their execution profiles, approximately 40% of
the observed warp stalls were attributed to memory barriers, while
25% were due to shared memory instruction latency.

To mitigate the high synchronization overhead associated with
warp stalls, Schieffer and Peng [8] proposed leveraging NVIDIA
TCs to accelerate the aforementioned sum reductions. In the origi-
nal AutoDock-GPU implementation, the seven reductions are exe-
cuted sequentially, each targeting a single variable. Similarly, prior
TC-based reduction methods [1, 5] also focused on reducing one
variable at a time. Building on this foundation, Schieffer and Peng
introduced a matrix-based, multidimensional reduction algorithm—
outlined in Equation (1)—that simultaneously reduces four-element
vectors, i.e., {x, y, z, e}. To this end, their work [8] defines three
16 X 16 matrices: A, P, and Q, as specified in Equations 2. Specifically,
matrix A represents the input data to be reduced. It contains the
first 64 vectors—e.g., {xo, Yo, 20, €0}, ..., {X63, Y3, 263, €63}—arranged
in a column-major layout. Matrix P is filled with ones, while matrix
Q is structured as a 16 X 16 matrix composed of 4 X 4 blocks, each
of which is a 4 X 4 identity matrix, denoted I4.

Equation (1) presents the algorithm proposed in [8], which con-
sists of two main computational steps. First, the matrix product
A X P performs a summation across the rows of matrix A (e.g.,
D, x4i = X0 +Xx4+...+Xe0), as shown in Equation (3). If more than 64
vectors must be reduced, the same operation is repeated iteratively:
matrix A is repopulated with the next batch of 64 vectors from the
input, while matrix V accumulates intermediate results. Second,
the matrix product Q X V computes the sum of every fourth ele-
ment in each column of matrix V and stores the result in matrix
W (e.g., 2 xi = X, X4j + X, X4i1 + X, Xai+2 + 2, X4i+3), as shown in
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Equation (4). At this stage, the first column of matrix W contains
the final reduction results for the four variables {x, y, z, e}.

Ve—AXP+V )
W QxV
X0 X4 ... X60 1 . 1
Yo Y4 ... Yo P
20 Z4 Lo 260
€o_ 64 ... €60 1 46x16
X1 X5 X61 L L LI
uous Yo1 4 Iy Iy Iy
A=|71 % 261 0= Lo L L L
er es ... €1 L I It L
1~ 7] L Is L Ii)yg4
;37;777779(673 1 0 0 O
Y5 Y ... Yes L=(% 100
zZ3 z7 . Z63 0 0 1 0
es €1 o €3] e 0 0 0 14y
(2)
2 X4 > X4i 2 X4
2 Yai 2 Yai 2 Yai
2 z4i 2 z4i 2 z4i
e eai o N
D X4irl 2 X4t 2 X4iv1
D Ydivl 2 Ydirl 2 Ydi+l
AxP=| 2zt XZain 2. Z4i+1 3)
Leaivl Desivl .- D Caivl
Y X4i43 L X443 ... D X443
2 Usit3 2 Ydi+3 2 Yai+3
224043 D, Z4i+3 2. Z4i+3
2e4its X e4iv3 Ze4it3 ) 1616
XXi XXi ... XX
XY XY ... XYi
W = Dz Nz ... 2% (4)
2 e ... 2
: : © J16x16

In NVIDIA TC programming, the mapping between threads
and TCs follows a 32-to-1 ratio—i.e., one warp maps to a single
TC unit—unlike the 1-to-1 mapping typically observed between
threads and conventional FP32 SIMT cores [5]. The implementation
of Equation (1) by Schieffer and Peng [8] leverages the C++-based
Warp Matrix Multiply-and-Accumulate (WMMA) API [20], which
exposes TC functionality in CUDA kernels and ensures portabil-
ity across NVIDIA GPU architectures. Specifically, the WMMA
API provides operations for matrix load (load_matrix_sync), matrix
store (store_matrix_sync), and matrix multiply-and-accumulate
(mma_sync). These operations work on fragments, where each frag-
ment is a C++ class representing a small, fixed-size, two-dimensional
matrix distributed across all threads in a warp. In their implemen-
tation, Schieffer and Peng [8] operate on fragments consisting of
16 X 16 FP16 elements.
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Our work builds upon the foundational efforts of Schieffer and
Peng [8], whose algorithm serves as our baseline. We extend their
CUDA codebase to enhance both performance and algorithmic
accuracy, as detailed in Section 4.

4 Algorithmic Analysis and Numerical
Corrections for Tensor Cores

AutoDock-GPU performs all computations using single-precision
floating-point (FP32) arithmetic. During the implementation of Schi-
effer and Peng’s algorithm [8], we observed that utilizing TCs for
GEMM operations requires converting input matrices from FP32 to
FP16, thereby introducing truncation errors due to reduced numer-
ical precision. Nonetheless, Schieffer and Peng [8] reported that
their TC-based implementation produced docking scores deviat-
ing by less than 0.2% from the FP32 baseline, concluding that the
observed accuracy was acceptable for their application.

However, as they did not perform an in-depth analysis of dock-
ing quality, we conducted our own more extensive, domain-specific
algorithmic analysis—employing 42 ligand-receptor test cases com-
pared to the five used in [8]. Our study revealed significantly re-
duced accuracy in the molecular predictions produced by our initial
implementation of Schieffer and Peng’s TC-based reduction algo-
rithm. This analysis is based on the E5¢ metric, introduced in our
prior work [7], which quantifies the number of score evaluations
(Nscore—evals> s€€ Section 2) required to attain a 50% probability
of finding a global minimum, i.e., the optimal score for a given
ligand-receptor pair. In AutoDock-GPU, insufficient score evalua-
tions lower the likelihood of finding this global optimum, while a
sufficient number asymptotically approaches a success probability
of 100%.

In [7], we defined search success using two complementary crite-
ria: one based on the docking score and the other on the root-mean-
square deviation (RMSD) from the experimentally determined na-
tive pose obtained via X-ray crystallography. According to the
score-based criterion, an LGA run is considered successful if the
resulting pose yields a score within 1.0 % of the global minimum.
Under the RMSD-based criterion, an LGA run is considered success-
ful if the predicted pose lies within 2 A of the native pose. Figure 1
presents the results of our algorithmic analysis, comparing the Esg
values obtained over varying numbers of score evaluations for two
AutoDock-GPU versions: our initial TC-based CUDA implemen-
tation of Schieffer and Peng’s algorithm (y-axis) and a reference
OpenCL implementation (x-axis). In this plot, algorithmic equiv-
alence between the two implementations would manifest as Esg
markers lying on or near the dashed diagonal line. However, as
shown in Figure 1, most markers lie above the diagonal, indicating
that the TC-based CUDA implementation requires more score eval-
uations than the OpenCL reference to achieve comparable success
rates. This outcome indicates a reduction in algorithmic accuracy
introduced by Schieffer and Peng’s approach.

Prior studies have investigated the numerical accuracy degra-
dation associated with mixed-precision floating-point computa-
tions on TCs, and have proposed corresponding mitigation tech-
niques [4, 28]. Among these efforts, Ootomo and Yokota intro-
duced an error correction (EC) algorithm that improves upon exist-
ing state-of-the-art methods [10]. In particular, they identified the
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Figure 1: Comparison of E5) values between the initial TC-
based CUDA implementation and the OpenCL reference. Re-
sults are shown for both evaluation criteria: score (top) and
RMSD (bottom). Axis labels indicate the number of score
evaluations required to achieve a 50% probability of success

Rounding-toward-Zero (RZ) behavior inherent to TC operations as
a key contributor to numerical accuracy loss. This rounding mode
is applied in the accumulator following the addition to Cgps3;:

Drp3z < Arpis X Brpis + Crp32 (5)

To avoid the effects of RZ and improve numerical accuracy,
Ootomo and Yokota proposed performing the accumulation to
Crpsz in Equation (5) outside the TCs, i.e., using FP32 SIMT cores
for the addition instead. Figure 2 illustrates the difference between
the standard accumulation method and the approach proposed by
Ootomo and Yokota, which replaces Rounding-toward-Zero (RZ)
with Rounding-to-Nearest (RN). Furthermore, the authors intro-
duced two complementary algorithmic enhancements: (i) reducing
the probability of underflow through input scaling, and (ii) improv-
ing the performance of EC by eliminating negligible EC terms.
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Standard Ootomo and Yokota

Arp16 Brp1s Arp16 Brp1s

| | | |
Tensor Core Tensor Core
Crp32 0
——

)

Drps2

Drp32

Figure 2: Comparison of TC usage methods: standard (left)
vs. Ootomo and Yokota’s approach (right) [10]. In the stan-
dard method, RZ is applied directly to the accumulator Cgps;.
In contrast, Ootomo and Yokota’s method—adopted in this
work—avoids RZ within TCs by performing accumulation
externally on FP32 SIMT cores using RN. This diagram is
reproduced from [10] for explanatory purposes

All the enhancements proposed by Ootomo and Yokota in [10]
are available through WMMA-Extension [26], an open-source CUDA
library that encapsulates GEMM operations implemented using
either NVIDIA’s high-level WMMA API or the newer, low-level
MMA interface. Listing 1 presents our implementation of the first
half of Equation (1), which performs the matrix multiplication and
accumulation operation ViyixN < AMmxK X PkxN + VMxN, where
M =N =K = 16. In particular, Listing 1 compares the correspond-
ing API calls between WMMA-Extension and the standard NVIDIA
WMMA. The only required changes in programming effort are:
(i) including the WMMA-Extension header file tcec.hpp, and (ii)
switching between the mtk: :wmma: : tcec and nvcuda: :wmma names-
paces.

Furthermore, with regard to input datatypes for TCs, WMMA-
Extension supports not only FP16 but also TensorFloat-32 (TF32),
which features an 8-bit exponent and a 10-bit mantissa. Notably,
TF32 shares the same exponent width as FP32 and provides a 3-bit
wider exponent than FP16, thereby improving dynamic range. Ac-
cording to the representation accuracy experiments conducted by
Ootomo and Yokota [10], TF32 achieves accuracy levels comparable
to FP32 and significantly higher than FP16. Based on these find-
ings, our TCEC implementation adopts TF32 as the input datatype
(Listing 1, Line 15). Figure 3 presents the results of the correspond-
ing algorithmic analysis, demonstrating that the achieved search
success is now comparable to that of the OpenCL reference. A
key learning of our work here is that numerically sensitive algo-
rithms targeted to lower-precision compute elements such as TCs
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Listing 1: CUDA implementations of the first half of Equa-
tion (1) using TCs. Top: TCEC based on the WMMA-Extension
API, which supports GEMM and EC [26]. Bottom: baseline
using NVIDIA’s WMMA API for GEMM without EC

~
1| #include <mma.h>
2 | using namespace nvcuda;
3 | using matrix_a = wmma::matrix_a;
4 | using matrix_b = wmma::matrix_b;
5 | using matrix_c = wmma::accumulator;
6 | using layout_ab = wmma::col_major;
7 | wmma::layout_t layout_c = wmma::mem_col_major;
8 | constexpr int M = 16, N = 16, K = 16;
9
10 [ #ifdef TCEC
1 /x Based on WMMA Extension for FP32 GEMM using
12 * Tensor Cores and Error Correction technique (TCEC) x/
13 #include <wmma_extension/tcec/tcec.hpp>
14 using tf32 = wmma::precision::tf32;
15 __shared__ __align__ (256) float tmp[TILE_SIZE];
16 namespace tcec = mtk::wmma::tcec;
17 tcec::fragment<matrix_a, M, N, K, tf32, layout_ab> frag_A;
18 tcec::fragment<matrix_b, M, N, K, tf32, layout_ab> frag_P;
19 tcec::fragment<matrix_c, M, N, K, tf32> frag_V;
20 tcec::load_matrix_sync(frag_A, datatoreduce + offset, 16);
21 tcec::fill_fragment(frag_P, 1.0f);
22 tcec::fill_fragment(frag_V, 0.0f);
23 tcec::mma_sync(frag_V, frag_A, frag_P, frag_V);
24 tcec::store_matrix_sync(tmp, frag_V, 16, layout_c);
25 | #else
26 /* Based on NVIDIA WMMA,
27 * __not__ featuring Error Correction */
28 __shared__ __align__ (256) half tmp[TILE_SIZE];
29 wmma:: fragment<matrix_a, M, N, K, half, layout_ab> frag_A;
30 wmma:: fragment<matrix_b, M, N, K, half, layout_ab> frag_P;
31 wmma:: fragment<matrix_c, M, N, K, half> frag_V;
32 wmma:: load_matrix_sync(frag_A, datatoreduce + offset, 16);
33 wmma:: fill_fragment (frag_P, HALF_ONE);
34 wmma:: fill_fragment (frag_V, HALF_ZERO);
35 wmma: :mma_sync (frag_V, frag_A, frag_P, frag_V);
36 wmma::store_matrix_sync(tmp, frag_V, 16, layout_c);
37 | #endif
J

do require error correction techniques like TCEC to maintain their
quality-of-results.

5 Evaluation

We evaluate the performance gains of our TCEC-enhanced CUDA
implementation of AutoDock-GPU, relative to the CUDA base-
line that exclusively utilizes FP32 SIMT cores. Both implemen-
tations were executed on high-end NVIDIA GPUs: A100, H100,
and B200. Table 2 summarizes key architectural characteristics of
these devices. The evaluation uses a set of 42 ligand-receptor test
cases from [30], covering molecules with up to 32 rotatable bonds
(AutoDock-GPU currently supports up to NMAX = 57),

rot

Table 2: Key characteristics of the NVIDIA GPU accelerators
evaluated in this study. All cards are in PCle form factor

Characteristics A100 H100 B200

Arch. | Comp. Capability Ampere | 8.0  Hopper | 9.0  Blackwell | 10.0

SMs x EE32 SIMT cores 108 X 64 114 x 128 264 X 128
SMs x & 108 X 4 114 X 4 264 X 4
FP32 Theo. Perf. (SM) [ ELOE 19.49 51.22 80
TF32 Theo. Perf. (TC) [ TELOP ] 155.92 378.00 1200
Memory Bandwidth [ 2] 1.56 2.04 8.00

Note. TF32 theoretical performance assumes that the sparsity feature of TCs is not
utilized. Moreover, TF32 computations in WMMA-Extension are implemented with
wmma instructions, which do not support sparsity.
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Figure 3: Comparison of Es( values between the TCEC CUDA
implementation and the OpenCL reference. Across both
criteria—score (top) and RMSD (bottom)—the two implemen-
tations require a similar number of score evaluations to reach
50% probability of success

5.1 Performance Evaluation

Our experiment involves executing simulations for the complete set
of 42 test cases, each configured with NIT(?/IArLuns = 20. For each test
case, we collect the following key metrics, as listed in Table 3: the
actual number of score evaluations performed (N Ac?éaleva ); the
best score achieved with its corresponding RMSD; the best RMSD
achieved with its associated score; and the docking runtime, defined
as the total program-level LGA execution time, including both GPU
kernel execution and the required host-GPU data transfers. Due
to the stochastic nature of the search space traversal employed by
AutoDock-GPU, the docking runtime varies across executions, and
might not be a stable metric in all comparisons. To address this, we
N slzg?::alevals (which itself exhibits
variability) and use the resulting metric, expressed in microseconds
per evaluation (e’:’ ~1)> s our primary performance indicator. Table 3

shows the metrics collected for the 7cpa test case, where the baseline

normalize the docking runtime by
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implementation yields 0.911 % (m), while TCEC
achieves 0.791 £>

| (m). This indicates that, for this
test case, the TCEC implementation requires approximately 15%

less time per score evaluation compared to the baseline.

Table 3: Metrics collected for the 7cpa test case executed
on the A100 GPU. Both CUDA implementations use thread
blocks of size 64. Runtime statistics are based on 100 execu-
tion samples

CUDA Actual Best score  Best RMSD Docking runtime
impl. score—evals @RMSD @score  Min | Max | Avg | Std.Dev.
R keal
Baseline 2523871 2130 mol 1'9&3 230s
1.90 A -21.36 “mol 2.25]2.382.280.02
R keal
TCEC 2516957 2011 iy z.olf.cix 1.99s
366A  -18.88 Xl 1.98]2.10| 2.00 | 0.02

Figure 4 presents the speedup factors achieved by both TCEC
and baseline implementations for three CUDA block sizes: 64, 128,
and 256 threads per block. Absolute speedup factors (shown as
bars) represent the performance gains of each configuration—TCEC
or baseline on any GPU—relative to the non-TC SM-only baseline
implementation running on the A100. Relative speedup factors
(indicated by red arrows) capture the performance gains of TCEC
over its corresponding baseline on the same GPU. To give a sample
interpretation: Running the 42 test-cases on a B200 using Tensor
Cores and Error Correction (TCEC) runs 2.08xX faster than on an
A100 using non-TC SM-only code. Using the TCEC approach on
the B200 gives a 35% performance gain versus just using the SMs
on the same platform.

In general, larger thread block sizes and newer GPU architectures
yield higher absolute speedups. An exception is observed for the
baseline implementation on the H100 with 256 threads per block,
where the absolute speedup is 0.90X, indicating slower performance
compared to the A100 baseline. In terms of relative speedups, the
highest improvement is achieved on the H100 with 256 threads per
block, reaching a 1.63x speedup, equivalent to a 63% performance
gain. All relative speedup factors exceed 1.00X%, indicating that on
each GPU, the TCEC implementation consistently outperforms
its baseline SM-only counterpart, despite the overhead of Error
Correction.

5.1.1  Performance Model. The previously reported speedups pro-
vide a basis for comparing the execution times across different GPU
generations. Equation (6), derived from Amdahl’s Law, models the
predicted speedup as a function of two variables: (i) S, the theoreti-
cal acceleration factor of TCs relative to FP32 SIMT Cores, and (ii)
f, the fraction of workload (ranging from 0 to 1) that is offloaded
to TCs.

TBaseline _ 1 (6)
TrcEC fé +(1-1)

Predicted Speedupap-gpu =

The variable S is derived from Table 2 as the ratio between the
theoretical throughput of TCs and that of FP32 SIMT cores. This

yields acceleration factors of 8.0x (= 1159?4992) for the A100, 7.4%

(= 35718.'2020) for the H100, 15.0% (= %) for the B200. The variable
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Figure 4: Absolute and relative speedup factors for three
CUDA block sizes: 64, 128, and 256 threads per block. Ab-
solute speedups represent the performance of TCEC and
baseline implementations—on any GPU—relative to the base-
line on the A100. Relative speedups reflect the performance
gains of TCEC over its corresponding non-TC SM-only base-
line on the same GPU. All speedups are computed from the
aggregated performance ratios (in %) across the full set of
42 test cases

f represents the fraction of the workload executed on TCs, while
the remaining portion (1 — f) is executed on FP32 SIMT cores.
Table 4 presents predicted speedups for various values of f across
the evaluated GPUs. As shown, achieving approximately half of the
theoretical maximum performance improvement requires a high
utilization of TCs (i.e., f > 0.9).

Table 4: Predicted speedup factors computed using Equa-
tion (6) for selected values of TC usage (f), with f = 0 no time
spent using TCs, f = 1.0 all time spent using TCs

f  A100(S=80x) HI100(S=7.4x) B200 (S =15.0x)

0.0 1.00x 1.00x 1.00x
0.2 1.21x 1.20x 1.25X
0.9 3.55X 3.42X 8.57X
1.0 8.00X 7.40X 15.00X

To estimate f, we instrument AutoDock-GPU using built-in
CUDA function clock64(), which returns the value of a 64-bit
counter that increments every clock cycle on a per-Streaming Mul-
tiprocessor (SM) basis. The value of f is then computed by dividing
the number of clock cycles spent in the seven sum reduction regions
(which are offloaded to TCs, see Section 3) by the total number of
clock cycles consumed by the entire ADADELTA kernel. Since this
kernel accounts for more than 90% of the overall docking runtime,
we consider the effective accelerated fraction as fog = 0.9f when
applying Amdahl’s law.

Table 5 reports performance measurements from AutoDock-GPU
executions using the 7cpa test case (characterized by medium com-
plexity, with Nyt = 15), and thread block sizes of 64, 128, and 256.
Despite its simplicity, Equation (6) yields predicted program-level
speedups that remain closely align with measured values, both
in magnitude and trend. Interestingly, the H100 achieves higher
speedups than the newer and more powerful B200, as observed
both for the 7cpa test case at 256 threads (Table 5) and across the
full set of 42 test cases (Figure 4). We attribute this behavior to two
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main factors: (i) on H100, the FP32 SIMT-only baseline execution
is relatively slower, making the performance gains from TCs more
pronounced; and (ii) the B200’s significantly higher memory band-
width (about 4x greater than that of the H100, as shown in Table 2),
which also accelerates non-TC computations, thereby reducing the
relative speedup attributable to TCs.

Table 5: Predicted and measured speedups of AutoDock-GPU
for the 7cpa test case. Predicted speedups are computed using
Equation (6), while measured speedups are obtained by divid-
ing the baseline performance ratio by its TCEC counterpart
(both in )

GPU Block f s Pred. Baseline = TCEC Meas.
Size eff Speedup [a5] [25] Speedup

2.30 1.99

oo 64 011 . 111X g2l S 115x
0% 238 1.83

128 0.14 1.14x g2 s 130x
2.9 23

256 0.14 1.14X 3510 114 5523500 1.30X
1.94 1.64

100 64 0.12 » 1.12% 5515600 5505748 1.18X
4X 2.15 1.56

128 0.14 1.14x glis g 137x
3.04 1.95

25 0.16 1.16x g S 157
1.42 1.20

5200 64 0.16 s 1.18X 3514802 3516053 1.18X
X 1.65 1.13

128 0.18 1.20Xx 5520278 5504668 1.45X
1.72 1.32

256 0.14 1.15% 5519439 5508757 1.30%

5.2 Execution Profiling

To demonstrate kernel-level performance gains across all GPUs and
block-size configurations, Table 6 reports profiling metrics from
a single execution of the ADADELTA kernel (test case: 7cpa) us-
ing NVIDIA Nsight Compute [21]. As expected, execution time
decreases with newer hardware and is lower for TCEC compared
to its corresponding baseline. The B200 shows the shortest exe-
cution time, reaching 38.7 ms at its best configuration (TCEC, 64
threads), followed by the H100 and A100 with 49.9 ms and 72.8 ms,
respectively—also under TCEC with 64 threads. While not depicted
here, profiling results from Nsight Compute indicate that both
the TCEC and baseline implementations are compute-bound, ac-
cording to the roofline model. Operational intensity (OI) increases
across GPU generations, with the B200 achieving the highest OI of

3620.7 %Ct)f (TCEC, 256 threads) and the highest performance of

2568.5 @ (TCEC, 64 threads). In terms of @, TCEC consis-
tently outperforms the baseline across all evaluated block sizes and
hardware platforms. Specifically, for block sizes of {64, 128, 256},
TCEC yields performance gains of {17.4%, 37.7%, 39.8%} on the A100,
{27.3%, 46.4%, 74.4%} on the H100, and {30.0%, 41.1%, 40.7%} on the
B200.

Fused Multiply-Add (FMA), Arithmetic Logic Unit (ALU), and
Tensor Core (TC) utilization statistics quantify the number of cycles
during which the corresponding hardware units are active. FMA
and ALU utilization factors tend to decrease with increasing block
size, particularly for the baseline implementation. Among the three
GPUs, the A100 exhibits the highest FMA utilization (35.2%) un-
der TCEC with 128 threads, while the B200 maintains moderate
FMA usage but benefits more from TCs. Notably, the B200 achieves
the highest TC utilization, reaching 4.7% under TCEC with 256

Solis-Vasquez et al.

threads—surpassing both the A100 and H100. For all executions of
the baseline implementation, TC utilization was expected to remain
at 0%, as no user-level computations explicitly target these units.
However, unexpectedly nonzero TC utilization—ranging from 0%
to 1%—was observed on the A100 and H100. We attribute this dis-
crepancy to differences in the versions of Nsight Compute used
for profiling: v2023.3.1 for the A100, v2023.2.2 for the H100, and
v2025.1.1 for the B200.

Table 6: Performance metrics from a single ADADELTA ker-
nel execution for the 7cpa test case

CUDA block size 64 128 256 64 128 256
A100 Baseline TCEC

Exec. time [ms] 82.9 95.9  124.8 72.8 74.6 9.6
ol [FB}y?f] 1363.8 15887 1578.0 13909 1701.1 17118
Perf. [ FLOP] 11524 10350 8239 1353.6 14253 11525
FMA Util. [%] 285 26.0 20.6 33.7 352 28.1
ALU Util. [%] 17.4 16.7 14.7 23.2 25.8 233
TC (FP) Util. [%] 0.8 0.9 0.9 15 2.7 33
H100 Baseline TCEC

Exec. time [ms] 61.6 706 104.7 499 51.1 66.5
ol [FBLy?f] 27350 26279 26330 28333 2573.0 2758.8
Perf. [ SFLOP] 15833 13654  946.6 20167 1999.8  1651.5
FMA Util. [%] 14.3 12.3 8.7 19.4 19.7 15.9
ALU Util. [%] 17.1 15.6 12.2 253 26.4 24.0
TC (FP) Util. [%] 0.4 03 0.2 2.1 3.0 3.8
B200 Baseline TCEC

Exec. time [ms] 50.5 59.1 70.7 387 416 52.3
o1 [%ﬁf] 3399.2 33183 34951 34112 34883  3620.7
Perf. [ SFLOP] 1960.1  1641.0 14414 2568.5 24474  2028.8
FMA Util. [%] 14.1 12,5 11.0 18.4 18.8 15.9
ALU Util. [%] 16.1 15.0 14.6 23.6 24.6 21.6
TC (FP) Util. [%] 0.0 0.0 0.0 3.1 40 47

6 Conclusions

In this work, we presented a Tensor Core-accelerated implementa-
tion of AutoDock-GPU with integrated numerical error correction
(TCEC) to mitigate the precision loss introduced by FP16-based
GEMM operations. Building on the prior work by Schieffer and
Peng, our extended algorithmic analysis revealed reduced docking
accuracy in their TC-based approach. To address this, we applied a
TF32-based error correction strategy using the WMMA-Extension
library, which restores accuracy to levels comparable to the OpenCL
reference. Experimental results on high-end NVIDIA GPUs demon-
strate that TCEC consistently outperforms the FP32 SIMT-core
baseline. For docking runtime across 42 molecular test cases with
256 threads per block, TCEC achieves performance gains of 27% on
the A100, 63% on the H100, and 35% on the B200.
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A Artifact Appendix
A.1 Abstract

This artifact appendix provides instructions for obtaining, compil-
ing, and executing the AutoDock-GPU code developed in this work.
It describes the procedures used to: 1) collect docking runtimes (i.e.,
program-level execution times accounting for GPU execution and
the required host-GPU data transfers), and 2) count score evalu-
ations. Both metrics form the basis of the performance analysis
conducted on NVIDIA A100, H100, and B200 GPUs.

A.2 Artifact check-list (meta-information)

o Algorithm: CUDA-based parallelization of AutoDock-GPU, which
offloads sum-reductions in the ADADELTA kernel to Tensor Cores.

e Program: AutoDock-GPU (all sources can be downloaded from
GitHub), commit: a46ab564, size: ~102 MB.

e Compilation: g++ 6 or above.

Binary: Source code and scripts included to generate binaries.

e Data set: Molecular structures prepared for AutoDock-GPU (all
input files can be downloaded from GitHub), status: ready to use,
size: ~1.5 GB.

e Run-time environment: AutoDock-GPU requires any Linux dis-

tribution supporting CUDA. We recommend Ubuntu 22.04 or 24.04.

NVIDIA drivers are required. No need of root access.

Hardware: We recommend NVIDIA A100, H100, and B200 GPUs.

Execution: Sole user. AutoDock-GPU benchmarks on all chosen

three GPUs take ~4 hours.

Metrics: docking runtimes in seconds, and number of score evalu-

ations.

Output: Console indicating docking runtimes of a given experiment.
Additional: docking log files (*.dlg) indicating above runtimes and
number of score evaluations performed.

e Experiments: Execution commands (provided). Maximum allow-
able variation of docking runtimes: 10%.

How much disk space required (approximately)?: ~50 GB.
How much time is needed to prepare workflow (approxi-
mately)?: one hour.

e How much time is needed to complete experiments (approxi-
mately)?: 24 hours.

Publicly available?: Yes.

Code licenses (if publicly available)?: GNU LGPL.

A.3 Description

A.3.1  How to access. The AutoDock-GPU source code is publicly
available on GitHub at: https://github.com/ccsb-scripps/AutoDock-
GPU.

A.3.2  Hardware dependencies. For reproducibility and comparable
results, we recommend using NVIDIA A100, H100, or B200 GPUs.
Nonetheless, AutoDock-GPU is compatible with any CUDA-capable
GPU.

A.3.3  Software dependencies. We tested the implementation using
CUDA Toolkitv12.3 on the A100,v12.2 on the H100, and v12.8 on the
B200. All runs require the appropriate NVIDIA CUDA drivers, with
installation instructions available from NVIDIA. The code has been
validated on Ubuntu 22.04, which exhibited no compatibility issues.
Other Linux distributions—and potentially Unix-based systems—
may also be supported, although they have not been extensively
tested.

A.3.4 Data sets. The molecular input data sets used for bench-
marking are available at: https://github.com/diogomart/AD-GPU_
set_of_42. This repository includes a curated set of 42 molecules.

A.4 Installation
1) Clone AutoDock-GPU repository:

$ git clone https://github.com/ccsb—scripps/AutoDock—GPU.git:

$ cd AutoDock-GPU
$ git checkout a46ab564
3) Retrieve the WMMA-Extension source code, which provides

integrated support of Tensor Core (TC) operations and Error
Correction (EC):

(
(2) Ensure the commit a46ab564 is used:
(

[g git submodule update --init --recursive ]

(4) Compile a single AutoDock-GPU binary:

[} make DEVICE=GPU NUMWI=<NWI> TENSOR=<STATUS> :

where: <NWI> denotes the thread-block size (e.g., 64, 128, 256),
and <STATUS> is either ON or any other string to enable or
disable Tensor Core support, respectively. The resulting bi-
naries are placed in the bin/ folder and are named according
to the selected thread-block size, e.g., autodock_gpu_64wi.
(5) Clone the data set repository:
(

[$ git clone https://github.com/diogomart/AD-GPU_set_of_42 ]

6) Extract the data archives (this step is only required once):

$ for dir in ./data/* ;
gz); done

do (cd $dir && gunzip protein4*.map4i

A.5 Experiment workflow

Execute the AutoDock-GPU binary (./bin/autodock_gpu_64wi)
by specifying the following command-line arguments:

e -ffile: path to the receptor file

e -1file: path to the ligand file

e —nrun: number of LGA runs

e -1smet ad: enables ADADELTA local search

e -A: autostop configuration (@: disabled, 1: enabled)
® -H: heuristics configuration (9: disabled, 1: enabled)
e -resnam: name of the docking log output file

$ 1s

AD-GPU_set_of_42 AutoDock-GPU

$ cd AutoDock-GPU

./bin/autodock_gpu_64wi

-ffile ../AD-GPU_set_of_42/data/7cpa/protein.maps.fld
-1file ../AD-GPU_set_of_42/data/7cpa/rand-0.pdbqgt
-nrun 100 -lsmet ad -A @ -H @ -resnam ad_7cpa_cuda

A.6 Evaluation and expected results

The results of each execution are stored in the generated *.dlg files.
Inspect these files to retrieve docking runtimes and number of score
evaluation performed:

$ grep "Run time" x.dlg
$ grep "Number of energy evaluations performed" *.dlg
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A.7 Experiment customization

The experimental configuration can be customized by modifying
the command-line arguments when executing AutoDock-GPU. For
detailed instructions, refer to the README.md file in the AutoDock-
GPU source code repository.

A.8 Methodology

The artifact appendix for this paper was submitted according to
the guidelines at https://ctuning.org


https://ctuning.org
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